Extending Blockchains with AI for Risk Management

Raj Jain
Barbara J. and Jerome R. Cox, Jr. Professor
Washington University in St. Louis
jain@wustl.edu

Keynote, 40th IEEE International Performance Computing and Communications Conference (IPCCC) 2021, Austin, Texas, USA, October 29th, 2021

Slides and Video Recording of this talk are at:
http://www.cse.wustl.edu/~jain/talks/pbc_ipcc.htm

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/talks/pbc_ipcc.htm
©2021 Raj Jain
1. Strength of blockchains
2. Weaknesses of the blockchains
3. **Extending blockchains**: Converting data to knowledge
4. Applications of **Knowledge Chains**
What is a Blockchain?

1. Satoshi Nakamoto invented Bitcoin
2. He used blockchains to make it decentralized
3. Since then blockchains have found numerous other applications
4. Blockchains allow two complete strangers to enter into a smart contract without a trusted third party.
5. This talk is about blockchains, not about Bitcoin.
Example of a Contract: Wedding
Example of a Contract: Wedding

- Centralized registry
- Single point of failure
- Easier to hack

- Decentralized
- No single point of failure
 ⇒ Fault Tolerant, No Monopoly
- Very difficult to hack
Examples of Centralized Systems

- **Banks**: Allow money transfer between two accounts
- **City Records**: Wedding registers, Property ownership
- **Networks**: Certificate Authorities, DNS

In all cases:
- There is a central third party to be trusted
- Central party maintains a large database ⇒ Attracts Hackers
- Central party may be hacked ⇒ Affects millions
- Central party is a single point of failure.
 Can malfunction or be bribed
Trend: Decentralized \Rightarrow Centralized \Rightarrow Decentralized

Decentralized

Industrialization \Rightarrow Centralized

COVID \Rightarrow Decentralized

Time is a cycle: Decentralized vs. Centralized debate
Key Strengths of Blockchains

1. Distributed: No single point of failure
2. Decentralized Consensus: Transactions valid only if agreed by majority
3. Trustless: Transacting or processing parties do not need to trust
5. Non-Repudiation Guarantee: All transactions are signed
Can the Blockchains be Enhanced?

Limitation 1: Only facts are recorded
- Alice is married to Bob
- Alice gave 20 coins to Bob
- Alice signed a contract with Bob to pay 10 coins for 1 kg of xx.

Limitation 2: Binary Validity
- All transactions recorded on the blocks that are committed are valid
- Those not on the committed blocks and old are invalid
- So the recording is binary: only 0 or 1.

Limitation 3: Deterministic Events only
- Can not record that I am only 90% sure that Alice gave 20 coins to Bob.
Ideas to Enhance Blockchains

- Blockchain is just a distributed **data storage** of valid transactions
- All transactions are **deterministic**
- What’s Wrong?
 - Need to convert data to **knowledge**
 - We are in big data and **machine learning** age
 - Real life is **probabilistic**
 - Most to the decisions we make are probabilistic
 ⇒ All decisions have some **risk**
Decisions with Risk

- Sell insurance
- Buy insurance
- Sell a stock
- Buy a stock
- Download a software application on your computer
- Update your computer
- Marry someone
Risk Propels Progress

- Banks take money from risk-averse savers and give them interest
- Banks invest the money in corporations ⇒ Takes the country forward
- Venture capitalists take risk by investing in half-cooked ideas
- Startups take risk by working in unchartered territories
Our Goal

- Moving the chain from deterministic to probabilistic
- Moving the chain from storage to computation
- Moving the chain from data to knowledge
- Moving the chain from information to decision making

- Google is moving from “Search” to “Suggest” using AI
- A blockchain that provides knowledge
 - A knowledge chain would be more useful
Blockchain Generations

Utility

$\text{Faster Processing} + \text{Consensus}$

1.0 2.0 3.0 4.0?

- **Crypto Coins**
- **Smart Contracts**
- **Faster Processing + Consensus**
- **Blockchains + AI ⇒ Smart Decisions**
Blockchain Process

1. **Users** broadcast signed transactions or smart contracts

2. **Mining nodes** validate transactions and create blocks. Point to previous block.

3. **Blockchain nodes** validate blocks and construct a chain

 - There are many users, many mining nodes, and many blockchain nodes. More nodes ⇒ Better. Less ⇒ Blockchain not required/useful.

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/talks/pbc_ipcc.htm
©2021 Raj Jain
Knowledge Chain /Probabilistic Blockchain

1. **Agents** broadcast transactions,
 Transactions = Opinions/decisions

2. **Mining nodes** validate transactions,
 create a knowledge summary and create blocks

3. **Blockchain nodes** validate blocks
 and construct a chain

- Two types of users:
 - **Agent nodes** provide their probabilistic opinions/decisions
 - **Management nodes** that inquire the blockchain and use it for group decisions
Knowledge Chain Example

- **Issue**: Whether Cisco stock will go up tomorrow?
- **i**th Agent says that the probability that it will go up is \(p_i \)
- Summary of all opinions related to this issue is:

\[
P[\text{Stock will rise}] = G(\{p_1, p_2, \ldots, p_n\})
\]

Here, \(G = \text{Machine Learning Algorithm} = \text{Summarizing function} \)

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/pbc_ipcc.htm ©2021 Raj Jain
Generalizing the Summary Function

- Summary can be any other reasonable function of individual decisions:
 - 90-percentile
 - Median
 - Mode
 - 2nd Moment

- Summary can be a vector: \{1^{st} \text{ moment}, 2^{nd} \text{ moment}, \ldots, n^{th} \text{ moment}\}

- Summary can be the result of any **statistical** algorithm
- Summary can be the result of a **data mining** algorithm
- Summary can be the result of a **machine learning algorithm**
Empirical Validation

- Issue: Whether a network traffic pattern represents intrusion
- 1000 Agents* using different machine learning algorithms give their decisions: Yes or No
- Mining nodes summarize these decisions using the majority function

\[P = \frac{1}{n} \sum p_i \]

*In our simulation, agent modules randomly pick one of the 3 algorithms: Random Forest, Decision Tree, Logistic Regression
Results

Accuracy = \frac{\text{Correct Predictions}}{\text{Overall Samples}} \times 100\%

Distributed decision making is better than any individual decision
Blockchain 4.0: Database to Knowledge Base

- Blockchain = Distributed ledger/database
- Probabilistic blockchain = Knowledge + database
- **Database**: Who bought, who sold, what quantity, what price, what time
- **Knowledge**:
 - Where the market is going?
 - Whether we should buy, sell, or hold?
 - Is this a fake news? Spam? Fraud?
Knowledge Chain

- Customer query to blockchain network: How is the Cisco stock doing today?
- Blockchain to Customer: With 60% confidence, the probability of stock rising is 90%, …
- Ideal for large distributed systems with no national boundaries, no exchange limitations, no brokers in between
- Crowd-sourced knowledge, crowd-sourced decisions
Application Examples

1. Spam from Email/IP Addresses/Cloud providers/source/public IP
2. Intrusions/attacks from IP Addresses. Anonymously share attack information.
4. Reliability/Issues with recent software updates
5. Error/reliability statistics of network/IoT devices
6. Virus in software
Issues to Resolve

1. Summary functions

2. Overhead of consensus mechanisms: Proof of Work, Proof of Stake, …

3. Reputation of Experts and Bad Actors:
 - Some agents are better than others
 - Group decisions should give more weight to them
 - How to incentivize better agents
 - How to penalize bad actors
Reputation Management

Requirements:

- Dynamic: Old mistakes count less than recent mistakes
- Configurable Parameters: E.g., penalty/reward. Different applications have different risk levels
- Proportional Trust: Good performers trusted 100% while bad performers trusted 0%
- ...

Solution: Rated Proportional Multi-Configurable Exponentially Weighted Average (RPMC-EWA)

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/pbc_ipcc.htm ©2021 Raj Jain
Summary

1. Blockchains provide an immutable, secure, distributed database
2. Three generations: Crypto currency, Smart contract, faster performance
3. All three generations are deterministic and only provide storage
4. The next generation needs to connect computation and AI to make knowledge/decisions in addition to data storage
5. Consensus can be probabilistic result of any statistical algorithm, data mining, or machine learning ⇒ Knowledge Chain
Related Papers

List of Acronyms

- **AI**: Artificial Intelligence
- **DNS**: Domain Name Service
- **IEEE**: Institution of Electrical and Electronics Engineers
- **IoT**: Internet of Things
- **IP**: Internet Protocol
- **PKI**: Public Key Infrastructure
- **SSL**: Secure Socket Layer