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Abstract—Today’s Android-powered smartphones are
equipped with various embedded sensors, such as the motion
sensors, the environmental sensors and the position sensors.
Many functions in the third-party applications (apps) need to
use these sensors. However, embedded sensors may lead to
security issues, as the third-party apps can access data from
these sensors without claiming any permissions. It has been
proven that embedded sensors can be exploited by well designed
malicious apps, resulting in leaking users’ privacy. In this work,
we are motivated to provide an up-to-date overview of sensor
usage patterns in current apps by investigating what, why and
how embedded sensors are used in all the apps collected from
a complete app market. To fulfill this goal, We develop a tool
called “SDFDroid” to identify the sensors’ types and to generate
the sensor data propagation paths in each app. We then cluster
the apps to find out their sensor usage patterns based on
their sensor data propagation paths. We apply our method
on AppChina, a widely used Chinese Android app market.
Extensive experiments are conducted and the experimental
results show that most apps implement their sensor related
functions by using the third-party libraries. We further study
the sensor usage in the third-party libraries. Our results show
the accelerometer sensor is the most frequently used sensor.
Though many third-party libraries use no more than four types
of sensors, there are some third-party libraries register all the
types of sensors recklessly. These results show the need for
better regulating the sensor usage in Android apps.

Index Terms—Android system; Sensor usage; Data-flow anal-
ysis; Clustering

I. INTRODUCTION

In recent years, Android-powered smartphones have become

very popular for both personal and business use. According

to a report from the International Data Corporation (IDC)

[1], Android-powered smartphones dominate the market with

a 78.0% share in the first quarter of 2015. At the same

time, the smartphone’s hardware is more and more advanced.

Various sensors have been embedded in smartphones, such

as the motion sensor (e.g., accelerometers, gyroscopes), the

environmental sensor (e.g. temperature, illumination) and the

position sensor (e.g., orientation sensors and magnetometers)

[2]. These sensors are used by the third-party applications

(apps) to support their novel features, such as the Spirit Level

in some Camera-related apps.

When Google designed Android, it did not consider the

security issues that may be led by the embedded sensors.

Therefore, the third-party apps can use embedded sensors
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without claiming any permissions on Android platform. How-

ever, embedded sensors can be exploited by well designed

malicious apps (malapps), resulting in leaking users’ privacy.

For example, tapping different positions on the touchscreen

will cause different motion changes of the smartphone. If the

correlations between the tap events and the data collected by

the motion sensors are learned, one can successfully guess

users’ input through the data collected by the motion sensors.

Related work [3][4][5] has already proven that smartphone’s

embedded sensors can expose users’ privacy data. In particular,

Xu et al. [6] designed and implemented “TapLogger”, a trojan

app that uses obtained sensor data to log user inputs on

touchscreen stealthily. This app only needs two permissions,

INTERNET and READ PHONE STATE, and disguise itself

as a game. Due to its high threat to users’ confidential

information, this work was reported by various media [7][8].

Besides, other researchers [9][10] proposed some user identity

recognition mechanisms based on embedded sensor data.

These work indicates that embedded sensors’ data can not

only be used to identify whether a user is the smartphone’s

owner, but can also leak users’ identity information.

Although these studies still remain in the experimental

stage, they attract our attentions to the sensor usage patterns in

the current Android apps. According to a statistical result from

AppBrain [11], the number of apps in Google Play has reached

1.5 million, while according to the Android API Guides [2],

Android system supports more than ten types of sensors. Since

embedded sensors can expose confidential information on

smartphones, curiosities are aroused on understanding what,

why and how the embedded sensors are used in apps collected

from a whole app market. As a first step in the direction of

answering these questions, we explore sensor usage behaviors

of Android apps based on data flow analysis. To fulfill this

goal, we design and implement a tool called SDFDroid (Sensor

data flow droid). SDFDroid first disassembles the apk files to

smali code files, and then performs two kinds of data flow

analysis. One is backward tracking analysis, which starts from

the API that registers a sensor listener in the system to find

the used sensors’ type. The other is forward tracking analysis,

which starts from the API that read sensor data from the

system to generate sensor data propagation path graph. We

calculate the similarity between the sensor data propagation

path graphs which are generated from many apps, and then

cluster the graphs with DBSCAN, a well known clustering
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algorithm. Sensor usage patterns are thus constructed from the

cluster results. We analyze all the apps in AppChina, one of

the main Android app markets in China, and find that almost

all the apps implement sensor related functions with the help

of the third-party libraries. We also find that accelerometer

sensor is the most-used sensor and that the used sensor type

has a clear association with the app’s function. We make the

following contributions in this paper:

• We design and implement SDFDroid that fast and ac-

curately analyzes Android apps’ sensor data propagation

pathes.

• We employ SDFDroid to analyze all the apps in Ap-

pChina and reveal sensor usage patterns in apps on large-

scale.

• To the best of our knowledge, our work is the first

research on the sensor usage analysis on the view of an

Android whole app market.

The remainder of this paper is organized as follows. Section

2 describes the background of Android sensor system and

smali code files. Section 3 gives our system design. Section

4 presents experimental results. Limitation and related work

are given in Section 5 and 6, respectively. Section 7 concludes

our work.

II. BACKGROUND

A. Android Sensor System

Today’s Android-powered smartphones are equipped with

various embedded sensors. These sensors are used to monitor

the device movement, position or other surrounding envi-

ronmental conditions. Android system supports many types

of sensors (See Table I). Some sensors are hardware types,

which means that the sensor data are directly read from

physical components built in the smartphone. Other sensors

are software types, which means that sensor data are read

from one or more of the hardware sensors [2]. The embedded

sensors are widely used in the third-party apps. For example, a

navigation app may use the magnetic field sensor to determine

the compass bearing.

The embedded sensors are managed by Android Sensor

Framework. Different from the Camera, GPS and Bluetooth

which are protected by Android permission mechanism, the

embedded sensors can be directly used by the third-party

apps without any requirement of permissions. With the help

of Android Sensor Framework, a third-party app can read a

sensor’s data by the following steps (as shown in Figure 1).

• First, instantiate the object of SensorManager class (Line

12). In this step, an app creates an instance of the sensor

service. This class provides many methods for interaction

with sensors, such as access specified sensors and list

all available sensors, register and unregister sensor event

listeners.

• Second, instantiate the object of Sensor class by calling

the getDefaultSensor() (Line 14). In this step, an app gets

an object of Sensor with specific type. The type of sensors

can be specified by the method’s parameter. As shown

TABLE I
SENSOR TYPES SUPPORTED BY THE ANDROID PLATFORM

Sensor Type Description

Accelerometer Hardware Measures the acceleration force

Ambient Temperature Hardware Measures the ambient room temperature

Gravity
Software or
Hardware

Measure the force of gravity

Gyroscope Hardware Measures a device’s rate of rotation

Light Hardware Measures the ambient light level

Linear Accelerometer
Software or
Hardware

Measures the acceleration force,
excluding the force of gravity

Magnetic Field Hardware Measures the ambient geomagnetic field

Orientation Software
Measures degrees of rotation that
a device makes around all three
physical axes

Pressure Hardware Measures the ambient air pressure

Proximity Hardware
Measures the proximity of an object
relative to the view screen of a device

Relative Humidity Hardware Measures the relative ambient humidity

Rotation Vector
Software or
Hardware

Measures the orientation of a device

Temperature Hardware Measures the temperature of the device

1 //SensorActivity.java

2 public class SensorActivity extends Activity

3 {

4 float accx;

5 private SensorManager sensorManager;

6 private Sensor sensora;

7

8 public void onCreate(Bundle paramBundle)

9 {

10 super.onCreate(paramBundle);

11 setContentView(R.mainview);

12 sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

13 Log.d("sensor", "Get sensorManager Success");

14 sensora = sensorManager. getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

15 SensorEventListener accelerometerListener = new SensorEventListener()

16 {

17 public void onAccuracyChanged(Sensor arg0, int arg1)

18 {

19 }

20 public void onSensorChanged(SensorEvent arg0)

21 {

22 accx = arg0.values[0];

23 ......

24 // Do something with this sensor value

25 }

26 };

27 this.sensorManager.registerListener( accelerometerListener, sensora,

SENSOR_DELAY_NORMAL);

28 }

29 ......

30 }

Fig. 1. Code example to use sensor

in this example, Sensor.TYPE ACCELEROMETER is a

constant describing an accelerometer sensor type. If light

sensor is required, one can set the method’s parameter

as Sensor.TYPE LIGHT. All available constants can be

found in the Android developer website [12].

• Third, instantiate the object of SensorEventListener in-

terface (Line 15) and override two callback methods

which are onAccuracyChanged() (Line 17) and onSen-

sorChanged() (Line 20). These two methods are used

to receive sensor events when sensor accuracy changes

or when sensor values change. Android system will

invoke onSensorChanged() when sensor data changes

automatically, and a sensor event object is put in the

methods’ parameter. The sensor event object is created

by the system. It contains the following information: the

raw sensor data, the sensor’s type, the accuracy of the data

and the timestamp of this event. Codes that use sensor

values can be written in this method (Line 22).



1 .super Landroid/app/Activity;

2 .source "SensorActivity.java"

3

4 # instance fields

5 .field accx:F

6 .field private sensorManager:Landroid/hardware/SensorManager;

7 .field private sensora:Landroid/hardware/Sensor;

8

9 # virtual methods

10 .method public onCreate(Landroid/os/Bundle;)V

11 .parameter "savedInstanceState"

12

13 invoke-super {p0, p1}, Landroid/app/Activity;->

onCreate(Landroid/os/Bundle;)V

14 const/high16 v2, 0x7f03

15 invoke-virtual {p0, v2}, Lcom/my/sensorgravity/SensorActivity;->

setContentView(I)V

16 const-string v2, "sensor"

17 invoke-virtual {p0, v2}, Lcom/my/sensorgravity/SensorActivity;->

getSystemService(Ljava/lang/String;) Ljava/lang/Object;

18 move-result-object v2

19 check-cast v2, Landroid/hardware/SensorManager;

20 iput-object v2, p0, Lcom/my/sensorgravity/SensorActivity;->

sensorManager:Landroid/hardware/SensorManager;

21 const-string v2, "sensor"

22 const-string v3, "Get sensorManager Success"

23 invoke-static {v2, v3}, Landroid/util/Log;->

d(Ljava/lang/String;Ljava/lang/String;)I

24 iget-object v2, p0, Lcom/my/sensorgravity/SensorActivity;->

sensorManager:Landroid/hardware/SensorManager;

25 const/4 v3, 0x1

26 invoke-virtual {v2, v3}, Landroid/hardware/SensorManager;->

getDefaultSensor(I)Landroid/hardware/Sensor;

27 move-result-object v2

28 iput-object v2, p0, Lcom/my/sensorgravity/SensorActivity;->

sensora:Landroid/hardware/Sensor;

29 new-instance v0, Lcom/my/sensorgravity/SensorActivity$1;

30 invoke-direct {v0, p0, v1}, Lcom/my/sensorgravity/SensorActivity$1;->

<init>(Lcom/my/sensorgravity/SensorActivity;

Landroid/widget/TextView;)V

31 .local v0, acceleromererListener: Landroid/hardware/SensorEventListener;

32 iget-object v2, p0, Lcom/my/sensorgravity/SensorActivity;->

sensorManager:Landroid/hardware/SensorManager;

33 iget-object v3, p0, Lcom/my/sensorgravity/SensorActivity;->

sensora:Landroid/hardware/Sensor;

34 const/4 v4, 0x3

35 invoke-virtual {v2, v0, v3, v4}, Landroid/hardware/SensorManager;->

registerListener( Landroid/hardware/SensorEventListener;

Landroid/hardware/Sensor;I)Z

36 return-void

37 .end method

Fig. 2. Smali code for SensorActivity

• Last, register the listener (Line 27). By invoking the

method registerListener(), the app registers a Sen-

sorEventListener into the system. The sensor to be regis-

tered is specified by the second parameter of this method.

When a sensor’s value changes, the system will only

notify the apps that have registered this sensor. The third

parameter of this method is used to set the data delay. The

data delay controls the interval at which sensor events are

sent to the app. In this example, the default data delay

(SENSOR DELAY NORMAL) let this app receive the raw

sensor values every 0.2 second.

B. Smali Code

Smali code is a disassembled version of the DEX format

used by Dalvik, Android’s JVM implementation. A given

app’s smali codes can be retrieved with Apktool [13], a tool

for reversing Android apps. The smali codes obtained by

disassembling are matching to the app’s source codes. Hence,

analysis performed on the smali codes directly is reasonable.

We provide the corresponding disassembled smali codes of

Figure 1 in Figure 2 and Figure 3. Figure 3 is the smali

codes associated with the interface class SensorEventListener.

Apktool generates an individual smali file for the interface

class and inner class.

1 # virtual methods

2 .method public onAccuracyChanged(Landroid/hardware/Sensor;I)V

3 .parameter "arg0"

4 .parameter "arg1"

5 .prologue

6 return-void

7 .end method

8

9 .method public onSensorChanged(Landroid/hardware/SensorEvent;)V

10 .parameter "arg0"

11 .prologue

12 const/4 v3, 0x0

13

14 iget-object v0, p0, Lcom/my/sensorgravity/SensorActivity$1;->

this$0:Lcom/my/sensorgravity/SensorActivity;

15 iget-object v1, p1, Landroid/hardware/SensorEvent;->values:[F

16 aget v1, v1, v3

17 iput v1, v0, Lcom/my/sensorgravity/SensorActivity;->accx:F

18 return-void

19 .end method

Fig. 3. Smali code for SensorActivity$1

a0apk Accelerometer

b0apk gyroscopes

......

Used 
sensors type

a0apk Accelerometer

b0apk gyroscopes

......

Used
sensors type

SDFDroid

Decompiled

Smali"files

Forward 
tracking 
analysis

Backward"
tracking 
analysis

Sensor data 
propagation 
path graphs

Clustering Sensor used 
patterns

Fig. 4. Overview of SDFDroid

III. SYSTEM DESIGN

A. High-level Overview

We design and implement a tool called “SDFDroid” that

performs static analysis of Android apps to identify the used

sensor type and the sensor data propagation path in the

apps. SDFDroid supports automated analysis. In addition, it

is efficient to process a large number of apps. After we get all

the apps’ sensor data propagation path graphs, we calculate

their similarities. We convert the similarities into distances

between each graph before we cluster the graphs. In this

work, DBSCAN [14] is employed to cluster the app samples

based on the distances between each graph, as DBSCAN is a

widely-used clustering algorithm based on density estimation

that can describe the behaviors of various apps. The sensor

usage patterns of each cluster are then constructed based on

the clustering results. We illustrate the system’s overview in

Figure 4.

B. Static Analysis

In this Section, we describe the static analysis method used

in this work. Static analysis methods try to cover all possible

execution paths of the app. Complete codes are statically

analyzed without the need of its execution. Therefore, static

analysis can be done at app market level efficiently.

Android apps are packaged as APK files with compiled

bytecode, additional metadata and resources in them. SDF-

Droid disassembles the APK files into smali code files with

the help of Apktool. Then, SDFDroid parses the smali files

and creates corresponding java objects of its contents.



Based on the previous step, SDFDroid performs two kinds

of static analysis. One is backward tracking analysis that

specifically focuses on the analysis of registerListener()’s

second parameter to find which sensors the app use. The

other is forward tracking analysis that focuses on finding the

propagation path of the sensor data. We describe the detail of

these two kinds of static analysis as follows (we use the codes

in Figure 2 and Figure 3 for examples):

• Backward tracking analysis. In the backward tracking

analysis, the analysis begins at the method registerLis-

tener(), whose second parameter specifies the used sen-

sor. SDFDroid first finds out the corresponding smali

code of registerListener() in the smali code files, then

begins to track the register v3 which stores the value

of this method’s second parameter (see line 35, Figure

2). SDFDroid searches the smali codes in reverse order

to find the value of v3. Then, we can find it gets an

object value assigned at line 33. This object is a class

field defined in Line 7. In the next step, SDFDroid

searches the corresponding setters of this field. One setter

can be found in Line 28. The value in register v2 is

assigned to this field. After this, SDFDroid backtracks

register v2, and finds v2 stores the result of invoking

method getDefaultSensor (see Line 26-27). Hence, the

registers corresponding to this method’s parameters are

backtracked (See register v3 in Line 26). If a register

obtains a constant value, the tracking of this register

will be terminated, and the result will be reported. As

shown in this example, register v3 gets a constant value

in Line 25. This result is reported, and we realize the

sensor type is 1. Hence, the sensor used by this app

is an accelerometer sensor. The relationship between the

number and the real sensor type can be found in Android

Developer Website [12].

• Forward tracking analysis. The forward tracking analysis

is similar with the backward tracking analysis. SDFDroid

first finds out the register which stores the value of

the data need to be tracked in the smali codes. Then,

it determines whether the register assigns its value to

another object, or it is overwritten by another value. In

forward tracking analysis, if a tracked register assigns

its value to another object, the target object is added to

the track queue. Otherwise, if the register is overwritten,

the tracking of this register is stopped. For example, in

Figure 3, sensor data is obtained from the system through

the object: Landroid/hardware/SensorEvent;->values:[F

and assigned to the register v1 (See Line 15). SDFDroid

searches the smali files in order in forward tracking

analysis. Finally, SFDroid finds register v1 assigns its

value to a class field accx in Line 17, and finds this

research process reaches the end of this method. Hence,

the track of register v1 is stopped, and SDFDroid will

search at where the class field accx is used in all other

smali code files of the same app in the next step.

Both backward tracking analysis and forward tracking anal-

ysis have a queue to store objects that need to be tracked. Once

the tracking process finds an object that needs to track, it puts

this object in this queue. When the track of the current object

is finished, SFDroid gets an object from the top of the queue

and starts to track. The static analysis of an app is complete

when the queue is empty. The used sensor type is reported in

a .xml file. The sensor data propagation path is reported in a

.gexf file. GEXF(Graph Exchange XML Format) is a language

for describing complex network structures. Gephi can open

the .gexf file and show the structure in a visible graph. Nodes

in the graph are smali code lines, while edges represent data

propagation direction.

C. Clustering Analysis

Once the used sensor type and sensor data propagation path

graph of each app are generated, we perform clustering anal-

ysis on these graphs to construct their sensor usage patterns.

1) Distance calculation: The first step to perform clustering

analysis is to calculate the similarity between each graph.

One effective way to calculate the similarity between two

graphs is calculating the edit distance between the two graphs.

Graph edition distance measures the minimum number of

graph edit operations (including insert or delete a node, insert

or delete an edge or change the label of a node or edge)

to transform one graph to another. However, calculating the

edit distance between two graphs is NP-hard [15]. It is only

applicable to graphs that have a small number of nodes.

Although many researchers modified the basic algorithm of

graph edit distance to improve the efficiency, it cannot apply to

the sensor data propagation path graph that may have hundreds

of nodes. Besides, an Android app market may have more

than ten thousands apps to be analyzed. As we need a fast

algorithm to calculate the similarity between each graph for

apps on large-scale, in this work, we compute a graph hash for

each graph and calculate similarity between each graph based

on their hash values, a procedure inspired by Neighborhood

Hash Graph Kernel (NHGK) originally proposed by Hido and

Kashima [16].

NHGK is a kernel operation over labeled graphs. It has high

expressiveness of the graph structure, and fast execution speed

on graphs with large number of nodes. Hence, it is applicable

to process graphs with hundreds of nodes such as the sensor

data propagation path graphs. The main idea of NHGK is to

integrate the information of a node and its neighbor nodes into

a hash value. The calculation of a node’s hash value is defined

as follows:

H(v) = R(l(v))⊕ (l(vNE

1
)⊕, · · · ,⊕(l(vNE

n
)))

where l(v) represents the binary label that is transformed from

the node’s real label. ⊕ represents a bit-wise XOR. R means

a one-bit rotation to the left. vNE is the neighbor nodes of the

node v. This algorithm can also be used iteratively to integrate

information across neighbors up to a path with length k. The

hash of a graph G is obtained by calculating hashes for each

node. Then the similarity between two graphs is computed



based on the number of nodes that has the same hash in two

graphs.
In our work, when we calculate the similarity between each

graph, we simplify the label of the nodes in the graphs at first

to ensure its robustness. The label of nodes is an entire smali

code line in original graphs, and we relabel the nodes only

with the operation code in the code line. For example, node

label mul-float v1,v2,v3 is relabeled as mul-float. For some

special operation, such as invoking a method, we also reserve

the name of the invoked method. Then we count the number of

distinct labels in total, and relabel them with different binary

labels. Finally, hash value is computed for each node. By doing

this, we can calculate the similarity between each sensor data

propagation path graphs with the algorithm above.
2) Clustering: After we have calculated the similarity be-

tween each graph, we cluster the graphs to find their common

characteristics and thus to discover the sensor usage patterns

of different apps. The algorithm we used is Density-based

spatial clustering of applications with noise (DBSCAN) [14].

DBSCAN is one of the most widely-used clustering algorithms

based on density. The main idea behind this algorithm is

that, for a set of points in a given space, clusters points that

are closely located together and make outliers for points that

lie alone in low-density regions. In a DBSCAN clustering,

the points are classified as core points, reachable points and

noise. A core point p is a point that has at least m neighbor

points within distance d of it, and these neighbor points are

considered to be directly reachable from p. A point q is a

reachable point of p if there is a path from p to q where each

point on the path can be directly reached from the point before

it. The points are neither core points nor reachable points are

noise. After the clustering, each cluster consists of some core

points and their reachable points. The points that are reachable

but not core points form the cluster’s edge [17].
DBSCAN only needs two parameters: m and d to confirm

core points. It does not need to specify the number of clusters.

Therefore, it is suitable on our app set, as we do not know

how many clusters the apps are associated with.
In our work, we transform the similarity between each graph

generated with SDFDroid to a distance between each graph.

For two graphs, the more similar they are, the smaller distance

they have. We measure the distance by:

d =
1

1 + s

where s is the similarity between two graphs and d is the

distance.

IV. EVALUATION

A. Dataset

The dataset in the experiments is collected from AppChina,

one of the biggest Android app markets in China. The dataset

contains 22010 apps available in the market in December

2014. The apps belong to 14 subcategories under “Soft”

category and 14 subcategories under “Game”. The number of

apps in each subcategory is shown in Figure 5. For each app,

we get it’s apk file, size and description.

Fig. 5. The number of apps in each category

B. Analysis Results

Except some apps that cannot be disassembled by Apktool,

we successfully analyzed 19914 apps. To our surprise, we find

10976 apps (55% of all) contain codes that can read sensor

data. We present the detailed cluster and analysis results as

follows.

1) Clustering results: In order to ensure the robustness

and representative, in the process of clustering, we set the

parameter d and m of DBSCAN to 0.1 and 10 respectively.

After the clustering, we have 98 clusters with 8319 apps.

We compare the samples in the same cluster and find the

main reason why their sensor data propagation path are

similar is the using of the same third-party libraries. Table

II shows the third-party libraries used in the clusters that

have more than 100 apps. Some third-party libraries have

different sensor data propagation path in their different version,

hence they are clustered into different clusters. The table

shows Tencent, Cocos2dx, Unity3d is the most frequently used

third-party development libraries which contain sensor related

codes. Com.tencent.mm.sdk is a Jar package used to share the

moments with one’s friends in WeChat (The most widely-used

IM tool in China). Cocos2dx is a framework for building 2D

games and other graphical apps. Unity3d is a third-party game

development toolkit that helps developers to build 3D games

and real time 3D animations.

Figure 6 is a matrix describing clustering results by category

(The number of Y-axis and category map can be found in Ap-

pendix), which shows us each category’s sensor usage patterns.

This figure illustrates that different category usually has differ-

ent sensor usage patterns. Category IME (301), Browser (302)

and Theme (309) have few apps that have sensor related codes.

Cluster 14, which mainly denotes com.tencent.mm.sdk, only

appears in category Wallpaper. This is because most of apps

in category Wallpaper are developed by the same developer.

Comparing with categories Tools, Games are more likely to

use sensors, especially the games in category Adventure.



Fig. 6. Matrix for cluster result by category. Each grid corresponds to a cluster and category, and the depth of the grid’s color represent the number of apps
in this grid. The more apps in the corresponding cluster and category, the deeper the color.

TABLE II
THE THIRD-PARTY LIBRARIES IN EACH CLUSTER

ID Cluster The Number Third-Party Libraries
Number Of Apps

1 15 1097 org.cocos2dx.lib
2 16 938 com.unity3d.player
3 1 619 com.tencent.mm.sdk
4 14 398 com.tencent.mm.sdk
5 6 397 com.tencent.mm.sdk
6 3 313 org.cocos2dx.lib
7 25 214 com.adobe.air.Accelerometer
8 24 196 com.badlogic.gdx.backends.android
9 13 185 org.apache.cordova
10 43 177 com.mobi.view
11 10 166 com.tencent.mm.sdk

org.cocos2dx.lib
12 34 165 com.unity3d.player

com.tencent.mm.sdk
com.millennialmedia.android.AccelerometerHelper
com.mobclix.android.sdk

13 39 160 com.unity3d.player
14 62 137 org.andengine.engine.Engine
15 40 130 cn.sharesdk.onekeyshare.Shake2Share
16 33 112 com.adsmogo.mriad

com.tapjoy.mraid
org.ormma.controller

17 9 105 com.adobe.air
18 67 104 com.baidu.location

cn.sharesdk.onekeyshare.Shake2Share
com.umeng.socialize.sensor.UMShakeSensor

19 8 102 com.unity3d.player
com.zhuohuamg.game.util.ShakeListener
com.tencent.mm.sdk

20 27 101 com.trid.tridad.TriDContentsView

2) Used sensor type: According to backward tracking

analysis results, accelerometer is the most frequently used

sensor. More than 70 percent of apps use this sensor as

indicated in Figure 7. This is mainly because the popular

function, such as Shaking, needs this sensor. All the widely

used third-party libraries, such as Cocos2dx, Unity3D and

OneKeyShare, contain codes to use this sensor. Gyroscope

sensor is often used to display the 3D model of an object. Prox-

imity sensor almost only appears in com.tencent.mm.sdk while

gravity sensor almost only appears in Unity3D. The third-party

libraries that provide map function, such as com.baidu.mapapi,

will use the Orientation sensor and Magnetic field sensor.

The apps that can distinguish QR Code may use the light

sensor. Motion sensors and position sensors are widely used,

while environmental sensors are seldom used, except the light

sensor. This is because many smartphones do not have the

Fig. 7. Percentage of apps that use each type of sensor

hardware sensors to measure the temperature, pressure or

humidity. More than 72 percent of apps only use one sensor,

mostly accelerometer sensor. Unity3D can access four types

of sensors. However, madhouse, an ad library, registers nine

types of sensors for their ad display. Although attractive ads

may need the data from sensors, we do not think nine types

of sensors are necessary. We summarize the detail about the

used sensor type in the most used third-party libraries in Table

III.

3) Discussion: Our studies on an Android app market do

not find any app that steals users’ sensor data (The data

read from the sensors which are not protected by Android

permissions). Different from the methods of stealing users’

location, contact or message, which often use Java reflection

API to read data and send the data to the Internet, apps just

use the sensor data in their local codes. However, since the

embedded sensor can be directly used without requirement of

permissions, some third-party libraries register all the sensor

recklessly, no matter whether they really need. This not only

lead to more power consumption, but also more easily be

exploited by malicious apps. Though many apps contain the

third-party libraries that can read sensor data, they do not



TABLE III
USED SENSOR TYPE IN EACH THIRD-PARTY LIBRARY

Libraries Accelerometer Magnetic Field Orientation Gyroscope Light Pressure Temperature Proximity Gravity
org.cocos2dx ✔

com.unity3d.player ✔ ✔ ✔ ✔

com.tencent.mm.sdk ✔

cn.sharesdk.onekeyshare ✔

com.umeng.socialize.sensor.UMShakeSensor ✔

com.adsmogo.mriad ✔ ✔ ✔ ✔ ✔ ✔ ✔

com.adchina.android.ads.views ✔

com.madhouse.android.ads ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

com.millennialmedia.android ✔

com.mobi.view ✔

com.adcocoa ✔

com.baidu.location ✔ ✔ ✔ ✔

com.baidu.navi ✔ ✔

com.amap.api.mapcore ✔ ✔ ✔

com.google.zxing ✔

com.badlogic.gdx ✔

com.adobe.air ✔ ✔

com.mobclix.android.sdk ✔ ✔ ✔

com.trid.tridad ✔

Fig. 8. Runtime for generating sensor data propagation path graph

functionally need it. Hence, we suggest the third-party libraries

put the sensor related codes in a standalone package, and let

the developers chose to use it or not by themselves.

4) Runtime Performance: We conducted the experiments

on a quad-core machine with Inter Core i5 CPU (3.10 GHz ×
4) and 8GB RAM, running Ubuntu 14.04. Figure 8 illustrates

the runtime performance of SDFDroid. It shows the time for

generating sensor data propagation path graph and backward

tracking analysis for each app. Most of the apps can be

processed within 3 minutes. The experimental results indicate

that SDFDroid is efficient to explore sensor usage behaviors

of Android applications.

V. LIMITATIONS

Our method may not perform very well on the Apps with

smali code obfuscation. The Reflection API may also affect

the analysis results. Another important factor affecting the

analysis results is the use of Native methods. Some third-party

development libraries write their codes that implement the

sensor data process logic in the Native function with the help

of Native Development Toolkit(NDK). The Native function is

written by C++ and cannot be disassembled to smali codes,

hence it cannot be analyzed by SDFDroid. However, the state-

of-art analysis tools like Flowdroid also meet these short-

comings. SDFDroid uses the methods provided by Apktool to

disassemble Android apps, hence we cannot analyze the apps

that cannot be disassembled by Apktool.

VI. RELATED WORK

The related work of this paper mainly falls into two aspects:

static analysis on Android apps and graph-based program

analysis of Android apps.

• Static analysis on Android apps. Many efforts have

been made to perform static analysis on Android apps.

Androgurad [18] is a toolset widely used in analyzing

decompiled Android apps. It can be used to generate

method invoke graph or detect malicious apps via signa-

ture matching. Androguard needs to be interactive with

user to perform the analysis process, hence it cannot

analyze a large number of apps automatically. Another

well-known static analysis tool for Android apps is Flow-

Droid [19] which is based on Soot [20]. It conducts

precise static taint analysis on Android apps and generates

the propagation path for sensitive data, but the analysis

result relies on the predefined source and sink API of

sensitive data. William Kliebe et al. [21] propose a tool

combined FlowDroid and Epicc [22] to track both inter-

component and intra-component data flow in a set of

Android apps. Wei et al. [23] build a general framework

called Amandroid for security analysis of Android apps.

However, this tool needs a very long time to analyze a

single app. These tools need to generate a control flow

graph for the whole app before they perform analysis,

which cost much more time than SDFDroid that only

concern sensor related codes. In other words, these tools

are too heavyweight for the purposes of our study. The

work which is most similar to ours is SAAF [24], a

static Android analysis framework for Android apps. The

difference between SDFDroid and SAAF is the ability to

perform forward tracking analysis.

• Graph-based program analysis of Android apps. Gas-

con et al. [25] develop a method for Android malapps

detection based on function call graphs. They employ

an explicit mapping to map call graphs to a feature

space, then train a support vector machine to distinguish

malapps from benign apps. Zhang et al. [26] propose a



novel approach to classify Android malapps via weighted

contextual API dependency graph. They assign weights

to different API nodes in the graph when measuring

similarity by graph edit distance algorithm. That means

critical APIs, such as API requiring permission check,

have greater weights and more easily to influence the

classification results. The difference between our work

and the related work is that we use data flow graphs

to do clustering while they use API invoking graphs for

classification.

VII. CONCLUSION

In this paper, we design and implement a tool called

SDFDroid to analyze sensor usage patterns in current Android

apps. SDFDroid performs forward tracking analysis to find

sensor data propagation path and backward tracking analysis

to find used sensor type. Through extensive experiments on a

widely-used App market, AppChina, we find that the Android

apps often preform sensor related functions with the help

of third-party libraries. Accelerometer sensor is the most

frequently used sensor. Though many apps only register one

type of sensor, there are some apps registering nine types of

sensors. This indicates the need for better regulating the sensor

usage in Android apps. In the future work, we will extend

the analysis to Native code, and generate complete sensor

data propagation path to characterize the app’s sensor related

functions accurately.
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APPENDIX

The number and category map
301 IME 302 Browser 303 WallPaper 304 SystemTool
305 Life 306 Video 307 Communication 308 Social
309 Theme 310 PhotoGraphy 311 News 313 Work
314 OnlinePay 315 Financial 411 Game Trivia 412 Game Shoot
413 Game Strategy 414 Game Adventure 415 Game Racing 416 Game Operate
417 Game RPG 418 Game Sport 419 Game Board 420 Game Raising
421 Game Music 422 Game Fight 423 Game AssistTool
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