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Abstract—Radio Frequency based Wireless Power Transfer
(RF-WPT) technology is recognized as a promising way to charge
low-power wireless devices. But the application of RF-WPT in
wireless sensor networks also introduces charging interference
to wireless communications. The network lifetime maximization
by jointly considering wireless charging and data transmission
under interference concerns, however, has seldom been examined.
In this paper, we take initial steps to consider communication
and charger scheduling together in wireless sensor networks. We
propose a smart interference-aware scheduling to maximize the
network lifetime and avoid potential data loss caused by charging
interference. The evaluation result indicates that the proposed
design can guarantee 99% optimality and significantly improve
network lifetime.

I. INTRODUCTION

The development of Radio Frequency based Wireless Pow-
er Transfer(RF-WPT) provides a convenient means to charge
low-power electronics in next generation wireless networks [8].
Different from traditional magnetic resonant coupling ap-
proaches [7], RF-WPT is a lightweight technique that is
suitable for low-power RFIDs and sensors [6] [8]. However, it
introduces higher degree of interference to wireless communi-
cations. In particular, the study from Naderi et al. [9] showed
that RF energy transfer would cause data loss and largely
reduce the wireless throughput. A smart scheduling between
RF charging and data transmission is therefore required to
bring RF-WPT deployments into reality.

In this paper, we take initial steps to investigate the poten-
tial benefit from jointly considering data communication and
charger scheduling together under interference concerns. Based
on our model analysis, we find that the lifetime maximization
problem can hardly be solved in polynomial time due to the
NP-hardness of finding the charger’s optimal traveling path.
To address this issue, we relax the energy constraint of the
original problem and simplify the charger’s traveling path
to a single TSP(Traveling Salesman Problem) path. We then
construct a linear programming problem and prove that its
optimal solution is equal to the relaxed problem. Based on
this analysis, we finally propose a near optimal solution to the
original problem with theoretically provable optimality 1− �

�
,

where � is an arbitrary positive integer and � is determined
by system properties such as the maximum charging duration.
The contributions of this paper are summarized as follows:

(1) To the best of our knowledge, this is the first work that
maximizes sensor network’s lifetime in RF-WPT deployment
under practical charging interference concerns.

(2) Our step-by-step model analysis shows that the complex
joint optimization can be reasonably approximated into a
simple linear programming problem.

(3) We develop a near optimal solution to the lifetime
maximization problem with 99% optimality in RF-WPT de-
ployment.

The rest of this paper is organized as follows: In section
2, we present related works. Section 3 discusses the basic
system model. After that, the lifetime maximization problem
is formulated in section 4. Section 5 explores a near optimal
solution with guaranteed performance bound. This solution is
then evaluated in section 6 and section 7 concludes the paper.

II. RELATED WORK

In this part, we first give a brief review of RF-WPT in
section II-A. Next, the charging interference caused by RF-
WPT is discussed in section II-B. Then, the adoption of
wireless power transfer technology in WSN is surveyed in
section II-C.

A. RF-WPT

In 1960s, Brown first developed a rectenna to receive
and rectify power carried by high-frequency microwaves. Al-
though 40%-80% power transmission efficiency was observed,
Brown’s experiments caused unacceptable cost since large-
scale peripheral devices were included. In the modern society,
probably the most well-known commercial application of RF-
WPT is RFID [13], where the RFID tags collect energy
from interrogating radio waves and communicate exclusively
with the RFID reader. By harvesting energy from ambient
RF signals, Liu et al. [8] extended the traditional RFID
tag with incomplete functions to a mini-computer with full
computation, communication and control abilities.

Compared to magnetic resonant coupling approaches pro-
posed by Kurs et al. [7], RF-WPT is recognized as the
most suitable way to charge devices with ultra-low power
requirements such as sensors and RFIDs [6] [8]. This is due
to the simplicity of RF-WPT that neither large coils (with
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diameter of 0.6m in [7]) nor scrupulous resonance alignment
is needed. Most importantly, RF-WPT brings about minimal
cost increase, because it can be implemented by adding several
basic electronic elements such as rectifier, capacitors and
diodes to the existing circuits [6].

B. Charging Interference

In practice, there is no exclusive spectrum allocated for
power transfer, and most RF-WPT systems operate at IS-
M(Industry, Science and Medical) band, which is already
crowded with communication systems. Another factor that
deteriorates the situation is that RF signals emitted for power
transfer always exhibit higher signal strength than low-power
data communications. Without special care, data transmissions
will be heavily interfered after a mobile charger is introduced.
For example, through experimental studies, Naderi et al. [9]
showed that RF energy transfer would cause data loss and
largely reduce the wireless throughput.

Although charging interference can be partially alleviat-
ed by allocating non-intersect spectrums for power transfer
and data communication, it causes severe spectrum efficiency
problems. Based on results in [9], as to a rechargeable sensor
network operating at 915 MHz, to ensure high quality commu-
nication, only 54% channel can be used for throughput if we
allocate 912-918 MHz for RF-WPT. Note that 6 MHz band is
also very limited for power transfer. In this paper, we avoid
this kind of interference alleviation methods.

C. Adoption in WSNs

Recently, a flourish of research efforts have been paid to
apply WPT in WSNs [11] [12] [4] [5] [3] [2]. In [11], a mobile
wireless charging vehicle (WCV) is introduced and sensor
batteries are replenished in a periodical manner. Adopted in
small-scale networks, WCV ensured sensors stay operational
forever. Mathematical study in [12] proved that bundling the
base station on the WCV could further promote network
performances. Aiming at the maximum network utility, an
anchor-point based mobile data gathering scheme is proposed
in [4] [10], which achieves finer scalability and can be adopted
in larger networks. Different from mobile charger approaches,
He et al. [5] considered the charger deployment problem in
static scenarios, which also ensured enough power transfer for
sensor networks. Moreover, Fu et al. [3] studied the minimum
charging delay problem while Dai et al. [2] attempted to
transfer maximum power under a predefined electromagnetic
radiation threshold.

In conclusion, existing studies mainly concentrate on
sensor-charger cooperation, how to avoid charging interference
has seldom been examined. This paper makes up the research
gap in this area.

III. MATHEMATICAL MODEL

Considering the complexity of the system model, we in-
troduce it in the following orders. In section III-A, we first
describe the basic network model without energy charging.
After a mobile charger is introduced, the charger mobility is
presented in section III-B. Then, in section III-C, we focus
on charging interference. In section III-D, we describe data
communications under charging interference concerns.
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Fig. 1. The charger’s traveling path consists of sojourn point �� and path
segment ��. Diamond and circles represent the location of the sink (�0) and
sensors (�1, �2, ...). The car represents the mobile charger.

A. Basic Network Model

We consider a set of wireless sensors � initially equipped
with rechargeable batteries and randomly deployed over a two-
dimensional area. Each sensor � ∈ � generates monitoring
data with a rate of ��, and all sensory data are forwarded to
the sink. Denote ���(�) the data rate from sensor � to sensor �
at time � (�, � ∈ �, � ∕= �). Specifically, ��0(�) represents the
data rate from sensor � to the sink. Then, the flow conservation
equation at sensor � can be presented as [11]:

� ∕=�∑

�∈�

���(�) + �� =

� ∕=�∑

�∈�

���(�) + ��0(�) (1)

Denote ��(�) the energy consumption rate for sensor � at
time �, in this paper, we adopt the following energy consump-
tion model [11]:

��(�) =

� ∕=�∑

�∈�

����(�) +

� ∕=�∑

�∈�

������(�) + ��0��0(�) (2)

where � is the energy consumption rate for receiving a unit
of data rate and ��� is the energy consumption rate for
transmitting a unit of data rate from sensor � to sensor �.
Specifically, ��� = �1 + �2�

�
�� , where ��� is the distance

between sensor � and �, �1 and �2 are coefficients, and �
is the path loss index.

B. Charger Mobility

Let the charger start from the sink, travel within the
network area, visit sensors and terminate at the end of the
network lifetime. When the charger visits a sensor �, it sojourns
to charge �’s battery. Then, it leaves sensor � and moves to the
next sensor. The charger’s traveling path consists of �� and ��
(� ∈ �), where � is the sensor sequence that the charger will
visit, �� is a sojourn point and �� is the path segment between
�� and ��+1 (see Fig. 1). Suppose the charger arrives at ��

at � = �� and the sojourn duration is �(��), then we have
��+1 − �� = �(��) + �(��), where �(��) is the time spent to
traverse ��.

Practically, charging rates decrease exponentially with in-
creasing charging distances [5] [9]. For the sake of effective
charging, similar to [4] [11], we assume that a sensor can
be charged only when the charger visits it. Thus, the energy
transfer model in [5] can be simplified as ��� = ��(��),
where � is the energy transfer rate, ��� is the energy charged
for sensor � when the charger sojourns at ��. In particular,
��� > 0 implies that the charger sojourns at �� to visit sensor
�. Otherwise, ��� = 0.
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(b) Charging interference.

Fig. 2. In this example, the network topology is given in (a) and a mobile
charger sojourns at �8 to visit sensor 8 in (b). Around the charger, sensor
5, 7, 8 are interfered. Solid diamond and circles represent sink and sensors,
respectively.

C. Charging Interference

Whenever the charger transfers energy for a sensor, da-
ta communications around it will be interfered. Denote the
interference radius as � and the distance between �� and
sensor � as ���. When the charger sojourns at ��, only if
��� ≥ �, sensor �’s data can be transmitted (or received)
without loss. Let �� be the interfered sensor set, then we have
�� = {�∣� ∈ �, ��� < �}. Take Fig. 2 as an example, the
charger is visiting sensor 8 and �8 = {5, 7, 8}.

Analyzing charger mobility shown in Fig. 1, we find
that each charging duration �(��) is followed by a traveling
duration �(��). During �(��), neither power transfer nor inter-
ference exists. We can leveraging this regularity to avoid data
loss caused by charging interference. Specifically, when data
communications are interfered, sensors temporarily store all to-
be-transmitted data. Whenever the interference disappears, the
stored data can be released from local storage and transmitted
toward the sink. As shown in Fig. 2(b), sensor 5, 7 and 8 store
data when the charger is charging sensor 8. When the charger
finishes charging and moves to the next sensor, all stored data
in sensor 5, 7 and 8 can be forwarded to the sink.

D. Data Communication

For a given ��, the data routing model during [��, ��+�(��)]
can be extended from the basic model as follows. For sensor
�, we have:

� ∕=�∑

�∈�

���(��) + �� =

� ∕=�∑

�∈�

���(��) + ��0(��) + ��� (��) (3)

where ��� (��) is the data storing rate. Due to limited space,
details of how to transform time-continuous flow routing
function ���(�) to time-discrete ���(��) can be found in [1].
For sensor � ∕∈ ��, there is no necessary to store data, thus
��� (��) = 0. As to interfered sensor � ∈ ��, data transmission
and reception are prohibited to avoid possible loss. Namely,∑� ∕=�

�∈� ���(��) = 0,
∑� ∕=�

�∈� ���(��) = 0 and ��0(��) = 0. Thus

we have ��� (��) = ��.

During [��, �� + �(��)], interfered sensor � ∈ �� stores
sensory data to its storage. And longer sojourn duration �(��)
will lead to larger storage occupation. Since a sensor’s storage
is also scarce, a maximum sojourn time ���� is set to avoid
excessive storage occupation:

�(��) ≤ ����, ∀� ∈ � (4)

When the charger finishes charging at �� and moves to
the next sensor during [�� + �(��), ��+1], none sensor will
be interfered. During this interval, for sensor �, we have the
following flow conservation equation:

� ∕=�∑

�∈�

���(��) + �� =

� ∕=�∑

�∈�

���(��) + ��0(��)− ��� (��) (5)

where ��� (��) is the data releasing rate. To avoid unacceptable
delay, data stored during [��, �� + �(��)] must be all released
out during [�� + �(��), ��+1]:

�(��)�
�
� (��) = �(��)�

�
� (��) (6)

A maximum data releasing rate ���� is set to keep
interfered sensors in �� from releasing their stored data with
extremely high transmission rate simultaneously, since it might
lead to frequent medium access collisions. Namely,

0 ≤ ��� (��) ≤ ���� (7)

Regulating ��� (��) will largely decrease the collision possibil-
ities, though can not thoroughly avoid it. Then, the remained
collisions can be handled by collision resolution protocols [14].

IV. PROBLEM FORMULATION

A. Energy Profiles

Recent studies [11] [12] discussed the situation that the
recharged energy is infinite and the sensor network stays
operational forever. In this paper, we focus on a different
scenario where the total amount of energy assigned for the
network is limited to � [15]. Specifically, � equals to the
sum of sensors’ initial battery and recharged energy.

In practice, a typical sensor network’s life span is consisted
of deployment, initial and operational intervals. During the
deployment interval (before � = 0), sensors are fairly allocated
with the same amount of initial battery ℎ0 and randomly
distributed to the interested area. Denote the initial interval
as [0, �0], during which initial operations such as neighbor
discovery and routing construction are performed. Meantime,
the charger visits each sensor once and charges its battery to
an appropriate level to support monitoring operations during
the next interval. Denote the charging duration for sensor � as
�� and the traveling time to visit all sensors as ���, then, we
have �0 = ��� +

∑
�∈� ��.

During the initial interval, denote the energy charging rate
as �0, each sensor consumes energy with a rate of �0 and
sensor �’s battery status at � = �0 is ��. Then, we have �� =
�0�� + ℎ0 − �0�0.

Denote �1 as the end time of the sensor network, which is
defined as the first time a sensor runs out of energy. During
operational interval [�0, �1], sensors monitor the interested
environment and forward sensory data to the sink. The network
lifetime � is defined as the duration of operational interval,
namely, � = �1 − �0. Because data transmissions are more
important than initial interactions, during the operational in-
terval, energy should be transferred more cautiously to avoid
large scale interference. Thus we have � < �0, where � and
�0 are energy charging rates during operational and initial
intervals, respectively.
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Fig. 3. Relations between �(��) and �(��).

For sensor �, denote ��� as the energy consumption during
[��, ��+1]. Then, we have ��� = ��(��)�(��) + ��(��)�(��).
Denote ��(��) as the battery status of sensor � at time ��, to
guarantee each sensor never runs out of energy before �1, the
following energy constraint must be satisfied:

��(��) = �� −

�∑

�=0

(��� −���) ≥ 0, � ∈ �, � ∈ � (8)

Since the total energy that can be assigned to the sensor
network is limited to �, we have the following constraint:

�ℎ0 +�0

∑

�∈�

�� +�
∑

�∈�

�(��) ≤ � (9)

where �ℎ0, �0

∑
�∈� �� and �

∑
�∈� �(��) are total energy

allocated/recharged during deployment, initial and operational
intervals, respectively.

B. Lifetime Maximization Problem

Since the charger sojourns and travels within the network
area during the whole operational interval, network lifetime
� equals to the sum of the charger’s sojourn and traveling
durations during [�0, �1] [4]. Thus the lifetime maximization
problem can be formulated as:

max � =
∑

�∈�

[�(��) + �(��)] (OR)

s.t. Eq. (3)− (9)

In the above formulation, Eq. (3) (5) are flow conservation
constraints, Eq. (4) avoids the stored data occupy excessive
storage, Eq. (6) ensures all stored data are released from
sensors’ storage, Eq. (7) tries to mitigate medium access
collisions, Eq. (8) ensures that sensors never run out of energy
before �1, and Eq. (9) regulates that the total amount of energy
assigned to the network is finite.

Analyzing problem(OR), we find that the charger’s visit
sequence � is unknown, which can be determined after a
traveling path of the charger is found. However, finding the
charger’s optimal traveling path is NP-hard. Considering the
simplest path planning problem, TSP, which is generally NP-
hard. Hence, problem(OR) can not be solved in polynomial
time.

V. A NEAR OPTIMAL SOLUTION

A. Minimum Energy Routing

In this paper, minimum energy routing is defined as the
routing scheme that achieves the minimum total energy con-
sumption of the whole network.

1) Basic Network Model: To prolong the network lifetime,
naturally, data should be forwarded to the sink in an energy-
efficient way. The minimum energy routing in the basic model
(section III-A) can be calculated by the following linear
programming:

min
∑

�∈�

��(�) (MIN-B)

s.t. Eq. (1), (2)

Problem(MIN-B) can be easily solved by optimization tools
such as CPLEX. Suppose �� is the resulted energy consumption
rate of sensor �, then the minimum total energy consumption
rate is

∑
�∈� ��.

2) Extended Network Model: In regard to the extended
model with a mobile charger, the minimum energy routing
during [��, ��+1] can be calculated by the following optimiza-
tion:

min
∑

�∈�

[��(��)�(��) + ��(��)�(��)] (MIN-E)

s.t. Eq. (3), (5), (6), (7), �(��) = 1

Since the duration [��, ��+1] is unknown yet, the charger’s
sojourn duration �(��) is set to a unit of time, and constraints
Eq. (4) (8) (9) are temporarily neglected. Problem(MIN-E) is a
quadratic programming due to the quadratic term ��(��)�(��).
Before we can solve it, the following theorem is given to
convert it to a linear programming.

Theorem 1. For a given �(��) > 0, denote ����� the maxi-
mum data generation rate for all interfered sensors. Namely,
����� = ���(��), � ∈ ��. To obtain the minimum energy
routing during [��, ��+1], �(��) = ���(��) must hold, where

�� =
�����

����

> 0

Note that ���� is the maximum data releasing rate. We
refer the readers to [1] for a comprehensive proof.

Problem(MIN-E) can be converted to a linear programming
based on the above theorem, and be solved by CPLEX.
Suppose the resulted energy consumptions of sensor � during
[��, �� + �(��)] and [�� + �(��), ��+1] are ��� and ���, respec-
tively. Then, the minimum total energy consumption during
[��, ��+1] is

∑
�∈� [����(��) + ����(��)].

3) Minimum Energy Routing and Charger Behaviors:
Actually, the charger’s behaviors are represented by the re-
lation between �(��) and �(��), which affects the minimum
energy routing. Take Fig. 3 as an example, if �(��) = 0 and
�(��) > 0, sensors only need to forward newly generated
data during [�� + �(��), ��+1]. However, if �(��) > 0 and
�(��) > 0, sensors are required to forward both stored and
newly generated data during [�� + �(��), ��+1]. Since we can
not predict the values of �(��) and �(��), each relation should
be considered carefully. In particular, four possible relations
are listed below:

∙ Relation 1: �(��) > 0 and �(��) > ���(��).

∙ Relation 2: �(��) > 0 and �(��) = ���(��).



∙ Relation 3: �(��) = 0 and 0 < �(��) < ���(��).

∙ Relation 4: �(��) = 0 and �(��) = 0.

Based on results obtained from problem(MIN-B) and (MIN-
E), we give the following proposition to calculate sensor �’s
energy consumption during [��, ��+1] regardless of the relations
between �(��) and �(��).

Proposition 1. Suppose the minimum energy routing is always
adopted during the operational interval [�0, �1], then we have

��� = ����(��) + ������(��) + [�(��)− ���(��)]��

We refer the readers to [1] for a comprehensive proof.

B. Problem Relaxation

Charger scheduling includes finding the charger’s optimal
traveling path consists of �� and ��, and deciding durations
�(��) and �(��). To construct a near optimal solution to the
original problem(OR), we temporarily neglect the maximum
sojourn time constraint Eq. (4) and relax the energy constraint
Eq. (8). Then, a relaxed problem can be built as follows:

max � =
∑

�∈�

[�(��) + �(��)] (RLX)

s.t. Eq. (3), (5)− (7), (9)

��(�1) = �� −
∑

�∈�

(��� −���) = 0, ∀� ∈ � (10)

Note that constraint Eq. (10) in problem(RLX) is a relaxed edi-
tion of energy constraint Eq. (8) in the original problem(OR).

To reduce the complexity of problem(RLX), we simplify
the charger’s traveling path to a single TSP path. Further, we
suppose the minimum energy routing is adopted during the
whole operational interval [�0, �1], then a linear programming
can be constructed follows:

max � =
∑

�∈�

[�(��) + �(��)] (LP-T)

s.t. Eq. (9), � = �

�(��) ≥ ���(��), ∀� ∈ � (11)
∑

�∈�

��� −��(��) = ��, ∀� ∈ � (12)

Note that � = � stands for the fact that the charger’s traveling
path is a single TSP path. Due to the adoption of minimum
energy routing, constraint Eq. (10) is equivalently transformed
to Eq. (12). Details are omitted to conserve space.

The following theorem shows that it is sufficient to solve
problem(LP-T) for the objective of lifetime maximization in
problem(RLX).

Theorem 2. The optimal solution of problem(LP-T) is also
the optimal solution of problem(RLX).

We refer the readers to [1] for a comprehensive proof.

Bi (t )

t

t=tl t=tl+t
*

Bi (tl )

0

t=ti

U׌
*
(xi )

Fig. 4. Satisfying energy constraint Eq. (8) by assigning sensor � with
additional energy ��∗(��).

C. Satisfying All Constraints

Based on theorem 2, the optimal solution of problem(RLX)
can be obtained by solving linear programming problem(LP-
T). However, comparing to the original problem(OR), problem
(RLX) lacks of two constraints: sojourn time constraint Eq. (4)
and energy constraint Eq. (8). In this part, we will show the
way to construct a near optimal solution of problem(OR) that
meets all constraints.

1) Sojourn Time Constraint Eq. (4): To construct a solution
that satisfies the sojourn time constraint, the single TSP path is
divided into � repeated TSP paths, where � is an arbitrary
positive integer. During each TSP path, sojourn time �(��)
is reduced by 1

�
. Eq. (4) can be satisfied only if � is large

enough. We construct the following linear programming:

max � = �
∑

�∈�

[�(��) + �(��)] (LP-W)

s.t. Eq. (11), � = �
∑

�∈�

��� −��(��) =
��

�
, ∀� ∈ � (13)

�ℎ0 +�0

∑

�∈�

�� +��
∑

�∈�

�(��) ≤ � (14)

The following theorem shows that we can set arbitrary � ,
while the maximize lifetime � will remain uninfluenced.

Theorem 3. Suppose � ∗ is the optimal solution of problem
(LP-T) with a maximum network lifetime � ∗. Then, � ∗ can be
achieved by problem(LP-W) regardless of � .

We refer the readers to [1] for a comprehensive proof.

Similar to theorem 3, we can prove that if �(��) and �(��)

are optimal results of problem(LP-T), then,
�(��)
�

and
�(��)
�

are
optimal results of problem(LP-W). The network lifetime � is
irrelevant to � , however, the value of � will decide whether
the sojourn time constraint is satisfied. Suppose the optimal
sojourn time obtained by solving problem(LP-T) is � �(��).
Then, the maximum sojourn time in problem(LP-W) must be
shorter than ����. Namely,

���(
� �(��)

�
) ≤ ����

Thus we have

� ≥
���(� �(��))

����

, � ∈ �+

When the above inequality holds, the solution of problem(LP-
W) will satisfy the sojourn time constraint Eq. (4).



TABLE I
A NUMERICAL EXAMPLE: SOLUTION DETAILS

Variables
Sensor Index (�)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�-���� 91 171 63 14 37 131 92 118 100 177 11 32 177 34 194
�-���� 80 186 86 40 146 159 22 165 23 70 66 179 115 107 95
�� 5 2 6 3 3 6 4 3 7 8 4 4 1 8 2
�� 0.60 0.60 0.80 0.40 0.80 0.60 0.70 0.60 0.70 0.80 0.80 0.40 0.80 0.80 0.80
�� 3 3 3 2.32E4 3 3 3 3 3 3 2.04E4 3 3 7.22E3 3
�� 951 951 951 2.41E4 951 951 951 951 951 951 2.14E4 951 951 8.17E3 951

�(��) 44.7 0.68 23.6 0 8.86 17.1 60 19.5 31.2 40.5 0 5.87 1.17 0 0.59
�(��) 839 0.41 18.9 0 7.09 10.2 42 11.7 21.9 32.4 0 2.34 0.93 0 0.47

2) Energy Constraint Eq. (8): We focus on one of the
� repeated TSP paths. Suppose the optimal solution of
problem(LP-W) consists of �∗��, �

∗(��) and �∗(��), and that �∗

is the time required to finish one TSP path. Based on Eq. (13),
during one TSP path, sensor �’s energy consumption comes
from two sources: sensor �’s initial battery ��

�
and energy

replenished by the charger, i.e., ��∗(��).

Before the charger visits and recharges sensor �, energy
from sensor �’s initial battery may be depleted. Namely, ��

�
≤∑

�∈� �∗��. Thus the energy constraint Eq. (8) is violated. Take
the dash line in Fig. 4 as an example. At time ��, the charger is
sojourning at �� and the energy remained in sensor �’s battery
is ��(��). Before the charger arrives at sensor � at � = ��, its
battery depletes and the energy constraint is violated. To avoid
it, as the solid line shown in Fig. 4, we only need to assign
sensor � with additional energy ��∗(��). Suppose each sensor
is assigned with an additional energy �, thus we have

� = ���(��∗(��)), ∀� ∈ � (15)

The total amount of additional energy �� can not be allo-
cated directly from � since energy allocations are determined
after we solve problem(LP-W). However, we can cancel the
last � ∈ �+ TSP paths and assign the reserved energy carried
by the charger. The reserved energy should be large enough to
guarantee each sensor is assigned with energy � during initial
interval, thus we have:

��
∑

�∈�

�∗(��) ≥ ��(1 +
��0

�0
)

where the left part is the reversed energy, �� is the total
required additional energy, and �� ��0

�0

is the energy consumed
to assign ��. Then, we can obtain:

� ≥
��(��0 +�0)

��0

∑
�∈� �∗(��)

where � is irrelevant to � .

D. Solution Summary

Now, we give a summary of our near optimal solution:

(1) Let � = � , for each sojourn location �� (� ∈ � ),
calculate �∗

� and �∗
� .

(2) Next, solve problem(MIN-B) and (MIN-E) to obtain
minimum energy routing. For each sensor � ∈ � , calculate
�∗� , �∗�� and �∗

��.

(3) Based on �∗� , �∗�� and �∗
��, solve problem(LP-T). The

optimal solution consists of � �(��), � �(��), � �� and � � =∑
�∈� [� �(��)+� �(��)]. Note that � � is an upper bound of the

proposed near optimal solution since it is the optimal solution
of the relaxed problem(RLX).

(4) Solve problem(LP-W), obtain optimal results �∗(��)

and �∗(��). Set � ∗ = ⌈���(��(��))
����

⌉, �∗ = ���(��∗(��))

and �∗ = ⌈ ��∗(��0+�0)
��0

∑
�∈�

�∗(��)
⌉.

(5) Finally, the near optimal solution of the original prob-

lem(OR) are constructed as follows: (i) Let �∗ = � �� + �∗

�0

,
during initial interval, the charger charges each sensor, say
�, with energy of �0�

∗
� . (ii) Adopt minimum energy rout-

ing during the whole network lifetime. Specifically, during
[��, �� + ���

∗(��)] and [�� + ���
∗(��), ��+1], adopt minimum

energy routings obtained from problem(MIN-E) and (MIN-B),
respectively. (iii) Solve problem(LP-W) and the charger travels
� ∗ −�∗ repeated TSP paths. Thus, the near optimal network
lifetime � ∗ = (� ∗ − �∗)

∑
�∈� [�∗(��) + �∗(��)].

Since � � is an upper bound of � ∗, the optimality of our
near optimal solution is:

� ∗

� �
=

(� ∗ − �∗)
∑

�∈� [�∗(��) + �∗(��)]∑
�∈� [� �(��) + � �(��)]

= 1−
�∗

� ∗

VI. EVALUATION

We assume that sensors are randomly distributed over a
200�∗200� two-dimensional square area, the sink is located
at (0, 0), and sensors’ data generation rate are randomly
generated within [1, 10] kb/s. Energy consumption coefficients
�1 = 50 nJ/b, �2 = 0.0013 pJ/(� ⋅�4), � = 4 and � = 50 nJ/b.
The charger sojourns at the sink when � = 0. Energy charging
rates during initial and operational intervals are �0 = 1 J/s and
� = 0.05 J/s, respectively. The charging interference radius is
� = 50 m.

We assume that the total energy � is proportional to the
number of sensors, namely, � = � × 104 J. The beginning
battery is set to ℎ0 = 1000 J and the energy consumption
rate during initial interval is �0 = 1× 10−3 J/s. Moreover, the
maximum sojourn time is ���� = 60 s, the maximum data
releasing rate is ���� = 10 kb/s, and the charger’s traveling
time during initial interval is ��� = 1000 s.
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Fig. 5. Parameter analysis of charging rate �.
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Fig. 6. Parameter analysis of interference radius �.

A. A Numerical Example

To give an illustrative example, we build a 15-sensor
random network with initial energy ℎ0 = 100 J. Here, ℎ0

is set to a small value to accommodate the small network.
Following default settings, we run the solution and obtain
optimal network lifetime � = 9.4 × 106 s. Details are listed
in Table I. Based on step (4) of our solution, � = 7580 and
� = 4. Thus the network terminates after the charger repeats
� − � = 7576 TSP paths. In this case, the optimality of our
near optimal solution is 1− �

�
= 99.95%.

B. Parameter Analysis

In this part, we increase the number of sensors to 50 and
analyze how the parameter settings influence our solution. Two
parameters are considered here: energy charging rate � and
interference radius � (more results can be found in [1]). For
each parameter, we care about the following solution details:
network lifetime � , energy allocated during initial/operational
intervals, solution optimality, and the number of repeated TSP
paths.

To analyze �, we vary it from 0.01 J/s to 0.1 J/s while
keeping other parameters unchanged. From Fig. 5(a), we
find that � has limited influence to � . However, it affects
the constituent parts of � : sojourn and traveling time. With
larger �, the charger spends less time on energy transfer
(sojourn), but more time on traveling. Impressively, as shown
in Fig. 5(b), the near optimal solution always achieves above
99% optimality. The high optimality is obtained by jointly
optimizing data transmission and charger scheduling.

Moreover, � has direct influences on energy allocation.
Since the initial battery ℎ0 is constant, here we focus on energy

allocation ratio during initial interval, i.e.,
∑

�∈�
�0��

�
. In Fig.

5(b), when � = 0.01 J/s, 81.2% of energy is allocated during
[0, �0] while less than 10% energy is allocated during [�0, �1].
When � increases to 0.1 J/s, above 60% energy is allocated
during [�0, �1] while only 28.8% is during [0, �0]. The ratio
�0

�
follows the same trend.

Another factor we care about is the number of TSP paths,
i.e., � − �. As shown in Fig. 5(c), as � increases, � − �
increases first and after a threshold (here is � = 0.02 J/s) is
surpassed, � − � decreases quickly. The incremental part is
caused by the charger’s frequent movement to transfer more
energy. After � ≥ 0.02, the charger has stronger charging
ability, and it could sojourn longer to achieve higher energy
transfer. Thus � − � decreases.

In terms of interference radius �, the network lifetime
varies slowly (see Fig. 6(a)). Compared to �, an apparent
characteristic of � is the large randomness. Although � keeps
stable, sojourn and traveling durations vary widely. With the
increasing of �, generally, the sojourn time decreases while the
traveling time increases. Since larger � causes more interfered
sensors, the charger tends to sojourn less when � is large.
The energy and time ratios both increase as � increases, also
with random fluctuations (see Fig. 6(b)). In Fig. 6(c), the
large randomness of � − � is mainly caused by the sensor
distribution. For example, when the charger is visiting sensor
� with � = 20 m, 3 sensors around � may be interfered.
However, this number may increase to 15 when � = 40 m
due to the random distribution of sensors.

C. Performance Comparison

In this paper, we set up two baselines to compare with
our near optimal solution. The first one is minimum energy
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Fig. 7. Performance comparisons.

routing, which is pervasively adopted in practice. In this
case, total energy � is averagely allocated among sensors.
After deployment, sensors forward sensory data to the sink
with a minimum energy routing. The second algorithm is
named as perfect allocation. Suppose the minimum energy
routing is adopted by the sensor network, total energy �
is allocated based on the sensor energy consumption in a
perfect way, which means that sensor batteries will be depleted
simultaneously when the network terminates. We note that
perfect allocation is unreachable in practice since we can not
obtain sensor energy consumption information before energy
is actually consumed. Perfect allocation represents the possible
maximum network lifetime while the minimum energy routing
stands for the generally adopted solution.

We vary the number of sensors from 40 to 100 to evaluate
our solution in different network sizes. Impressively, as shown
in Fig. 7(a), compared to the pervasively adopted minimum
energy routing, our solution achieves 7.15 to 22.75 times
longer lifetime with the same amount of total energy �.
Moreover, the ratio between our solution and the perfect
allocation varies from 92.8% to 97%, which validates the high
effectiveness. In terms of energy efficiency, as shown in Fig.
7(b), less than 0.2% energy is wasted by our solution. Compare
to the perfect allocation, which utilized 100% energy, our
solution presents very high efficiency. The minimum energy
routing wastes above 86% energy. This is because the network
lifetime is determined by the sensor with the largest energy
consumption, when the network terminates, a large part of
energy is remained in batteries of light-burdened sensors.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the joint optimization
of maximizing network lifetime and avoiding data loss under
charging interference concerns. Considering the complexity of
the original problem, we have relaxed it and constructed a
series of simpler optimizations. Based on them, a near optimal
solution with provable 1− �

�
performance guarantee has been

developed. The effectiveness of our solution is validated with
extensive evaluations and comparisons. In our future work, we
will further explore the situation with very large scale networks
and multiple mobile chargers.
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