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Abstract—With the rapid popularization of smartphones and
tablets, there are thousands of applications based on mobile social
networks. The big data from these networks provide a huge
potential to shed light on the mobility patterns of users. These
big data enable a deeper understanding of users’ preferences
and behaviors and will help us mine users’ friendship in both
physical and digital worlds. In this paper, we firstly divide
user mobility patterns into different categories to portray the
characteristics of user encounter more precisely. Then, with
combining proximity data from bluetooth devices and location
data from cellular towers, we introduce a set of spatial-temporal
features, including the encounter entropy, which measures the
probability of encounters between different mobile users. Using
these spatial-temporal features, we provide a novel model to infer
user friendship by analyzing the social context of users and their
encounters. To address the class imbalance problem in the dataset
and improve the prediction accuracy of friendship, we employ
the sampling method and evaluate our model with three different
classifiers. The experimental results show that our encounter
entropy feature has a striking effect to infer user friendship, and
our model based on these spatial-temporal features can achieve
pretty good accuracy in predicting friendship over real human
mobility traces without privacy-sensitive information disclosure.

Index Terms—mobile social networks; friendship inferring;
proximity and location data; spatial-temporal features

I. INTRODUCTION

Over the last couple of years, Location-Based Social Net-

works (LBSNs) and Mobile Social Networks (MSNs) have

gained a great attention from both the research community

and the industry [1]. More and more mobile applications and

systems are developed based on these networks, and attract

millions of users. Compared with traditional social networks,

LBSNs and MSNs achieve further growth in providing the

location-based information. These location features, integrated

with the temporal features and social connections revealed

through social networks, provide an unparalleled opportunity

to study human social behaviors and promote a wide vari-

ety of applications and services such as tour planning [2],

interest or product recommendation [3], friend sensing [4],

location-based advertising [5], and traffic forecasting [6]. The

prevalence of these applications and services in turn calls

for systematic research on new computing techniques for

discovering knowledge from user trajectory data [7].

However, there are many challenges in this space. One of

the challenges is to infer properties of human social behaviors

from a variety of data [8]. Eagle et al. introduced measures

of user similarity based on user mobility and employed these

measures to infer network structures by using mobile phone

data [9]. Results showed that phone communication between

users by far contributed most to predict friendship. However, it

is difficult to perform direct measurements, say keeping track

of users call logs or text messages data, due to the concerns of

compromising user privacy. Cranshaw et al. introduced a set

of location-based features based on Facebook’s social network

for inferring social network ties from co-location features

and user mobility data [10]. Unfortunately, the performance

of their approach is not encouraging (the best accuracy and

recall ratios are 68% and 37%, respectively) according to their

experimental results.
In this paper, we firstly divide user mobility patterns into

different categories to portray the encounter features between

users more precisely compared with [11]. Then we introduce

a novel set of spatial-temporal features which combine prox-

imity data from bluetooth devices and location data from the

cell tower together, including encounter entropy features, for

analyzing the social context of users and their encounters.

Statistical analysis in our feature dataset reveals the problem

of class imbalance which can mislead us since the class

distribution is heavily biased towards encounters between

strangers. To address this problem and improve the accuracy of

friendship prediction, we employ different sampling methods

[12] and evaluate our model with three different classifiers.

By applying these features and sampling methods, our model

can achieve pretty good accuracy and F-score in predicting

friendship without using privacy-sensitive information like call

logs or text messages from smartphones based on real human

mobility traces.
This work makes the following primary research contribu-

tions:

1. We divide user mobility patterns into different categories

based on our observations and analyses of users’ social

context in order to portray the encounter characteristics

between users more precisely.

2. We introduce a novel set of spatial-temporal features,

including encounter entropy, which measure the diversity

of encounters between users. Our results also show that

our proposed encounter entropy is very effective to infer

friendships.
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Fig. 1. Mining friendships with proximity and location data. Users with their
smartphones encounter with each users at a certain time and location. Note
that when the two users are friends, their connections are marked with a green
line; otherwise, their connections are marked with a red line.

3. We employ different sampling methods on the imbalanced

feature dataset and make a comparison between these

sampling methods to address the issue of class imbalance.

We validate the performance of our proposed model with

three different classifiers over real human traces.

The remaining sections of this paper are organized as fol-

lows. Section 2 surveys existing literature in this area. Section

3 describes our proposed model. In Section 4, we describe

the spatial-temporal features. In Section 5, our experimental

results are presented. Lastly, conclusions are given in Section

6.

II. RELATED WORK

Several important studies have been done to reveal huge

potential of using data collected from smartphones to study

human social behaviors. In [13], Li et al. mined the similarity

geographically between users based on their location histories.

They proposed a framework called hierarchical-graph-based

similarity measurement for effectively modeling individual’s

location history and measuring the similarity among users

in geographic information systems. In [14], Hristova et al.

applied a new model that allows them to distinguish between

social ties with varying strength. They built multiplex inter-

action graph by combining different communication layers

to capture different types of interactions and relationships

between the same two nodes. They found that strong social ties

are characterized by maximal use of communication channels,

while weak ties by minimal use.

Eagle et al. tried to infer friendship network structures by

exploiting user mobility and interaction data collected from

smartphones [9]. They introduced a set of features such as

the proximity of the users at work on workday or weekend,

the proximity of the users who were off-campus on weekday

or weekend, whether there was mobile phone communication

between them. A regression analysis was conducted using

self-report survey data for the actual user relationships to

study which factors contribute most to inferring friendship.

The results revealed that phone communication was the most

important predictor for friendship inferring, followed by the

proximity on weekend.

In [4], Quercia et al. used short-range technologies (e.g.,

Bluetooth) on users’ mobile phones. Users could keep track of

other phones in their proximity and ‘sense’ their friends. They

proposed a framework called FriendSensing that automatically

recommended friends by logging and analysing co-location

data based on social network theories of geographical prox-

imity. They validated that the strategy of keeping track of how

much time people spend co-located (duration) outperforms the

strategy of simply keeping track of how may times people meet

each other (frequency). In [10], Cranshaw et al. exploited the

location histories of 489 users of a location sharing social net-

work for relationships inferring by analyzing the user mobility

patterns and structural properties of their social network. They

defined location entropy, which based on location features, to

analyze the social context of a geographic region. Using these

features, they then proposed a framework for inferring social

network ties from co-location data and inferring the number of

friends from user mobility data. They found that the entropy

of a location was a valuable tool for analyzing social mobility

data. By their definitions, locations with high entropy were

precisely the places where chance encounters were more likely

to happen, thus locations with high entropy were thus much

more likely to be random occurrences than locations with low

entropy.

III. MODEL DESCRIPTION

In this paper, we use the dataset from Reality Mining

study [15] to infer friendship between users. The Reality

Mining study consists of 97 subjects (students and faculty

at MIT) with Nokia 6600 smartphones. The dataset [16]

includes mobile call logs, bluetooth devices in proximity, cell

tower IDs and other information from the context application

from each individual over the course of the academic year.

In addition, self-report survey data were conducted online

which include dyadic questions regarding the average reported

proximity and friendship with the other subjects, as well

as questions concerning the individual’s general satisfaction

with his or her work group. Note that we label friendship

between users according to the users’ self-report survey data.

The whole dataset represented approximately 450,000 hours of

information about users’ location, interaction, communication

and device usage behavior.

In this paper, we try to infer users’ friendship through

continuous tracking of their proximity data from bluetooth

interfaces and location data from cell towers. The ground truth

about which node pairs are friends in real life comes from the

self-report survey data. We will give a detail description of

modeling the dataset in this section.

A. The description of the original dataset

We primarily put emphasis on proximity and location data

collected from users’ mobile phones. The dataset contains 97

subjects (users) which can freely move to different districts

and interact with others through their mobile phones. We will

give the following mathematical symbols to help us portray

users’ mobile social network in the dataset.
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Fig. 2. The bluetooth encounter network for a specific user up. At time
t1, user up discovers uq , u1, u2 and u3. We can compute the Encounter
Duration Time (EDT) between up and ui according to Eq. 1.
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Fig. 3. Cell tower connection network. Users u1, u2, u3 and u4 are in
the cell tower c1’s communication range at t1. Places such as ‘Office’ and
‘Home’ are the names that users named the locations. We can calculate the
connection duration time between ci and up simply by subtracting two enter
time when up transits from ci to cj .

1) Let U = {u1, u2, . . . , um} denote the user set where m
represents the total number of the users. In the user set,

we can identify every user ui by the ID number.

2) Let C = {c1, c2, . . . , cn} denote the cell tower set where

n represents the total number of cell towers. Each cell

tower has been assigned an area ID that can be logged

by the mobile phones.

3) Let T = {t1, t2, . . . , tk} denote the timestamp set. In

the dataset, an entry time will be recorded when a user

transits to a new location (cellular tower). In addition,

the user will discover other bluetooth devices (users) at

ti on each scan intermittently. In this paper, we consider

all these timestamps ti as a set T .

B. Bluetooth Encounter and Cell Tower Location Networks

When a user uj is discovered by a periodic bluetooth scan

performed by another user ui, we call these two users ui and

uj encounter through bluetooth. In order to better describe the

bluetooth encounter between users, we take users and their

interactions as a network (The Bluetooth Encounter Network).

Similarly, we consider logs which record users’ transitions

between cellular towers as another network (The Cell Tower
Location Network). We describe the two networks as follows:

1) The Bluetooth Encounter Network: In the Bluetooth
Encounter Network, a node represents a user, and an edge

(up, uq) between users up and uq represents that up encounters

uq via bluetooth (up is discovered by the bluetooth scan

performed by uq) at a certain time. In the dataset, more

than one nodes may be discovered on each encounter. Let

EUp = {(up, Up, tk)|up ∈ U,Up ⊂ U, tk ∈ T} denote as the

set of users discovered by user up. The elements of the

triple (up, Up, tk) represent that user up encounters other users

(defined as the set of Up) at a certain time tk. In fact, we refer

to this network as an undirected graph. The number of vertices

(users) in this network is 97. We analyze this network and

find that there are 758,904 edges in the bluetooth encounter

network, and only 64,065 edges represent encounters between

friends. In other words, above 90% of encounters occurred are

chance (irrelevant) encounters in the dataset. Fig. 2 shows the

the bluetooth encounter network for a specific user up.

2) The Cell Tower Location Network: We create an

undirected graph based on user’s cellular tower location logs.

An edge exists between up (user) and cr (cell tower) if

user up is within the communication range of the cell tower

cr at time tk. Similar to the bluetooth encounter network,

ECp = {(up, cr, tk)|cr ∈ C, tk ∈ T} is denoted as the set of

time-stamped transitions among different cell towers of user

up. The elements of the triple (up, cr, tk) represent that the

mobile phone user up transits to cellular tower cr at time

tk. Using the cellular towers IDs and the respective transition

timings (timestamps when users hand off between different

cellular towers), a user’s position can be localized to within

100-200m in the dataset. In the cell tower location network,

there are 97 users and 2,873,251 edges. Fig. 3 shows an

example of the cell tower connection networks.

C. Mobility patterns

In our proposed model, we firstly divide user mobility pat-

terns (the period during the encounter, the encounter duration

time and the location the encounter takes place) into different

categories to portray the encounter of users precisely.

1) Time Periods: Social relationships between users have

huge impact on the period during the encounter. For example,

people prefer to spend more time with their friends than

colleagues on holiday. Therefore, we analyse the dataset and

Fig. 4(a) shows the distribution of encounters between friends

and strangers from Monday to Sunday. We observe that

changes in the ratio of the encounters between strangers are

more significant than that between friends, which illustrates

that links (encounters) between friends are more stable than

strangers. Specifically, changes in the ratio of encounters

between friends are from about 0.66% to 1.18% (0.66% ∼
0.68% for weekends and 1.14% ∼ 1.18% for weekdays)

while changes in the ratio of encounters between strangers

are from 2.80% to 20.54% (2.80% ∼ 2.97% for weekends and

13.99% ∼ 20.54% for weekdays). As shown in Fig. 4(b), the

changes in the ratio of encounters between strangers (0.68% ∼
11.58%) are more significant than that between friends (0.09%

∼ 0.26%). The encounters between people occurred after

18:00pm should be interpreted differently with that during the

working hours (8:00am ∼ 18:00pm). That is to say, encounters
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Fig. 4. (a) The distribution of encounters between friends and strangers occurred from Monday to Sunday. (b) The distribution of encounters between friends
and strangers occurred in 24 hours a day. (c) The distribution of the encounter duration for friends and strangers. Note that ds and dc represent the first and
the second situation mentioned in Section III (C:Encounter Duration).

TABLE I
DESCRIPTION OF THE TIME PERIOD DURING THE ENCOUNTER.

Notation Time Period Description

T j
i

22:00 - 8:00 People usually have a sleep at night

8:00 - 18:00 People usually work in the day

18:00 - 22:00 People usually stay with friends or family

i ∈ {r, k, s} represents the 3 different time periods and
j ∈ {h,w} represents weekday or weekend when encounters occurred.

are more likely to be chance encounters if the encounters

occurred during working hours.

Based on this consideration, we divide the timestamp set T
into six subsets: T = {T j

i , i ∈ {r, k, s}, j ∈ {h,w}} where

r, k, s represent 3 different time periods during the encounter

(in Table I) and h,w represent weekday (Monday to Friday) or

weekend (Saturday and Sunday) when the encounter occurred.

2) Encounter Duration: In the dataset, a bluetooth device

(user) will scan for other nearby bluetooth devices intermit-

tently. A sequence of bluetooth encounter events is shown in

Fig. 2. We use ti and tj to represent the time that the first

and the last encounter occurred between users up and uq ,

respectively. Note that there exists a situation that the mobile

user up encounters uq only once (tj = ti). This situation

can be divided into two categories: 1) the bluetooth device

of user up scans only once during a period of time; 2) the

bluetooth device of uq is discovered only once during user

up’s periodically scans. We consider the encounter in the first

situation is a normal encounter via bluetooth between users up

and uq and the encounter duration time for the first situation is

τ/2 where τ is the time interval of each scan. We consider the

encounter in the second situation is a chance encounter. We

give the following formula to calculate the Encounter Duration

Time (EDT) between users up and uq in Eq.(1) according to

our above analysis.

EDT (up, uq) =

{
τ/2 if j = i,

tj − ti + τ if j �= i.
(1)

TABLE II
DESCRIPTION OF THE ENCOUNTER DURATION TIME (EDT).

Notation Duration Description

Di

Chance The ratio of the chance encounter is 19.97%

0 - 5mins The ratio of this duration is 19.34%

5 - 30mins The ratio of this duration is 60.68%

30mins - The ratio of this duration is 19.98%

i ∈ {c, s,m, l} represents the 4 different EDT categories
when encounters occurred.

Therefore, we divide the encounter duration time into 4

categories based on the statistic results as shown in Fig. 4(c):

D = {Di, i ∈ {c, s,m, l}} where Di represents different EDT

as described in the Table II.

3) Location: To better understand the context of each

encounter observation, it’s helpful to identify the type of

location where the encounter takes place. For example, an

encounter between two people occurred in a private residence

should be viewed differently from that in a crowded shopping

mall.

The location logs we extract from raw data are area and

cell tower IDs. We can know the type of location around

the cell tower from users’ survey data. In this paper, we

classify all the cellular tower IDs into 3 location groups:

L = {Li, i ∈ {h,w, o}} where h, w and o represent ‘Home’,

‘Work’ and ‘Others’, respectively. We do not distinguish

locations which are neither ‘Home’ nor ‘Work’ and group

them into ‘Others’. We believe that there is no significant

difference between ‘Shopping mall’ and ‘Theater’, and the

experimental results in Section V show that the classification

of locations at this level of granularity is enough for our model

to portray mobility patterns of users correctly.

IV. FEATURE EXTRACTION

In this section, we introduce our spatial-temporal features

and classify them into two categories (Mobility and Encounter

features). These features (outlined in Table III) we provided try

to distinguish when an encounter between two users happens



by chance, say two strangers shopping in a crowded shopping

mall on weekday, and when an encounter is a social activity,

say one inviting his/her friends for lunch on weekend.

A. Mobility features

The mobility features measure characteristics related to the

size of the encountered user set and the encounter location

set for each user. These features quantify the basic mobility

properties of users’ behaviors in their daily life.

For a user up, Bluetooth Encounter Frequency BEF (up)
is denoted as the number of encounter times for each user

and BEFT j
i
(up) is denoted as the number of encounter times

during different time periods for each user.{
BEF (up) = |{(uq, Uq, tk)|uq = up}|
BEFT j

i
(up) = |{(uq, Uq, tk)|uq = up, tk ∈ T j

i }|
(2)

where (uq, Uq, tk) ∈ EUp and T j
i is described in Table I.

| · | represents the cardinality of a set. We also compute the

total number of users discovered by each user’s bluetooth

devices. Similar to Bluetooth Encounter Frequency, Cell tower

Location Frequency CTL(up) is denoted as the number of

transitions between different cell towers and CTLT j
i
(up) is

denoted as the number of transitions during different time

periods for each user.{
CTL(up) = |{(uq, cr, tk)|uq = up}|
CTLT j

i
(up) = |{(uq, cr, tk)|uq = up, tk ∈ T j

i }|
(3)

where (uq, cr, tk) ∈ ECp.

B. Encounter features

We combine proximity data from the bluetooth devices

and location data from the cell towers together to obtain the

qualified encounter records between users. For users up and

uq , their encounter EUCpq is denoted in Eq.(4).

EUC(up, uq) = {(tk, di, lj)|tk ∈ T, di ∈ D, lj ∈ L} (4)

where up, uq ∈ U . T , D and L are described in the Section III.

The process of obtaining EUCpq is described as follows:

1) Firstly, we consider the leave time of a location lti(ti ∈
T ) is the entry time for the user transiting to the next

location lti+1
. In other words, the entry time when a user

enters into a location is also the leave time of the previous

area. For a transition from cell tower cm to cn, we can

get the entry time te and the leave time tl of the location

cm.

2) Based on the above considerations, an encounter record

EUCpq will be generated when proximity and location

information satisfy the condition:

max(te, ts) < min(tl, tf ) (5)

where ts (ts = tk) and tf represent the start and end time

of the encounter, which discussed in Section III(C).

The statistical results show that although there are about one

million observed encounters (1,143,064), only roughly 10%

(107,000) of these encounters occurred between friends. This

illustrates that there exist large amount of chance encounters

in our daily social interactions.

For a given encounter set EUC(up, uq), we compute the

Encounter Frequency (EFreq) between users up and uq as

follows:

EFreq(up, uq) = |EUC(up, uq)| (6)

Then, we give the different kind of encounter features as

follows.
1) Single encounter patterns: In this section, we de-

fine the encounter frequency and probability between

users up and uq in different patterns according to

the categories we divided in Section III-C. For exam-

ple, we define FreqTw(up, uq) = | {(tk, di, lj)|tk ∈ Tw|
and Ds(up, uq) =

| {(tk, di, lj)|tk ∈ Tw} |
EFreq(up, uq)

are the en-

counter frequency and probability between users up and

uq when the encounter occurred on weekdays. We can al-

so define FreqDs(up, uq) = | {(tk, di, lj)|di = Ds} | and

PDs
(up, uq) =

| {(tk, di, lj)|di = Ds} |
EFreq(up, uq)

are the encounter

frequency and probability between users up and uq when

the encounter lasts less than 5 minutes, respectively. Sim-

ilarity, we can easily define the frequency and probability

in other patterns, such as FreqTs
(up, uq) and PTs

(up, uq),
FreqTf

(up, uq) and PTf
(up, uq) and so on.

2) Hybrid encounter patterns: Obviously, the probability

of encountering friends on weekend in a cinema is high-

er than that on workday at office, and encounters with

short duration time in a shopping mall have a higher prob-

ability to be chance encounters than that with long en-

counter duration time at home. Therefore, single encounter

patterns can be combined to form hybrid patterns which

may bring ‘more meaningful’ information for distinguish-

ing encounters between friends from chance encounters.

FreqTh,Lh
(up, uq) = |{(tk, di, lj)|tk ∈ Th, lj = Lh

} | and

PTh,Lh
(up, uq) =

|{(tk, di, lj)|tk ∈ Th, lj = Lh

} |
EFreq(up, uq)

repre-

sent the frequency and probability of encounter occurred at

home on weekends. Similarity, the Work Encounter Frequency

(FreqWE = FreqLw,Tw(up, uq)) and Probability (PWE =
PLw,Tw(up, uq)) describe the frequency and the probability of

encounters between users up and uq occurred at work places

on weekdays. The Home Encounter Frequency (FreqHE =
FreqLh,Th(up, uq)) and Probability (PHE = PLh,Th(up, uq))
describe the frequency and the probability of encounters

between users up and uq occurred at home on weekends.
3) Encounter Entropy features: We quantify people’s

predictable structures in their daily life using an information

entropy metric. In information theory, entropy is the expected

(average) value of the information contained in each message

received. In our paper, the encounter entropy features char-

acterize the diversity of encounters between users. In other

words, high encounter entropy between users up and uq rep-

resents that their encounters are harder to predict and likely to

be chance encounters between strangers, while low encounter

entropy represents that their encounters are characterized by



strong patterns and likely to be intended encounters between

friends.

According to information theory, we define the encounter

entropy between users up and uq as follows:

H(P ) = −
n∑

i=1

Pi · lnPi (7)

where Pi is the probability for each encounter pattern be-

tween users. For a example, we can get the workday en-

counter entropy for user pair up and uq as HTw(up, uq) =
−(

∑
i=r,k,s PTw

i
(up, uq) · lnPTw

i
(up, uq)). Lastly, we list our

main features in Table III.

V. THE RESULTS OF THE EXPERIMENT

In this section, with extracted two category features (in

Section IV), we will figure out the problem of predicting

friendship based on mobility patterns of users. Firstly, we

discuss the class imbalance problem in our feature dataset and

apply different sampling methods (under-sampling and over-

sampling) to address this problem and improve the friendship

predicting accuracy. Secondly, we compare the performance of

different sampling methods and then choose the over-sampling

method to re-sample our feature dataset. Finally, we train three

classifiers (SVM, Neural Network and Modest AdaBoost) to

the re-sampled dataset and compare the performance among

the three classifiers with the benchmark in Reality Mining

Project [9]. In our paper, we use accuracy, precision, recall

and F-score as our performance measures. Note that F-score

is a measure of a test’s accuracy which considers both the

precision and the recall of the test.

A. Sampling methods

The dataset includes 66 pair of encounters between friends

and 3386 pair of encounters between non-friends. Note that the

feature dataset we extracted is imbalanced because the classes

(the positive class represents encounters between friends and

the negative class represents encounters between non-friends)

are not approximately equally represented. Imbalance which

on our dataset on the order of 51 ( 338666 ≈ 51.3) to 1 often

leads to misunderstanding in predicting accuracy. Therefore,

we re-sample the original dataset, either by over-sampling the

minority class and/or under-sampling the majority class and

then compare the performances with the SVM classifier.

1) Under-sampling: Under-sampling method [17] tries to

improve minority class performance by dropping some of the

majority samples at random. The disadvantage of the under-

sampling method is that it cannot make full use of majority

samples due to losing a great deal of important information in

the majority samples.

2) Over-sampling: Over-sampling method [18] tries to

improve minority class performance by increasing minority

samples. We use the SMOTE [19] (Synthetic Minority Over-

sampling Technique) algorithm to generate new synthetic

minority class samples. The minority sample is over-sampled

by introducing synthetic examples which are randomly chosen

from its k nearest neighbors rather than coping minority

TABLE IV
SAMPLING METHODS1

Feature Dataset Under-Sampling SMOTE

Number of minority class samples 662 3314

Number of majority class samples 74 33862

Number of total samples 140 6700

k (parameter in SMOTE)3 None 3

1: The SVM classifier uses the RBF (Radial Basis Function) as the kernel
function and the grid search method as the parameter selection method.
2: Before sampling, the number of minority samples and majority samples
are 66 and 3386, respectively.
3: Process of finding k nearest neighbours for each minority sample in
SMOTE algorithm.

TABLE V
PERFORMANCES OF THE DIFFERENT SAMPLING METHODS WITH SVM.

Sampling method Accuracy Precision Recall F-score

Original dataset 0.9823 0.8700 0.1959 0.3077

Mean(STD)* (0.0062) (0.2218) (0.1028) (0.1295)

Under-Samping 0.7292 0.7130 0.7153 0.7094

Mean(STD) (0.0425) (0.0749) (0.0763) (0.0455)

SMOTE 0.9470 0.9176 0.9838 0.9496

Mean(STD) (0.0309) (0.0132) (0.0215) (0.0437)

samples. Specifically, for every sample in minority class xi,

the synthetic sample yj generating according to its k nearest

neighbors is computed as:

yj = xi + rand(0, 1) ∗ (xi − xij) (8)

where the function rand(0,1) represents a decimal number

randomly generated between 0 and 1 and xij(j = 1, 2, ..., k)
are the k-th nearest neighbors of xi.

3) The comparison of different sampling methods: We

use Support Vector Machine (SVM) as the machine learning

algorithm to verify the performance of the different sampling

methods (under-sampling and over-sampling).

We preformed 20 times of different sampling methods, and

the predictions were conducted with a 10 fold cross validation.

The detailed properties of the feature dataset and the SVM

classifier are listed in Table IV. The performance of the SVM

classifier is measured against the true values of whether the

users are friends. Table V shows the average (Mean) and

standard deviation (STD) of accuracy, precision, recall and

F-score for the SVM classifier.

As shown in Table V, SVM achieves fairly high (98.23%)

average accuracy but quite low average F-score (30.77%) in

the imbalanced (original) dataset. It means that the model

achieves high accuracy in inferring non-friendship ties (s-

trangers) but very low accuracy in inferring friendship ties.

It is unacceptable for applications or systems to recommend

friends since sensing possible friends is more valuable than

sensing strangers.

One noteworthy observation is that the SMOTE algorith-

m (over-sampling) outperforms the under-sampling method.



TABLE III
DESCRIPTION OF THE FEATURES.

Category Description

Mobility

The total number of encounter times for user up.

The number of encounter times for user up on weekdays/weekends, the number of the start time of the encounter occurred in
22:00-8:00/8:00-18:00/18:00-22:00 time period.

The number of transitions between different cell towers for user up.

The number of transitions between different cell towers for user up on weekdays/weekends or at Home/Work/Others.

Encounter

The encounter frequency and probability between users up and uq when the encounter occurred on weekdays/weekends or in
22:00-8:00/8:00-18:00/18:00-22:00 time period.

The encounter frequency and probability between users up and uq where the location the encounter takes place is Home/Work/Others.

The encounter frequency and probability between users up and uq when the encounter duration time is less than 5mins/5-30mins/more
than 30mins.

The encounter frequency and probability between users up and uq that the encounter occurred on weekends and the encounter duration
time is less than 5mins/5-30mins/more than 30mins.

The encounter frequency and probability between users up and uq that the encounter occurred on weekdays and the encounter duration
time is less than 5mins/5-30mins/more than 30mins.

The encounter frequency and probability between users up and uq that the encounter occurred at the workplace and in
22:00-8:00/8:00-18:00/18:00-22:00 time period.

The encounter entropy that measures the different locations the encounters take place.

The encounter entropy that measures the different encounter durations between users.

The encounter entropy that measures the different time periods when encounters occurred between users.

The reasons are as follows: 1) the under-sampling method

would lose large important information by only taking a

small fraction (only about 2.2% of the total number) of the

majority samples (we sampled 74 majority class samples to

keep balance); 2) the SMOTE method provides more related

minority class samples to learn from, thus allowing a learner

to carve broader decision regions, leading to more coverage

of the minority class.

B. Comparison with the model in Reality Mining Project

We compare the three classifiers and Table VI shows the

average (Mean) and standard deviation (STD) of accuracy, pre-

cision, recall and F-score for each classifier. We observe that

the difference among the three classifiers are not significant.

In particular, the Neural Network model seems to perform the

best, having the best average accuracy (95.68%) and F-score

(95.34%). It correctly identifies 3255/3314 (98.2%) friendship

pairs and 3156/3386 (93.2%) non-friendship pairs. Unlike

classifiers training without sampling, the overall accuracy of

all these three classifiers based on over-sampled dataset are

high since the class distribution is no more heavily biased

towards encounters between non-friendships. There is no

significant difference among all the three algorithms, which

illustrates that our spatial-temporal features are valuable tools

for analyzing human social mobility patterns and our model

has strong predictive power for inferring friendships.

In reality mining project [9], the authors used the same

dataset and trained a gaussian mixture model to detect patterns

in proximity between users and correlate them with the type

of relationship. They compared the ground truth with mobile

phone communication, estimated location, proximity data and

TABLE VI
PERFORMANCES OF DIFFERENT CLASSIFIERS.

Classifier Accuracy Precision Recall F-score

SVM* 0.9470 0.9176 0.9838 0.9496

Mean(STD) (0.0309) (0.0132) (0.0215) (0.0437)

Neural Network* 0.9568 0.9300 0.9780 0.9534

Mean(STD) (0.0159) (0.0153) (0.0282) (0.0207)

Modest AdaBoost* 0.9509 0.9171 0.9886 0.9514

Mean(STD) (0.0271) (0.0333) (0.0452) (0.0532)

* The kernel using in SVM classifier was Radial Basis Function (RBF).
In neural network classifier, the hidden layer size was 5 and the network
training function that updated weight and bias values was Levenberg-
Marquardt algorithm. The adaboost classifier was run 500 iterations using
CART as the tree learner (with 2 splits).

time of day. They accurately inferred 96% of non-friendships

and 95% of friendships based on this observational data. We

compare our novel model with the model in reality mining

project in Fig. 5. The result shows that our model outperforms

the model in reality mining project in inferring friendships

between users. Note that we excluded users’ communication

logs to predict friendships due to concerns of compromising

user privacy and still gained pretty good accuracy (95.68%)

and F-score(95.34%).

C. Feature importance

We preform feature selection approach in random forest

classifier to examine which features are working best and then

we rank the importance of the features. The top 10 important

features are listed in Table VII. It seems that the number of
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Fig. 5. The comparison between our model and model in Reality Mining
Project [9].

TABLE VII
FEATURE IMPORTANCE.

Rank RI* Feature

1 100% The number of encounters occurred at ‘Home’.

2 74.72% The number of encounters occurred at 8:00-18:00.

3 50.30% The probability of encounters occurred on
weekends.

4 49.04% The probability of encounters occurred at
workplace and last more than 30 mins.

5 40.08% The probability of encounters occurred at
workplace and last between 5-30 mins.

6 33.52% The encounter entropy that measures the different
time periods.

7 33.44% The encounter entropy that measures encounters at
different location.

8 32.05% The ratio of number of encounters between up

and uq to the total number of encounters of up.

9 30.35% The encounter entropy that measures different
encounter durations between users.

10 29.44% The number of encounters occurred on weekdays.

* RI represents relative importance which ranges from 0 to 100%. The
higher the RI is, the more important the feature will be.

encounters occurred at ‘Home’ is the most effective feature for

inferring friendships between users. The number of encounters

occurred at 8:00 ∼ 18:00 is also an important feature. Note that

our encounter entropy feature show relatively high importance

among all the features.

VI. CONCLUSION

In this paper, we combine proximity data from bluetooth

interfaces and location data from cellular towers to infer

friendship by analyzing users’ temporal and spatial mobility

patterns. We introduce a novel set of features, including

encounter entropy to analyze the social context of users and

their encounters after grouping user mobility patterns into

different categories. Using these spatial-temporal features, we

propose a novel model to infer friendships between different

users. An over-sampling method is employed to address the

class imbalance problem. We validate our spatial-temporal

features with three different classifiers and our experimental

results show that our proposed features and model perform

well in friendship prediction without using privacy-sensitive

information like call logs.
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