
Parallel and Distributed Normalization of Security
Events for Instant Attack Analysis

David Jaeger, Andrey Sapegin, Martin Ussath, Feng Cheng, Christoph Meinel
Hasso Plattner Institute (HPI)

University of Potsdam, 14482, Potsdam, Germany
{david.jaeger, andrey.sapegin, martin.ussath, feng.cheng, meinel}@hpi.de

Abstract—When looking at media reports nowadays,
major security breaches of big companies and govern-
ments seem to be a normal situation. An important
step for the investigation or even prevention of these
breaches is to normalize and analyze security-related
log events from various systems in the target network.
However, the number of log events produced in big
IT landscapes can grow up to multiple billions per
day. Current log management solutions, e.g., Security
Information and Event Management (SIEM), cannot
even closely normalize such huge amounts of data and
therefore disable the tracking of attacks in real-time,
which means that the log data remains unusable for
attack analysis. In this paper, we present an approach
to fully normalize event logs in high-speed by making
use of established high-performance inter-thread mes-
saging in conjunction with a hierarchical knowledge-
base of log formats and parallel processing on multiple
low-end systems. Using our approach, we are able to
process more than 250,000 events/sec on relatively low-
profile machines and can therefore easily handle more
than 20 billion events/day, which is enough to handle
average and peek loads of log events from big enterprise
networks.

Keywords-network security; event logs; normaliza-
tion; inter-thread messaging

I. Introduction

The number and complexity of cyber-attacks has dra-
matically increased over recent years [1]. Media reports
about breached companies and governments can be seen
almost on a weekly basis. Whenever such major cyber-
attacks happen, security investigators start to analyze
security relevant event logs that were produced by the
targeted network environment during period of the at-
tacks. Generally, event logs are a valuable source of
information and allow understanding and reproducing
performed malicious activities. However, there are two
major challenges when it comes to the analysis of these
event logs. Firstly, event logs are usually not stored in
a common format. This means that before investigators
can work with these logs, they need to transform them
into a common representation. This process is also called
event log normalization. The second challenge is the huge
amount of log data produced by sensors in networks of
big companies and governments. Surveys performed by

the SANS Institute [2] show that big enterprises have
often more than 10GB of log data per day. Gartner
defines a quantity of 25,000 events/sec, which is beyond
2 billion events/day, as large deployment in their Magic
Quadrant report [3]. Hewlett-Packard (HP) mentions[4]
an amount of 100 billion up to 1 trillion events/day in
their infrastructure. HP itself can only handle 3 billion
events/day from these. It is obvious that this amount
of data can neither be handled manually nor normalized
with common SIEMs in reasonable time. Even worse,
peeks of incoming events going far beyond the mentioned
25,000 events/sec cannot be handled, but would be very
important for finding attacks that cause such peeks. As a
result of this situation, analysis of security breaches can
take weeks or even months. In fact, the detection of attacks
from log data in real-time is not even imaginable at the
moment.

In the following of this paper, we present an approach
to fully normalize huge quantities of events, i.e. far be-
yond 25,000 events/sec, by utilizing an established method
for lock-free inter-thread communication and parallelizing
normalization on multiple low-end systems. With full log
normalization, we refer to the extraction of all available
information from a log line. In addition to a conceptual de-
scription of our approach, we integrate the proposed high-
performance normalization into our prototypical Real-
Time Event Analysis and Monitoring System (REAMS)1

SIEM solution. We have structured the paper as follows.
Section II first gives a short overview of related work
to event normalization and its parallelization. The fol-
lowing Section III gives a short introduction into the
basics of event normalization. Then, the concept of high-
speed inter-thread communication and its optimized use
for event normalization is presented in Section IV and V.
Section VI focuses on how normalization speed can be even
more increased by using a multi-node architecture. In the
end, Section VII concludes our work and gives an outlook
to further research.

II. Related Work

A. Event Log Normalization
The normalization of logs relies on the transformation

of logs in different formats to a common format and can
1REAMS - https://sec.hpi.de/reams

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

Normalization

Log Receiver

File Reader

Syslog
Receiver

Message
Distributor

...

Normalizer

Normalizer

Normalizer

OLF
Distributor

Fig. 1. Normalization Process for Event Logs

be performed with a variety of normalization mechanisms.
In our previous papers, we have worked out an overview of
different log formats [5], [6] and presented different tech-
niques for the normalization of logs. We have started with
normalization using Named-Group Regular Expressions
(NGREs) [7], [8] and have presented different indexing
mechanisms like Lucene[9] or a hierarchical knowledge
base [5]. Because many existing common log formats are
either not well structured, such as Common Event Format
(CEF), or lack in support of important information fields,
like Syslog or Common Event Expression (CEE), we have
proposed the object-oriented Object Log Format (OLF) to
overcome these limitations in the paper [6].

B. Inter-Thread Communication and Parallel Processing
When processing events with a high throughput using

multi-threading, there are limitations on the distribution
of tasks to the different threads. A major problem with
traditional inter-thread communication is the locking of
threads while waiting for new tasks to come in, which is
typical for blocking queue implementations. LMAX came
up with a concept [10], called LMAX Disruptor, which is
supposed to be lock-free and was developed with very high
throughput in mind. The Logstash tool by Elastic2 seems
to already employ parts of this disruptor concept, but it is
not clear how they use it and whether it is used for event
normalization.

Apache Hadoop3 is currently a famous tool for parallel
processing. Bhatt et al. present a framework for processing
large amounts of logs via the Hadoop platform in their
paper [11]. However, it is unclear whether the framework
was implemented and whether there are performance ben-
efits in comparison to existing approaches. Additionally,
there are no details given on how deep normalization
was performed. Another such system that integrates log
collection and analysis into Hadoop has been presented by
Han et al. [12] and Therdphapiyanak et al. [13]. Han et al.
focus on the persistence of events and Therdphapiyanak
et al. focus on clusterization of data for attack analysis.
In the end, both solutions do not seem to support full log
normalization for arbitrary formats. A concrete solution

2Elastic Logstash - https://www.elastic.co/products/logstash
3Apache Hadoop - https://hadoop.apache.org/

with Hadoop log management can be found by PetaPylon
in form of their Log Management solution4.

We are not convinced about the suitability of the spe-
cialized MapReduce-algorithm of Hadoop for log normal-
ization. It seems to work for a variety of corner cases for log
analysis, but does not seem to work for a comprehensive
analysis. We therefore focus on a customized solution that
better fits the requirements of log normalization. At the
moment, it seems to be more promising to try Hadoop’s
successor, i.e. Apache Spark5.

III. Event Normalization

In order to understand the presented improvements in
event normalization, we first want to give a short overview
of the whole process of normalization and where paral-
lelization can be utilized. Figure 1 pictures the workflow
of normalization. At the beginning of the workflow a log
file or one or multiple servers produce logs. These logs are
collected at a central place by the Log Receiver component.

When the log data is received, it is split up into separate
log events, which are then forwarded to the Normalization
component. Within the Normalization component, multi-
ple workers then take over the processing of the logs and
normalize it into OLF. After the normalization, all logs are
forwarded for further processing to the OLF Distributor.

From the overview, it is obvious that both distributors
are a bottleneck in the processing. Usually, the log receiv-
ing can be handled by a few workers, because there is
no heavy processing to do. The normalization, however,
is very processing intensive and needs as many resources
as possible and therefore relies on multi-threading. A
major challenge we face in the normalization is to transfer
data structures from multiple producers (Log Receiver) to
multiple consumers (Normalization). An approach to this
challenge is discussed in Section IV.

One Normalizer performs normalization with the help
of a hierarchical knowledge base. The concept for this
kind of normalization has been discussed in the paper [5]
and has proven to be highly efficient. The main idea of
normalization is to use NGREs to match a log line and
then use named groups to extract the properties for the
normalized OLF event. Listing 1 shows an exemplary
log line from an SSH server (SSHd) that needs to be
normalized.

Listing 1. Log event as produced by SSHd
Sep 1 08:37:12 target-server sshd: Accepted password for

john from 192.168.1.1 port 47246 ssh2

This concrete event is wrapped into the common Sys-
log [14] format, which is usually used in UNIX-based
operating systems for log exchange. The message part of
the Syslog event encapsulates the more concrete SSHd

4PetaPylon Log Management - http://petapylon.com/solutions/
log-normalization/

5Apache Spark - http://spark.apache.org/

event information. Our idea with a hierarchical knowledge
base is to make use of the typical structuring of logs into
wrapper- and sub-formats. We first try to find the wrapper
format, which would be Syslog in this case. Listing 2 shows
the corresponding NGRE for matching Syslog.

Listing 2. NGRE for Syslog
^(?<time>\w{3} \d+ \d+:\d+:\d+) (?<producer_host>\S+) (?<

producer_appname>\S+): (?<msg>.*)$

From this matched regular expression, the msg is ex-
tracted and then tried to be matched against possible
wrapped formats. Listing 3 represents the regular expres-
sion that would be matched in this case.

Listing 3. NGRE for SSHd part
^Accepted password for (?<user_username>\S+) from (?<

network_sourceIpv4>\S+) port (?<network_srcPort>\d+)
(?<application_proto>\S+)$

In this paper, we have proposed a method to efficiently
find the wrapping and wrapped formats. Once all infor-
mation is extracted from the NGREs, it is filled into an
OLF event, as shown in Listing 4.

IV. Normalization with High-Performance

Inter-Thread Communication

Figure 1 shows that normalization is highly dependent
on the exchange of event data through the distributors.
Taking traditional programming models, this problem of
exchange is usually solved with so called blocking queues.

Listing 4. Extracted fields of event from Listing 1 in OLF format
{ time: "2015-09-01T08:37:12",

network: { srcIpv4: "192.168.1.1", srcPort: 47246},
producer: { host: "target-server", appname: "sshd"},
user: { username: "john"},
application: { proto: "ssh2"} }

A. Blocking Queue Approach
A blocking queue is a thread safe queue implementation

that allows a producer thread to put elements into the
queue, while one or multiple consumers wait on the queue
for incoming events. Figure 2 shows the event processing
architecture based on blocking queues.

LOGS

Log Receiver No
rm

al
isa

tio
n

th
re

ad
s

l

Blocking Queue

Log Receiver

Fig. 2. Event processing approach using blocking queue

In case the queue is empty, the thread blocks and wakes
up as soon as the producer puts in a new element. If

there are already elements in the queue, the consumer
directly gets one of the elements without blocking. While
this model is sufficient for exchanging sporadically incom-
ing elements, it does not perform for a high number of
incoming elements, because many CPU time is spent for
blocking.

We have used blocking queues for our implementation
of normalization, so far. The results for this normalization
can be found in the evaluation part of the paper [5]. On
average, we could reach around 37,000 events/sec with 8
threads6 , which is already remarkably high, but can be
improved.

B. Disruptor Pattern Approach
To increase normalization speed, the so called disruptor

pattern[15] can be used, as depicted in Figure 3.

Ring Buffer

LOGS

Gatherer
50

35

36

37
38 39

40

41

42

43

44

45
4647

48

49

No
rm

al
isa

tio
n

th
re

ad
s

G h

Fig. 3. Event processing approach using blocking queue

The disruptor pattern is based on the exchange of
elements through a so called ring buffer. This is a circu-
lar buffer where events at the beginning are overwritten
when there are more than the buffer’s size elements. This
structure is efficient, because old elements do not have
to be explicitly discarded and no new memory has to be
assigned. The disruptor concept helps to prevent locking of
threads. In comparison to a blocking queue, new elements
are inserted into a free position of the ring buffer and
get a sequence assigned to it. For our concrete scenario,
the Log Receiver (producer) inserts an element into the
buffer and the normalization threads (consumers) store
their sequences pointing to the event being processed.
All normalization threads can read the sequences of their
peers to identify, which events in the ring buffer are
available for processing. Therefore, normalization threads
could retrieve events from the buffer without a risk of
being locked by each other. Since the event is not removed
from the buffer during retrieval, there is no need to lock
the buffer itself.

Because of the promising performance gain, we have
implemented the disruptor pattern in our prototypical
REAMS SIEM to achieve an even higher event through-
put. However, to achieve best performance, we have to find
the optimal configuration of the disruptor’s ring buffer size
and the number of producers and consumers. According

6Virtual Machine (Debian 7.8, 32GB RAM(dedicated), 16
cores(dedicated)) on VMware ESXi host with 256GB RAM and 8x
Intel Xeon X7560 CPUs @ 2.27GHz

1 2 3 4 5 6 7 8 9 10

0

10

20

30

7
9

11
13

15
17

19
Threads

N
or

m
al

iz
at

io
n

Sp
ee

d
(E

ve
nt

s/
s)

Th
ou

sa
nd

s

Ring Buffer Size (Exponent)

0-10000 10000-20000 20000-30000

(a) 4 Core Machine
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

10

20

30

40

50

60

70

7
9

11
13

15
17

19
21 Threads

N
or

m
al

iz
at

io
n

Sp
ee

d
(E

ve
nt

s/
s)

Th
ou

sa
nd

s

Ring Buffer Size (Exponent)

0-10000 10000-20000 20000-30000 30000-40000

40000-50000 50000-60000 60000-70000

(b) 16 Core Machine

Fig. 4. Normalization with disruptor using different number of threads and ring buffer sizes

to the documentation of the disruptor, the ring buffer size
should be a power of 2.

C. Finding an Optimal Disruptor Configuration
To find the optimal configuration, different combina-

tions of ring buffer sizes and normalization threads that
consume events from the ring buffer have to be tested.
Using the machine from the blocking queue implementa-
tion of our normalization, we have 16 cores that could
theoretically normalize events in parallel.

We created a test setup, where we normalize 10 million
Apache Web Server log lines with different sizes of the
ring buffer and different number of normalization threads.
We tested a range of buffer size exponents from 7 (128
slots) to 22 (4,194,304 slots) and a thread count from 1 to
the number of cores. Because we use the same machine
for testing as with the blocking queue implementation, we
have a maximum of 16 threads. Additionally, we created
a second virtual machine with 4 cores7 for testing. We
performed two tests for each combination of buffer size and
thread count and calculated the average of the maximum
normalization throughput. Figure 4 shows our results for
all tests we performed.

The diagram shows that the number of normalized
events per second almost grows linearly up to a certain
number of threads and then turns over. For 16 cores, this is
with 11 threads, for 4 core it is with 4 threads, respectively.
Beginning from this number, the throughput is declin-
ing. We would have expected a maximum throughput at
around 14-16 normalization threads for 16 cores or 2-3
threads for 4 cores, because in this case each core would ex-
clusively normalize events within one thread. We assumed

7Virtual Machine (Debian 7.8, 4GB RAM(dedicated), 4
cores(dedicated)) on previous VMware ESXi host

a number being 2 less than the core number, because 2
additional threads are needed to perform our performance
measurement and run the Log Receiver, which reads the
log file from disk. We are sure that the reading of logs is not
a bottleneck, because we were able to read logs at around
400,000 events/sec with one thread in a previous test. We
will show in the next section, why this drop of performance
is happening and how it can be eliminated. The size of the

5.719

11.619
17.039

23.019
27.081

32.386
37.942

42.552
46.639

49.909
53.748 51.822

47.554
43.093 44.541 45.896

7.073

13.16

20.027

26.075

32.214

38.356

44.721
50.006

55.517
60.239

64.503

55.676
50.986

47.864
45.317

42.363

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (E

ve
nt

s/
s)

Th

ou
sa

nd
s

Threads

Blocking Queue Disruptor

Fig. 5. Comparison of normalization performance with disruptor
(buffer size 213) and blocking queue on a 16-core machine

ring buffer has a rather limited impact on the performance
for lower exponents. We see that the performance increases
slightly with the buffer size. However, at a size of 18,
the performance dramatically decreases. On average, the
best throughput is achieved with an exponent of around
13 (8192 slots) to 16 (65,536 slots). We assume that our
observed optimal buffer sizes are related to the available
memory in our virtual machine and slightly depend on the
number of consumers that work on the buffer.

Altogether, we could reach the highest throughput of
64,503 with 11 threads and a buffer size of 13. A compari-
son of the disruptor performance with the blocking queue

performance is shown in Figure 5. We performed both tests
with the same log data set with 10 million Apache Web
Server events.

From this diagram, it can be deduced that the disruptor
performance is generally higher than the blocking queue
performance. Both approaches have almost continuously
increasing throughput up to 11 threads. At the point of the
highest difference, the disruptor has a 10,755 events/sec
higher throughput, which estimates to around 20%.

V. Achieving a Lock-Free Implementation

Fig. 6. Locking during normalization with multiple threads (green
- thread running, red - thread blocking, yellow - thread waiting)

Already, a performance gain of 20% could be reached
by reimplementing our Normalizers to use the disruptor
pattern instead of the blocking queue. However, we saw a
performance drop at 11 threads. While looking for possible
reasons for this behavior, we encountered repeated locking
of the normalization threads, although the disruptor is
supposed to be lock-free. A screenshot in Figure 6 shows
these interruptions in red color in between of the green
running state.

By taking stack-traces of the locking threads, we found
that one of our used libraries, called Apache commons-
beanutils8 for introspection, is causing locks. We were able
to pinpoint and eliminate the calls to these blocking func-
tions and could immediately encounter huge performance
improvements for the normalization threads. Figure 7
shows the performance of this now completely lock-free
implementation of the normalization in comparison to the
previous implementation.

The lock-free implementation allows us to scale up to a
throughput of 145,365 events/sec, which is more as double
(+125%) the speed as the best throughput of our previous
implementation. Additionally, there is now a much more
stable growth than before, because now there is no lock
contention blocking the processing. The previous limit of
11 threads, which we could even observe on a machine
with 24 cores, was because of the locking becoming too
inherent. Now, the throughput should grow linearly with
the number of threads.

As outlined in Figure 7, the throughput is now even
growing up to the number of 16 threads, which is the
number of cores in the machine. This is even better than
we expected, because the Log Receiver and statistics do

8Apache commons-beanutils - http://commons.apache.org/
proper/commons-beanutils/

not seem to noticeably influence the performance. The
throughput seems to remain almost constant for thread
numbers beyond 16.

VI. Distributing Event Processing

So far, we have focused on the optimization of the
throughput on a single machine. To achieve an even higher
throughput, multiple machines can be used to process
events in parallel. A single machine cannot be easily scaled
without investing a lot of money. It would be cheaper to
rather use smaller low-end systems than a single big ma-
chine. Therefore, we will now show how log normalization
can be performed with a distributed normalization system.

A. Architecture Overview
Figure 8 gives an idea on how normalization can be

distributed.
The main idea is to have a central node that is able to

receive logs from various sources. We consider this central
point important, because all log sources can be configured
to point to one node. For example, various existing SIEMs
can be pointed to this node’s IP for forwarding. Once
events are received, they are immediately forwarded to one
of multiple normalization nodes. Each of these normaliza-
tion nodes only has limited processing resources, but can
still contribute a part for a higher throughput. All in all,
multiple such low-end normalization nodes can together
achieve a higher throughput than a single node.

B. Implementation of Network Communication
For the distribution of events to other nodes, the net-

work communication has the highest influence on the
overall performance of the processing. While events can be
theoretically read at a rate of more than 700,000 events/sec
with parallel file readers, our first implementation with
Java’s simple Socket API could only reach a transmission
rate of around 5000 events/sec per connection. This in-
dicates, that even with more than 10 nodes, not more
than 50,000 events/sec can be normalized because of a
limitation in the transmission speed. Research by Welsh
and Culler [16] from 2000 confirms this bad performance
of Java’s Socket API. They show that native access to
C sockets can achieve significantly higher speeds. As a
result of this shortcoming, the Java Community came
up with an extended library for scalable I/O in 2002,
the so called Java NIO specification (JSR51) [17], which
was further improved in JSR201 [18]. In this library, the
developer works with fast buffers that are directly used to
communicate between program and I/O-code.

By changing our original implementation to the Java
NIO library, we could immediately achieve a throughput of
up to 50,000 events/sec without tuning socket parameters
like send/receive buffers. In comparison to the standard
Socket API, this enables us to scale our throughput with
normalization nodes.

5.719 11.619
17.039

23.019
27.081

32.386
37.942

42.552
46.639

49.909
53.748

51.822
47.554

43.093
44.541

45.896

7.073
13.16

20.027
26.075

32.214
38.356

44.721
50.006

55.517 60.239
64.503

55.676
50.986

47.864
45.317

42.363

10.219
20.442

30.369
39.79

48.294
59.691

67.171
77.344

89.467
98.136

104.723
116.391

116.202

130.588

133.438

142.806

139.214

139.832

140.685

145.365

142.158

143.675

140.138

142.728

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Th
ro

ug
hp

ut
 (E

ve
nt

s/
s)

Th

ou
sa

nd
s

Threads

Blocking Queue Disruptor Disruptor (Lock-Free)

Fig. 7. Performance of fully lock-free normalization threads with 16 cores

Forwarding Node

Normalization Node

Normalization

Log
Receiver ...

Normalizer

Normalizer

Normalizer
Forwarder

Log
Receiver

Send over
Netowrk

LoL
ee

Normalization Node

Normalization

...

Normalizer

Normalizer

Normalizer

Log
Receiver

NormaNormalizatlizationionLog
ecee Normalization Node

Normalization

...

Normalizer

Normalizer

Normalizer

Log
Receiver

...

Fig. 8. Distributing the normalization

C. Efficiently Distributing Events to Nodes
One challenge when distributing events to multiple

nodes is to account for node utilization. The main question
is: How can we ensure that each node has an equal share of
the load? Only when all nodes are equally busy, the best
results for throughput can be achieved. Our first naïve
approach to solve this issue is by forwarding one event
from the first to the last node and then starting over from
the beginning. However, while this pattern ensures the
same amount of events for each node, it does not ensure
the same workload, because usually events are not equally
difficult to normalize. Our second approach is based on
the busyness of the nodes, since it takes the fullness of
the ring buffer as an indicator for the events that can be
processed. If a node can process its events faster, then its
buffer will get emptier soon and it will receive more events.
The fullness of the buffer can be easily encountered when
inserting elements into the buffer, because in the case of
a full buffer the inserting thread is blocked until a new
slot in the buffer becomes empty. If this inserting thread

is at the same time used to receive new events from the
network stack, then as long as the thread has space in the
buffer, it can receive more events. If it is blocked, then it
cannot process the events from the network stack. One of
the properties of the TCP protocol is a sliding window of
transmitted data, where only further data is sent when the
data from the window is received in the application. This
means as long as the receiver does not actively take the
data from the network, no further data will be sent from
the sender. In reality, the sender would be blocked from
sending further data. Figure 9 depicts the concept of this
transitive blocking.

The forwarding node runs one thread for each connec-
tion to a normalization node. This thread takes read events
from the ring buffer and then sends it over the network,
given that there is no blocking. As soon the ring buffer
is full on its corresponding normalization node, the log
receiver will block on the ring buffer and therefore will
also block the sending of further data over the connection.
As soon the ring buffer has space, the Log Receiver will
continue and can then take events from the Log Sender.
Using this mechanism, each node only gets just as many
events as it can process.

We think that this approach of directly using the lim-
iting capabilities of TCP allows immediate reaction to
the fullness of the underlying buffer on the normalization
nodes. An approach where the receiver would give feed-
back messages on the fullness of its buffer would probably
only deliver outdated messages.

Forwarding
Node

Normalization Node

Normalizer

Normalizer

Normalizer

Log Receiver

Blocking (Disruptor)

Blocking (Network)

Normalization Node
Normalizer

Normalizer

Normalizer

Log Receiver

Blocking (Disruptor)

Blocking (Network)

Log Sender

Fig. 9. Transitive blocking to control node utilization

D. Forwarding Based on Event Properties
Another way of forwarding messages, different to the

plain distribution of messages, is to decide the normalizing
node based on its preferences. Similar to the mapping in
Hadoop, wrapper for more complex messages could be pre-
normalized and then it can be decided from the event
properties, where to forward events to. A normalization
node can then be specialized in the normalization of
certain events, such as Web logs or Intrusion Detection
System (IDS) logs, and then could even perform faster for
its specialized events. This approach has not been imple-
mented into our REAMS, but promises improvements for
logs from heterogeneous sources.

E. Performance Tests
We have tested the distribution with a different number

of normalization nodes, each having 4 cores and 4GB
of main memory. According to our previous performance
tests, these machines are best set up with 4 normalization
threads and a buffer size of 213. 3 simultaneous connections
are used for each node to transmit raw event logs with the
highest speed. Our previous machine with 16 cores was
used as the forwarding node. Figure 10 shows the results
of our tests.

The diagram makes clear that normalization scales al-
most linearly with the number of normalization nodes.
Each node accounts for around 25,000 −30,000 events/sec,
totaling to around 265,000 events/sec for 10 parallel nodes.
With 6 nodes, together having 24 cores, we can already
achieve a higher throughput (+18,000 events/sec) than the
16 core machine alone. Thus, a multi-node architecture can
outperform a single node, assuming that a significantly
larger system is not affordable and multiple low-end sys-
tems are at hand.

30.047

58.356
85.531

113.003
139.587

163.657
191.601

218.539
239.408

264.385

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (E

ve
nt

s/
s)

Th

ou
sa

nd
s

of Normalization Nodes

Fig. 10. Performance of distributed normalization with varying
number of normalization nodes

Figure 11 shows a screenshot of the performance mea-
surement results for 8 parallel nodes. The first part shows
a histogram summary of 32 measurement points after
each 30s. The second part is a meter with the current
measurement point.

While testing the 10 node configuration, we observed
a processor utilization of 300-400% (Full utilization of 3-4
cores) on the forwarding node, indicating that there is still
enough space to further scale the throughput. Assuming
a linear growth of the throughput with more nodes and a
10 Gb/s Ethernet connection, a theoretical throughput of
1 million events/sec would be imaginable with 40 parallel
normalization nodes.

Considering the log quantity of 1 trillion events/day
from the HP [4] paper, a throughput of around 11.5 million
events/sec would have to be achieved. Taking the fact
that HP is able to afford even more expensive machines
than what we have at hand, this amount of logs could
be handled with 12 independent setups of 20 parallel
nodes with 8 cores. These setups could be placed on
different continents and different departments of the HP
infrastructure.

VII. Conclusion and Future Work

The amount of security-related log data that is relevant
for investigating cyber-attacks is rising. Existing tools in
the SIEM-domain were not able to handle and especially
fully normalize these amounts of events before. In this
paper, we have shown how multiple billions of events/day,
being typical for big enterprise networks, can be normal-
ized in real-time, making an immediate attack analysis,
e.g. via an in-memory database, possible. While Gartner
categorizes a throughput of more than 25,000 events/sec as
large setup, this still cannot account for peeks in incoming
log events for big enterprises. However, especially such
peeks can indicate an malicious activity going on. With our
results, we can even handle the normalization of security
logs in such occasions.

Our performance comparisons have shown, that a single
node can already achieve a normalization throughput of

Fig. 11. Screenshot of our application while running the test for 8
nodes

up to 145,000 events/sec with a lock-free disruptor imple-
mentation. This is a major improvement to our previously
achieved throughput of 37,000 events/sec. The distribution
of normalization on 10 relatively low-profile nodes can even
increase the throughput to 265,000 events/sec, which is
already a magnitude more than what is set as a boundary
for large environments by Gartner. We even assume that
more nodes could scale the normalization speed to a
million events per second.

For future research, the processing of events in batches
is a promising way to achieve even higher throughput.
Various sources show that the disruptor pattern scales
with such a batch size. Nevertheless, the normalization
overhead of the processing has to be regarded, since it sets
the upper bound for the maximum possible throughput.

Another direction of research could be the paralleliza-
tion with Apache Spark. This large-scale data processing
framework is a successor of Hadoop and promises 100x
the speed of Hadoop while removing the dependency to
the limiting MapReduce algorithm.

One problem that we did not cover so far in our ap-
proach is further processing of events, such as anomaly
or misuse detection or even the persistence of the events.
Researching the possibility of distributed analysis seems
promising and has been partly covered in research work
already.

VIII. Acknowledgement

We would like to thank the HPI Future SoC Lab9

for providing us with the latest and powerful computing
resources, which make the testing and experiments in the
paper possible. Additionally, we would like to thank Mar-
ian Gawron for his support and ideas in further improving
the speed of our implementation.

9HPI Future SoC Lab - http://hpi.de/en/research/future-soc-lab.
html

References

[1] US Office of Management and Budget (OMB), “Annual Report
to Congress: Federal Information Security Management Act,”
US Office of Management and Budget, Tech. Rep., Feb. 2015.

[2] J. Shenk, “Ninth Log Management Survey Report,” SANS
Institute, Tech. Rep., Oct. 2014.

[3] K. M. Kavanagh and O. Rochford, “Magic Quadrant for Secu-
rity Information and Event Management,” Gartner, Tech. Rep.,
Jul. 2015.

[4] S. Bhatt, P. K. Manadhata, , and L. Zomlot, “The Operational
Role of Security Information and Event Management Systems,”
IEEE Security & Privacy, vol. 12, pp. 35–41, Oct. 2014.

[5] D. Jaeger, A. Azodi, F. Cheng, and C. Meinel, “Normalizing
Security Events with a Hierarchical Knowledge Base,” in Pro-
ceedings of the 9th International Conference on Information
Security Theory and Practice (WISTP’15), ser. Lecture Notes
in Computer Science, R. Akram and S. Jajodia, Eds., vol. 9311,
no. 1. Springer International Publishing, 2015, pp. 238–248.

[6] A. Sapegin, D. Jaeger, A. Azodi, M. Gawron, F. Cheng, and
C. Meinel, “Hierarchical Object Log Format for Normalisation
of Security Events,” in Proceedings of the 9th International
Conference on Information Assurance and Security (IAS’13),
Yassmine Hammamet, Tunisia, Dec. 2013, pp. 25–30.

[7] A. Azodi, D. Jaeger, F. Cheng, and C. Meinel, “Pushing the
Limits in Event Normalisation to Improve Attack Detection in
IDS/SIEM Systems,” in Proceedings of the First Internation
Conference on Advanced Cloud and Big Data (CBD’13), Nan-
jing, China, Dec. 2013.

[8] J. E. F. Friedl, Mastering Regular Expressions, 3rd ed.,
A. Oram, Ed. O’Reilly Media, Aug. 2006.

[9] A. Azodi, D. Jaeger, F. Cheng, and C. Meinel, “A New Approach
to Building a Multi-Tier Direct Access Knowledge Base For
IDS/SIEM Systems,” in Proceedings of the 11th IEEE Inter-
national Conference on Dependable, Autonomic and Secure
Computing (DASC’13), Chengdu, China, Dec. 2013.

[10] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart,
“Disruptor: High Performance Alternative to Bounded Queues
for Exchanging Data Between Concurrent Threads,” LMAX,
Tech. Rep., May 2011.

[11] P. Bhatt, E. T. Yano, and P. Gustavsson, “Towards a Frame-
work to Detect Multi-stage Advanced Persistent Threats At-
tacks,” in Proceedings of the 8th IEEE International Symposium
on Service Oriented System Engineering. IEEE Computer
Society, 2014, pp. 390–395.

[12] S. Han, M. Kim, and H. Lee, “Design and Implementation of
a MongoDB-based Log Processing System in Cloud Computing
Environment,” in Proceedings of the 4th International Confer-
ence on Internet (ICONI’12), 2012.

[13] J. Therdphapiyanak and K. Piromsopa, “Applying Hadoop for
Log Analysis toward Distributed IDS,” in Proceedings of the 7th
International Conference on Ubiquitous Information Manage-
ment and Communication (ICUIMC ’13), no. 3, 2013.

[14] R. Gerhards, “The Syslog Protocol,” RFC 5424 (Proposed
Standard), Internet Engineering Task Force, Mar. 2009.
[Online]. Available: http://www.ietf.org/rfc/rfc5424.txt

[15] M. Fowler. (2011, Jul.) The LMAX Architecture. Web Site. [On-
line]. Available: http://martinfowler.com/articles/lmax.html

[16] M. Welsh and D. Culler, “Jaguar: Enabling Efficient Communi-
cation and I/O in Java,” Concurrency: Practice and Experience,
vol. 12, no. 7, pp. 519–538, 2000.

[17] M. Reinhold. (2002, May) JSR 51: New I/O APIs for the
Java Platform. Sun Microsystems, Inc. [Online]. Available:
https://www.jcp.org/en/jsr/detail?id=51

[18] A. Bateman. (2011, Jul.) JSR 203: More New I/O APIs
for the Java Platform ("NIO.2"). Oracle. [Online]. Available:
https://jcp.org/en/jsr/detail?id=203

