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Abstract—Modern network security applications, such as
network-based intrusion detection systems (NIDS) and firewalls,
routinely employ deep packet inspection to identify malicious
traffic. In deep packet inspection, the contents of network traffic
are matched against patterns of malicious traffic to identify
attack-carrying packets. The pattern matching algorithms em-
ployed for deep packet inspection must be fast, as the algorithms
are often implemented on middle-boxes residing on high-speed
gigabits per second links. The majority of patterns employed in
network security applications are regular languages. However,
regular language-based patterns have limited expressive power
and are not capable of describing some complex features in
network payload. Back reference is an important feature pro-
vided by many pattern matching tools, e.g., PCRE, the regular
expression libraries of Java, Perl, and Python. Back references
are used to identify repeated patterns in input strings. Patterns
containing back-references are non-regular languages. Very little
work has been done to improve the time-efficiency of back
reference-based pattern matching. The de facto algorithm to
implement back reference is recursive backtracking, but it is
vulnerable to algorithmic complexity attacks. In this paper, we
present a novel approach to implement back references. The
basic idea of our approach is to transform a back reference
problem to a conditional submatch problem, and represent it
with a Non-deterministic Finite Automata (NFA)-like machine
subject to some constraints. Our experimental results show that
our approach resists known algorithmic complexity attacks, and
is faster than PCRE by up to three orders of magnitude for
certain types of patterns.

Index Terms—Pattern matching; Back reference; Finite au-
tomaton; Network-based Intrusion Detection System.

I. INTRODUCTION

Network security applications, e.g., network-based intrusion

detection systems (NIDS) and firewalls, perform deep packet

inspection to identify malicious traffic. In deep packet in-

spection, the contents of network traffic are matched against

patterns of malicious traffic to identify attack-carrying packets.

In the past, patterns were represented by keywords that could

be efficiently matched using string matching algorithms, e.g.,

KMP [11], Boyer-Moore [4], Wu-Manber [24], and Aho-

Corasick [2]. The increasing complexity of network attacks

has lead the community to employ more expressive represen-

tations, which require the full power of regular expressions.

Strictly speaking, regular expressions denote patterns that

can be described by regular languages. However, this term

has been extended to represent patterns that have non-regular

language features. Among these features, capturing groups and

back references are two important ones. A capturing group is

used to specify a sub-expression of a regular expression, and a

back reference denotes a repeated sub-expression in a regular

expression. Many pattern matching tools, e.g., PCRE [16], the

regular expression libraries of Java, Perl, and Python, support

capturing groups and back references. Patterns containing back

references are non-regular languages [7].

Patterns with back references are more expressive than

regular languages. For example, suppose we want to match

a pair of XML tags and the text in between. It will

be hard to represent this pattern if we are only al-

lowed to use regular languages because tags in an XM-

L file may be unknown beforehand. In this case, a back

reference can easily describe the pattern. For example,

“<([A-Z][A-Z0-9]*)[ˆ>]*>.*?</\1>” can be used

to match a pair of XML tags and the text in between, where

the first capturing group (subexpression within the pair of

parentheses) is used to capture an XML tag, and the “\1”

denotes that the captured tag will be reused at the end (before

the ‘>’ symbol) of the pattern. A pattern can have multiple

back references, where each of them refers to a different

capturing group. Multiple back references can be sequentially

named by a ‘\’ followed by different numbers. For example,

three back references can be named as “\1”, “ \2”, and

“\3”. One back reference can also appears multiple times in

a pattern, e.g., “([a-c])x\1x\1”. Back references are also

employed by modern NIDS to represent attack signatures. For

example, the HTTP rule set of Snort 2012 has 167 patterns

containing back references [21].

Since patterns containing back references are non-regular

languages, they cannot be represented by finite automata,

i.e., non-deterministic finite automata (NFAs) or deterministic

finite automata (DFAs), as finite automata are equivalent

representations of regular languages. Thus, prior approaches

on NFAs or DFAs could not be applied to back references.

In fact, very little work has been done for patterns containing

back references. As pointed out by Cox [6], “No one knows

how to implement pattern with back references efficiently,

though no one can prove that it’s impossible either”. Specifi-

cally, the back reference problem is NP-complete [1]. The de

facto algorithm for back references is recursive backtracking.
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However, recursive backtracking is vulnerable to algorithmic

complexity attacks [18]. For example, the throughput of PCRE

quickly decreases to nearly zero mega-byte/second for patterns

in the form of “(a?{n})a{n}\1” (n = 5, 10, 15, 20, 25, 30)

with input strings in the form of an (i.e., a is repeated n

times). In fact, we observed that PCRE fails to return correct

results for n ≥ 25 on a Linux machine with a typical hardware

configuration. Can we find an approach that can address back

references but resist known algorithmic complexity attacks? In

this paper, we explore the answer to this question.

A. Our Contribution

We present a novel approach to implement pattern matching

with back references. The basic idea of our approach is to

transform a back reference problem to a conditional submatch

problem, and represent a conditional submatch problem using

an NFA-like machine subject to some constraints. We evaluate

the feasibility of our approach with a software-based imple-

mentation, using both synthetic patterns and patterns from real-

world NIDS. Our experimental results show that our approach

resists known algorithmic complexity attacks and is faster

than PCRE by three orders of magnitude for certain types

of patterns.

The remainder of this paper is organized as follows. Sec-

tion II provides some background of the problem. Section III

presents the design of our algorithm for patterns with back

references. Sections IV and V present the implementation and

the experimental evaluation of our approach, and Section VI

discusses the related work. Section VII concludes our work.

II. BACKGROUND

A. Finite Automata and Regular Expressions

Finite automata are natural representations for regular ex-

pressions. It is known that regular expressions, deterministic

finite automata (DFAs), and non-deterministic finite automata

(NFAs) are equivalent in terms of expressive power. Therefore,

regular expression matching can be performed by operating the

corresponding NFAs or DFAs. Given a regular expression, we

can use Thompson’s algorithm [23] to construct an NFA that

recognizes the same language as the given regular expression.

An NFA can be converted to a DFA that recognizes the same

language using the subset construction algorithm [9]. For a

regular expression of length m, with an input string of length

n, the time complexities of the DFA-based algorithm and

Thompson’s NFA-based algorithm are O(n) and O(m × n)
respectively. However, their space complexities are O(2m)
and O(m). In other words, DFA-based algorithms are time

efficient but space inefficient; NFA-based algorithms are space

efficient, but often much slower than DFA-based algorithm-

s [7].

B. Recursive Backtracking-based Matching

Another way to simulate an NFA is using recursive back-

tracking. The algorithm operates in a depth-first-search style.

For a current state with the ith symbol in an input string,

the algorithm processes all states in the next set of states in

a depth-first-search way. A recursive backtracking algorithm

may have to scan an input string multiple times before it finds

a match. Tools like PCRE and the regular expression libraries

in many high level languages such as Java, Perl, and Python

implement pattern matching using recursive backtracking. As

it was pointed out by Cox, recursive backtracking based

matching can be extremely slow in some cases [7].

C. Algorithmic Complexity Attack

As we described in Section I, recursive backtracking is

the de facto implementation of back references. However, a

recursive backtracking matching algorithm can be extremely

slow in certain cases, as is shown by an example below.
Figure 1 shows the process of using recursive

backtracking algorithm to match the pattern
“host.*com.*uuid=.*wv=.*cargo” with the
following string that has 45 characters:

"hostcomhostcomhostcomuuid=uuid=uuid=wv=wv=wv="

We denote the five parts separated by “.*” in the pattern

by P1, P2, P3, P4, and P5 respectively, i.e., P1=“host”,

P2=“com”, etc. A number on an edge between two nodes in

the figure denotes an offset where a subexpression Pi(i =
1 . . . 5) is matched in the input string. For example, the

leftmost edge between P1 and P2 is labeled by 3, which

means that “host” is matched by the input string at offset

3. The above pattern is matched by an input string if and

only if P1, P2, P3, P4, and P5 are sequentially matched

by the input string. It can be observed that a backtracking

approach needs to try 45 paths for the input string before

it can claim that the example pattern is not matched by the

example input string. In general, for a pattern that has k parts

separated by wildcard characters “.*”, the running time of a

backtracking algorithm can be close to O(nk) [18], where n

is the length of the input string. Such a behavior that triggers

a backtracking algorithm to exhaustively try all execution

paths for input strings is called the Algorithmic Complexity

Attack. Researchers have demonstrated that the throughput of a

NIDS employing recursive backtracking for pattern matching

can be slowed down by several orders of magnitude under

Algorithmic Complexity Attacks [18].

III. DESIGN OF OUR ALGORITHM

The basic idea of our approach to address back reference

is to transform a back reference problem to a conditional

submatch problem, and represent the conditional submatch

problem using an NFA-like machine subject to some con-

straints. Our approach includes two phases: compilation and

execution. During the compilation phase, patterns with back

references are compiled to tagged-NFAs subjected to some

constraints. During the execution phase, pattern matching is

performed by operating the tagged-NFAs generated at the

compilation phase with input strings.

A. Pattern Compilation

We introduce a relax plus constrain approach to tackle the

back reference problem. The compilation process is shown in
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Fig. 1: An example path tree traversed by the recursive backtracking agorithm.

Algorithm 1. Relax refers to re-writing a regular expression

with back references to a regular expression that only contains

capturing groups. During re-writing, a back reference part is

replaced by the capturing group that is referred by the back

reference. By doing this, a back reference and its referred

capturing group become a pair of capturing groups in the

re-written regular expression. To make the re-written pattern

be equivalent to the original pattern, we add a constraint to

the accept condition such that the submatches returned by

the capturing group pair are equal. The re-writing operation

is shown in line 1 of Algorithm 1, where p is the re-

written expression and C denotes the constraint added to the

accept condition. For example, pattern “(a*)aa\1” can be

re-written as “(a*)aa(a*)” with the constraint such that

“$1=$2”, where “$1” and “$2” denote the first and second

submatches captured by the two capturing groups.

Once a pattern with one or more back references is

transformed to a pattern of conditional submatch extraction,

we can construct an NFA-like machine (a tagged-NFA) that

is equivalent to the converted pattern using a Thompson’s

like algorithm. The algorithm starts from three basic cases:

tagged-NFAs of ǫ expression, empty expression, and a symbol

wrapped by a capturing group. More complex tagged-NFAs

can be constructed using the union, concatenation, and closure

constructs. The construction process bears some similarity to

constructing a tagged-NFA described in [27]. As we will see

soon, the difference lies in how to operate a tagged NFA.

Recall that we add a equal substrings constraint to a re-

written pattern in order to make it equivalent to its original

pattern. Thus, we need a mechanism to maintain substrings

matched by the capturing groups in a re-written pattern. To

do so, a tagged NFA needs to have a data structure allowing

for bookkeeping of captured substrings. The data structure

we use is to associate each state with a pair of substrings

(multiple pairs of substrings are needed if there are multiple

back references). For transitions within a capturing group, we

add the corresponding input symbols into captured substrings.

For transitions that are not within any capturing group, we just

carry over the captured substrings from state to state. When

a tagged-NFA reaches a final state, we check whether there

Algorithm: Pattern Compilation

Input : A pattern r

Output : A tagged-NFA with constraints

(p, C)=re-write(r);1

(Q,Σ, T, δ, q0, F in) = compile(p);2

return ((Q,Σ, T, δ, q0, F in), C);3

Algorithm 1: An algorithm to compile a pattern

with back references.

exists a pair of equal captured strings. If so, an input string is

matched by the tagged-NFA. To be more formal, we denote a

tagged NFA as a 6-tuple (Q,Σ, T, δ, q0, F in), where Q is the

state set, Σ is an alphabet set, T is a tag set, q0 is the start

state, Fin is a set of final states, and δ is a transition function

δ : Q×Σ∗×Σ∗×· · · → Q×Σ∗×Σ∗×. . . that maps a current

state with the captured substrings to a next state with updated

captured strings. The Thompson’s-like process to construct a

tagged-NFA is described in line 2 of Algorithm 1.

We now demonstrate the compilation process using the ex-

ample pattern “(a*)aa(a*)”. After adding tags, the pattern

is denoted as “(a∗)t1aa(a∗)t2”, where t1 to t2 are used to

label the two capturing groups. Figure 2 shows a tagged-

NFA constructed from pattern “(a∗)t1aa(a∗)t2” such that

“$1=$2”. It can be observed that the transition from state 1 to

itself with input symbol ‘a’ is within the first capturing group,

and the transition from state 3 to itself with input symbol ‘a’

is within the second capturing group. All other transitions are

not in any capturing group.

Similar to traditional NFAs, we can use a transition table to

represent the transitions of a tagged-NFA. Instead of having

three columns, the transition table of a tagged-NFA has five

columns, where the first three columns are same as those in

a traditional transition table, the fourth column denotes tags

associated with each transition, and the fifth column specifies

the actions used for maintaining the substrings matched by

capturing groups. In our design, we have three types of actions:

new, update, and carry over, where new and update actions

are associated with transitions within capturing groups, and

a carry over action is associated with transitions not in any



 

Fig. 2: The tagged-NFA constructed from “(a*)aa(a*)”.

The start state is labeled by 1, and the accept state is labeled

by 3.

Algorithm: Execution

Input : An input string str to be matched,

and a tagged-NFA with constraints

((Q,Σ, T, δ, q0,Fin), C) compiled

from a pattern.

Output : true or false

current states = {(q0, “”, “”, ...)};1

for i=1 to strlen(str) do2

next states = {};3

foreach (s, substr1, substr2, . . . ) ∈4

current states do

next states = next states ∪5

δ((s, substr1, substr2, . . . ), str[i]);

if (i==strlen(str)) and6

(∃(x, substr1, substr2, ...) ∈ next states)

s.t. (x ∈ Fin) and

C(substr1, substr2, ...) = true then

return true;7

current states = next states;8

return false;9

Algorithm 2: The execution of a compiled pat-

tern.

capturing group. A new action denotes creating a new captured

substring using a current input symbol, and an update action

denotes updating a substring by appending an input symbol

to the end of the substring. A carry over action denotes that

captured substrings are copied over from a current state to a

next state. Table I shows the transition table of the tagged-NFA

in Figure 2.

B. Execution

We now describe how to match a pattern that has back

references with an input string. The matching process is

called execution of a compiled pattern and it mainly involves

two operations: frontier derivation and acceptance checking.

Frontier derivation refers to how to update the current states

of a tagged-NFA with an input symbol. Acceptance checking

refers to checking whether the tagged-NFA is in an accept

state. The matching algorithm is shown in Algorithm 2, where

lines 4-5 describe the frontier derivation, and line 6 describes

the acceptance checking operation.

1) Frontier Derivation: To allow for the maintenance of

captured substrings, we denote an element in a frontier set by a

tuple (x, substr1, substr2, . . . ), where x is a state number, and

substr1 and substr2 are substrings matched by the capturing

groups. In general, if there are k back references, we need a

(2k+1)-tuple to represent a frontier element. During a match

test of an input string, the frontier set is initially a singleton set

{(q0, “”, “”, ...)} shown in line 1 of Algorithm 2 (where “” is

an empty string denoting that no substring has been captured

yet) but may include multiple elements during the operation of

a tagged-NFA. For each symbol in the input string, we must

process all elements in a frontier set and find a new set of

elements by applying the transition functions represented by

the transition table (lines 4-5 in Algorithm 2). Applying a tran-

sition function to a frontier element (s, substr1, substr2, . . . )
and an input symbol includes two steps. The first step is a

table lookup, i.e., given a state s and symbol I(i), retrieve all

states that are reachable from s with symbol I(i). The second

step is to apply one or more actions to the captured substrings

associated with the state s. In particular, if a transition is a

start of a capturing group, then a new action is applied; if a

transition is within a capturing group then an update action is

applied; and if a transition is not within any capturing group,

then a carry over action is applied by just copying around the

captured substrings (if there is any) from a current state to a

next state. For a pattern with one back reference, the above

frontier derivation process can be expressed by the following

Boolean formula:

G(y, s) = F0(∃ x· ∃ i· ∃ t· (t = φ ∧∆F (x, s, i,y, t)))

∨ F1(∃ x· ∃ i· ∃ t· (t = t1 ∧∆F (x, s, i,y, t)))

∨ F2(∃ x· ∃ i· ∃ t· (t = t2 ∧∆F (x, s, i,y, t)))

where

∆F (x, s, i,y, t) = F(x, s) ∧ Iσ(i) ∧∆(x, i,y, t) (1)

F(x, s) denotes the current frontier set (s denotes captured

substrings), Iσ(i) denotes an input symbol, and ∆(x, i,y, t)
denotes the transition relations of the tagged-NFA. The

conjunctions in Equation (1) basically selects rows in the

transition table ∆(x, i,y, t) that corresponding to outgoing

transitions from the states in the current frontier set F(x, s)
labeled with symbol σ. The t = φ ∧ ∆F (x, s, i,y, t) in

G(x) selects transitions that are not in any capturing group,

t = t1 ∧ ∆F (x, s, i,y, t) selects transitions that are labeled

by t1 (first capturing group), and t = t2 ∧ ∆F (x, s, i,y, t)
selects transitions labeled by t2 (second capturing group).

Function F0 denotes a carry over action; function F1 denotes

applying a new or update action to substrings captured by

the first capturing group; and function F2 denotes applying

a new or update action to substrings captured by the second

capturing group. Renaming the y to x in G(y, s) gives us the

new frontier set G(x, s). The frontier derivation formulae for

patterns with multiple back references are similar, except that

more tags ti(i = 1, 2, . . . ) are involved.



Current state(x) Input symbol(i) Next state(y) Tag(t) Action
1 a 1 t1 new(t1) or update(t1)
1 a 2 φ carry over(t1)
2 a 3 φ carry over(t1)
3 a 3 t2 new(t2) or update(t2)

TABLE I: Transition table of the tagged-NFA in Figure 2.

Example Consider the example tagged-NFA in Figure 2 with

input string “aaaa”. Initially, the frontier set is a singleton set

{(1, “”, “”)}. For the first input symbol ‘a’, we can get that

the next state can be state 1 or 2 according to the transition

table in Table I. The fourth column of the transition table

indicates that the transition from state 1 to 1 is associated

with a new(t1) function, which means we need to create a

new substring for the first capturing group using the current

input symbol ‘a’. The transition from state 1 to 2 is associated

with a carry over(t1) action. Since no substring has been

captured in (1, “”, “”), nothing needs to be copied from state

1 to state 2. As a result, the new frontier set has two elements,

i.e., {(1, “a”, “”), (2, “”, “”)}.

Renaming {(1, “a”, “”), (2, “”, “”)} as the current frontier

set, with the second input symbol ‘a’, we can obtain the next

frontier set as {(1, “aa”, “”), (2, “a”, “”), (3, “”, “”)}. Using

the same method to process the third and fourth input symbols.

After processing the fourth input symbol ‘a’, the frontier set

is {(1, “aaaa”, “”), (2, “aaa”, “”), (3, “aa”, “”), (3,

“a”, “a”), (3, “”, “aa”)}.

2) Acceptance Checking: The accept condition of a tagged-

NFA is: at the end of an input string, there exist a tuple

(x, substr1, substr2, . . . ) in the frontier set such that x ∈ Fin

is a final state, and substr1 equals substr2 (for patterns with

one instance of back reference). If there are k different back

references, we need to have k pairs of captured substrings,

where the two substrings in each pair are equal (shown as

C(substr1, substr2, ...) = true in line 6 of Algorithm 2).

For the example tagged-NFA with input string “aaaa”, it can

be observed that there is one element, i.e., (3, “a”, “a”),

in the frontier set satisfying the acceptance condition after

processing the fourth input symbol ‘a’. Therefore, the input

string “aaaa” is accepted by the tagged-NFA, which means

the input string matches pattern (a*)aa\1.

Remarks: We note that our approach for back reference can

be employed to do submatch extraction as well. In that case,

nothing needs to be added as constraint to a tagged-NFA. The

main benefit is that this approach is capable of performing

pattern matching and submatch extraction by just scanning

the input string in a single pass.

IV. IMPLEMENTATION

We evaluated our approach using a software-based imple-

mentation, dubbed as NFA-backref. The implementation is in

C++ and has two components: a compilation component and

an execution component, as shown in Figure 3. The com-

pilation component reads patterns with back references and

compiles them into tagged-NFAs with constraints as described

 with constraints 

Fig. 3: The overview of our software-based back reference

implementation.

in Section III-A. The execution component loads compiled

patterns (tagged-NFAs) and matches them with a stream of

input strings. In our implementation, captured substrings are

represented by their starting and ending offsets in the input

strings. In this way, substrings do not have to be copied around

from states to states. Each substring is represented using only

two integers, which saves space and reduces overhead of string

copy operation.

V. EVALUATION

We evaluated the performance of our approach using both

synthetic patterns and patterns from real-world NIDS. Our

experimental results show that our approach is immune to

Algorithmic Complexity Attacks.

A. Experimental Setup

All our experiments were performed on a Intel Core2 Duo

E7500 Linux-2.6.27 machine, running at 2.93GHz with 2GB

of RAM (however, our programs are single-threaded, and only

used one of the available cores). We instrumented the matching

tool to report its execution time using processor performance

counters. We report the performance of execution as the num-

ber of CPU cycles to process each symbol (cycles/byte), i.e.,

fewer processing cycles/byte implies greater time-efficiency.

B. Data Sets

We evaluated the performance of different implementations

using the following two data sets:

a) Patho-01: Patterns in this data set are in the form

of (a?{n})a{n}\1, where the ? character is a 0 or 1

quantifier. This pattern will match a string starting with zero

or one ‘a’ repeated by n times, followed by n characters of

‘a’, followed by the substring captured by the first capturing

group. We evaluated the pattern for n = 5, 10, 15, 20, 25, and

30. For each pattern, we use input string in the form of an, i.e.,

‘a’ repeated by n times, which will be matched by a pattern

with the same value of n.



b) Snort-46: The second data set includes 46 patterns

containing back references from the Snort HTTP signature

set. We use two input traces to evaluate this pattern set. The

first trace, which we call benign trace, was generated using a

string generator created by ourselves. Given a set of patterns

and a user expected match percentage p, the string generator

generates a trace file where p percent of strings are matched

by at least one pattern in the pattern set. The size of the benign

trace we generated in our evaluation is 5MB. The second trace

was manually crafted after carefully reviewing the 46 patterns.

We found that at least one of these patterns will suffer from the

Algorithmic Complexity Attacks if a pattern matching engine

is implemented using the recursive backtracking approach.

We thus manually created a 100KB pathological trace using

the approach described in [18] to evaluate how different

implementations perform under an Algorithmic Complexity

Attack.

C. Performance

We measure the time efficiency of different implementations

using the number of CPU cycles required for processing each

byte of input trace (cycle/byte). We evaluate the performance

of two implementations: Our approach (NFA-backref), and

PCRE using the data sets described in Section V-B. We did

not measure the space efficiency of different implementations

since both NFA-based approach and recursive backtracking are

space efficient, as presented in [25] and [27].

Figure 4 shows the execution time of different implemen-

tations for the Patho-01 data set. The x-axis denotes the value

of n in pattern (a?{n})a{n}\1, and the y-axis denotes the

execution time in unit of cycle/byte. It can be observed that

PCRE is a slower implementation as n increases from 5 to

30. NFA-backref is faster than PCRE by at least three orders

of magnitude (i.e., 1000+ times) after n ≥ 25.

As shown in Figure 4, PCRE performs extremely slow

for this pattern set. This is mainly because that PCRE per-

forms exhaustive recursive backtracking when matching an

input string an (i.e., ‘a’ repeated n times) against pattern

(a?{n})a{n}\1. During a recursive backtracking, the first

matching path that is tried by PCRE is to match the n

characters of ‘a’ with the (a?{n}) part of the pattern. This

path will fail because there is no characters to match the

remaining part a{n}\1. Then PCRE will backtrack one step

and use n − 1 characters to match the (a?{n}) part and

will fail again. Continue this way, it needs to traverse O(2n)
paths before it finally succeeds by using zero ‘a’ to match the

(a?{n}) part, n characters of ‘a’ to match a{n} , and zero

‘a’ to match the back reference part \1. As the value of n gets

large, the number of traversal paths increases exponentially,

which will cause PCRE to abort the backtracking process when

the size of the stack is too large. In our experimentation, we

observed that PCRE failed to give correct matching results

when n ≥ 25, while our implementation always returns

correct results for all input traces. The failure of PCRE for

patterns when n ≥ 25 is mainly due to that PCRE aborts the
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Fig. 4: Execution time (cycles/byte) of different implementa-

tions for the Patho-01 data set, the smaller the better. It can be

observed that NFA-backref resists the Algorithmic Complexity

Attack and it is at least three orders of magnitude (1000+

times) faster than PCRE for n ≥ 25.
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Fig. 5: Execution time (cycles/byte) of different implemen-

tations for the Snort-46 pattern set, the smaller the better.

NFA-backref outperforms PCRE by two to three orders of

magnitude when the pathological trace is used as input.

recursive backtracking when the size of recursive stack is over

a threshold.

Figure 5 shows the execution time of different imple-

mentations for the Snort-46 data set. Figure 5a shows the

performance with the benign trace, and Figure 5b shows the

performance with the pathological trace. It can be observed

that PCRE is about one order of magnitude faster than NFA-

backref when the benign trace is used as input strings. How-

ever, NFA-backref is two to three orders of magnitude faster

than PCRE for the pathological trace. The low performance

of PCRE in Figure 5b is due to that the pathological trace

triggers PCRE to do exhaustive recursive backtracking during

pattern matching.

Both Figure 4 and Figure 5 show that our approach (NFA-

backref) is immune to the Algorithmic Complexity Attack.

Under pathological traces, our NFA-backref implementation

outperforms PCRE by orders of magnitude. Although NFA-



backref is slower than PCRE for benign traces, we argue

that NFA-backref is a better implementation because network

security tools, e.g., NIDS, are often exposed to attacking

network traffic, in which an attacker may deliberately craft

pathological network contents to perform a DoS attack to a

recursive backtracking-based pattern matching engine. Thus,

we believe that our approach is better suited to be deployed

to process hostile network traffic.

VI. RELATED WORK

Pattern matching in practice demonstrates a time/space

tradeoff. DFA-based approaches are time efficient, but suffer

from state blow-up. NFA-based approaches are space efficient,

but are slow in operation. Recursive backtracking-based ap-

proach is fast in general, but can be orders of magnitude slower

under an Algorithmic Complexity Attack. The time/space

tradeoff has spurred a lot of recent research, primarily fo-

cused on patterns that can be described by regular languages

(regular expressions). Many researchers aimed at reducing the

memory foot prints of DFA-based approaches [22], [28], [12],

[19], [20], some researchers worked on improving the time

efficiency of NFA-based approaches with hardware [10], [14],

[5], [17] or software solutions [25], [26].

Patterns used in real-world security tools are often regular

expressions with extended features. One of the important

features, submatch extraction, is discussed in [27]. Another

important one, back reference is discussed in this paper.

Up to now, not much work has been done on submatch

extraction and back reference. Existing approach on submatch

extraction include Google’s RE2 [7], Haber et al.’s DFA-

based algorithm [8], Laurikari’s tagged-NFA approach [13],

and Yang et al.’s Submatch-OBDD model [27]. However, RE2

does not support back references. Recursive backtracking is

the de facto approach to implement back references and has

been adopted by tools such as PCRE and regular expression

libraries in many high level languages such as Java, Python,

and Perl [6]. As we have shown, a recursive backtracking

based implementation suffers from the Algorithmic Complex-

ity Attacks. Becchi and Crowley proposed to model a back

reference problem with an automaton-like machine [3]. Their

approach constructs a special state for each back reference

instance. Substrings are recorded in a back reference state and

are matched in a consuming way. Becchi’s approach works in

the situation when there is only one back reference instance

for a capturing group but fails when there are multiple back

reference instances for a same capturing group. Also, it is not

clear how Becchi’s approach performs because no execution

time was reported in their paper. Namjoshi and Narlikar

presented an automaton-based back reference approach [15]

similar to [3]. Our approach differentiates from [3] and [15]

in that we do not construct special states or input symbols

for back references. Instead, we treat all the states in an

NFA-like machine in the same manner, and add constraints

to the acceptance condition of the constructed tagged-NFA.

In addition, we have shown that our approach is immune to

known Algorithmic Complexity Attacks.

VII. CONCLUSION

In this paper, we present a new matching algorithm for

patterns with back references. Our approach works by trans-

forming a back reference problem to a conditional submatch

extraction problem, which in turn, is compiled to a tagged-

NFA subject to some constraints. We build a toolchain and

evaluate the performance of our approach using both synthetic

data set and data set from real-world NIDS. Our experimental

results show that our implementation NFA-backref is immune

to known Algorithmic Complexity Attacks. In particular, NFA-

backref is about three orders of magnitude faster than PCRE, a

recursive backtracking-based pattern matching engine. Under

benign traffic, NFA-backref is one order of magnitude slower

than PCRE. We believe that our approach is better suited for

network security tools because such tools are often exposed to

hostile network traffic that can abuse a recursive backtracking

based pattern matching engine. We believe that the perfor-

mance of NFA-backref can be further improved with better

code optimization.
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