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Abstract—Railway transportation plays an important role in 
both economic and social development. The requirements of the 
railway traffic increase in recent decades. In order to meet the 
growing demand, a new generation control system of railway 
transportation emerges. It consists of collection, transmission, 
analysis and scheduling module. In such a context, an infor-
mation transmission system is built to connect trains and sched-
uling center. However, the infrastructure of the railway system 
cannot provide enough bandwidth for such amount of data. As 
a result, the efficiency of data transmission cannot be ensured. 
In this paper, we focus on the compression algorithm that re-
duce the amount of transmitted data and improve the system 
performance. Based on the analysis of the common algorithms, 
an efficient compression algorithm, named delta-encoding, is 
proposed. It consists of two steps: preprocessing and compres-
sion. Delta-encoding utilizes a class-based difference model, 
which reduces the data redundancy, to realize a preprocessing 
algorithm. With the combination of preprocessing algorithm 
and a regular compression algorithm, delta-encoding has better 
performance on compression ratio, and becomes a universal hy-
brid algorithm for structured data in IoT system rather than a 
specific algorithm in high-speed train system. Finally, several 
experiments are provided to prove that delta-encoding have ad-
vantages in both compression ratio and compression time. 
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I. INTRODUCTION 

Railway transportation plays an important role in both 
economic and social development. In recent years, the re-
quirements of the railway traffic increase annually, and high-
speed railway system is becoming one of the most important 
part of the transportation industry. In order to meet the grow-
ing demand, a new generation control system of railway 
transportation emerges, which consists of information collec-
tion, network transmission, data analysis, and scheduling 
module [1]. In high-speed railway system, by analyzing the 
real-time status of trains, the train scheduling center could 
evaluate the state of the system and make appropriate deci-
sion to guarantee the efficiency of the system. It is inevitable 
that large amount of data need to be uploaded in real time. 
However, the infrastructure of the railway system cannot pro-
vide enough bandwidth for such amount of data. So far, there 
have been two solutions to solving this problem. The first one 

is improving the transmission ability of the infrastructure, 
while the other one is reducing the amount of the data that 
need to be transmitted. The first approach is impractical be-
cause of the restriction of power and computation resource. 
Instead, the compression algorithms have been widely dis-
cussed to improve the performance of such systems. 

The high-speed train data stream consists of structural 
operational records, and control/scheduling commands. They 
represents the train status and the message between train and 
railway-side devices, such as balise and track circuit. In order 
to provide real-time information for the scheduling center, 
trains have to upload their status in a short period. However, 
trains stay in a stable status in most of their running time. 
Short upload period will lead to uploading more redundant 
information. Although the commonly used data compression 
algorithms can help reducing the bandwidth, they are not de-
signed for specific data structure so that they cannot minimize 
the compressed size. In this paper, we present a compression 
algorithm, named delta-encoding, for high-speed train system. 
With the combination of preprocessing algorithm and a reg-
ular compression algorithm, delta-encoding has better perfor-
mance, and becomes a universal hybrid algorithm for struc-
tured data in IoT system rather than a specific algorithm in 
high-speed train system. The contribution of this paper are 
threefold:  
  First, based on difference algorithm and the characteristic 

of high-speed train data stream, a class-based difference 
model for data compression is proposed.  

  Next, a compression algorithm is designed with the dif-
ference model, and has a better efficiency than common 
algorithms for high-speed train data stream. 

  Finally, based on the class-based difference model, a uni-
versal hybrid algorithm is proposed for structured data in 
IoT system. 
The rest of this paper is organized as follows: Some back-

ground on lossless compression algorithms are introduced in 
Section II. Section III introduces the structure of the data 
stream in high-speed train, and analyzes the problem in data 
compression with commonly used algorithms. In Section IV, 
we present a hybrid compression algorithm for high-speed 
train data stream. Experiences and evaluation of the proposed 
algorithm are provided in Section V. Section VI concludes 
the paper and discusses the future works. 
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II. RELATED WORKS 

Lossless data compression is a class of data compression 
algorithms that can reconstruct exactly the original data from 
the compressed data. Lossless compression is commonly 
used in applications, such as text compression, where the loss 
of even a single bit is unacceptable [2-3]. In order to ensure 
the integrity of original data in high-speed train system, we 
will limit ourselves to the consideration of only lossless com-
pression in this paper. 

One of the common techniques of lossless compression is 
the family of textural-substitution algorithm, of which 
Lempel-Ziv is the most popular [2]. LZ77 algorithm forms 
the basis of most modern compression algorithm. It maintains 
a dictionary using triples representing offset, run length, and 
a deviating character. The offset is how far from the start of 
the file a given phrase starts at, and the run length is how 
many characters past the offset are part of the phrase. The 
deviating character is an indication that a new phrase was 
found, and that phrase is equal to the phrase from offset to 
offset+length plus the deviating character [4]. LZ77 also in-
troduces the concept of a “sliding window”, which is used to 
restrict the time of creating triples. At the end of the twentieth 
century, there are many variants of LZ77 algorithm spring up, 
include LZSS, LZO, Deflate, and LZMA. Deflate is invented 
by Phil Katz [5], which is the combination of LZ77 and Huff-
man coding. Deflate impressed people with a better perfor-
mance compared to those previous algorithms. The Lempel-
Ziv-Markov chain algorithm (LZMA) is another variant of 
the basic LZ77 algorithm, and was first used in the 7z format 
of the 7-Zip archiver [6]. LZMA is considerably improved in 
compression ratio over most other LZ variants mainly due to 
the bitwise method of compression rather than bytewise. An-
other study [7] reports that, in most cases, LZMA has better 
performance than Deflate [5] and Bzip2 [10] in compression 
ratio. 

Another technique of lossless compression is Burrows-
Wheeler transform (BWT). Different from Lempel-Ziv fam-
ily, BWT is non-dictionary algorithms [8]. BWT rearranges 
a character string into runs of similar characters [9]. Bzip2 is 
an open source implementation of BWT [10]. It combines 
several lightweight algorithms such as run-length encoding, 
move-to-front transform, and huffman code [11]. The operat-
ing principles of Bzip2 is so simple that they achieve a very 
good compromise between speed and compression ratio. 

Common lossless algorithms are widely used in practical, 
but they still need to be improved in particular cases. When 
the original data has a large amount of redundant information, 
common algorithm will use more resource to deal with them. 
If an improved algorithm can reduce the redundant infor-
mation properly, the compressed size may decrease in some 
conditions. Psounis K [12] proposes a class-based delta-en-
coding and a scalable scheme to perform delta-encoding on 
dynamic web-traffic. The proposed approach increases the 
web-caching performance. The idea is to group documents 
into classes, and store one document per class as base-data on 
the server-side. Experimental results report that class-based 
delta-encoding combined with compression reduces the 

bandwidth consumption by a factor of 30, and the latency per-
ceived by most users by a factor of 10 on average. 

Hu Y [13] addresses the problem of efficiently modeling 
identifier collections occurring in RFID-based item-tracking 
applications and databases. This paper proposes a data com-
pression algorithm for RFID data based on bitmap. The main 
idea of this paper is that, the Electronic Product Codes list can 
be represented using a bitmap data type, which can lead to 
significant storage savings. 

III. HIGH-SPEED TRAIN DATA STREAM 

Juridical Recorder Unit (JRU) is a recorder that records 
the movement authorities received and the actions of the 
driver or operator [14]. Besides, JRU records the critical data 
of the train, such as position, speed, etc. Basing on the JRU 
data, we can detect and diagnose the fault in the high-speed 
train system. For the purpose of supervising the high-speed 
train system, the train scheduling center need to get and ana-
lyze real-time JRU data. As a result, this will bring hundreds 
of gigabytes of JRU data transfer volume per day. That is why 
JRU data becomes one of the main source of the data stream 
in high-speed train data system[15]. 

A. Data Format 
 The format of JRU data is demonstrated in Figure 1 [16]. 

Each piece of JRU data consists of different fields. Table I 
lists the meaning of these fields. As illustrated in Figure 1, 
the content of NID_MESSAGE and L_MESSAGE determine 
the format and length of Variables. For simplicity in the re-
mainder of this paper, we call the field Variables as the suffix 
of JRU data, and the rest part as the prefix.  

The content of the suffix of JRU data is defined in [16-
18], the suffix records two different kinds of information in-
dividually. The first one is the changes of the train status, 
which is recorded in a fixed-length bit stream. The other is 
the communication data between train and railway-side de-
vices or train scheduling center. Different from the status 
change data, the communication data, which is called mes-
sage in [18], has more complex structure. Each message has 
a prefix, which records the unique message identifier and 
length of message. Moreover, the rest part of the message, 
which is called the suffix, consists of few well-defined pack-
ets. Similarly, the packet also consists of prefix and suffix, 
and has an identifier in the prefix. Figure 2 illustrates the for-
mat of two different information in JRU data. As mentioned 
above, there are three layers in JRU data, include JRU data 
layer, message layer and packet layer. The relationship be-
tween them can be seen in Figure 2(b). As note that, all of the 
identifier in prefix represents the content in suffix. In other 
words, the content of each piece of JRU data can be expressed 
by a triple of identifiers (JID, MID, (PID1,…, PIDn)), which 
is called Format Identifier (FID). JID indicates the field 
NID_MESSAGE in the prefix of JRU data; MID and PID re-
fer to the identifier of message and packet respectively. 



 

 

 
Figure 1. Format of Each Piece of JRU Data 

Table I. JRU Data Format 
Fields Remarks 

NID_MESSAGE Message identification number 

L_MESSAGE Message length including fields 1 to N 

DATE Current date 

TIME Current time 

TRAIN_POSITON Current train position 

V_TRAIN Current train speed 

NID_DRIVER Driver identifier 

NID_ENGINE On-board ETCS identity 

LEVEL Current level 

MODE Current mode 

Variables 
Data associated to the message. Its length de-
pends on the message content, but it’s always 
rounded up to a bytes unit. 

 

 
(a) JRU Data with state of train 

 

 
(b) JRU Data with communication data 

Figure 2. Structure of JRU data 

B. Compression Process of JRU Data 
To ensure the validity of uploaded data, the compression 

process have to be executed as soon as possible when a new 
piece of JRU data is generated. However, each piece of JRU 
data contains around 108 bytes in average, and is so short that 
its content approximates to a random string. It is unwise to 
compress JRU data piece by piece, because random string is 
too difficult for common algorithms to compress. In order to 
avoid inefficient compression, we would like to compress 
JRU data by group. As a result, a buffer is need for this, and 
will delay the transmission. 

Considering the capability of transmission system, we di-
vide JRU data into two categories: real-time data and delayed 
data. Real-time data denotes the new generated JRU data. A 
real-time data buffer is created to hold those data. In general, 
each train generates new JRU data every 125 millisecond [16]. 
In order to balance the compression ratio against the delay, 

the size of the real-time data buffer should less than 20 piece 
of data. Delayed data denotes the real-time data that cannot 
be uploaded in time. The delay may be caused by small band-
width or device fault. In other words, real-time data will be 
transformed to delayed data if in need. Identically, delayed 
data is held in a delayed data buffer, which holds more data 
than real-time buffer. As note that, the delayed data will be 
uploaded again when the network conditions become better. 

C. Characteristic of JRU Data 
As mentioned above, when two pieces of JRU data have 

the same FID, they will have the same structure. As result, 
there is a great possibility that two piece of data will share 
more content. Because of the time interval between two 
pieces of JRU data is small, part of the information in JRU 
data may not change, and this will bring unnecessary redun-
dancy, which will take up more bandwidth. To evaluate the 
proportion of unnecessary redundant information, we divide 
the content of JRU data into static and dynamic part. Static 
part denotes the content that seldom changed in the running 
processes of the train, such as DATE, NID_ENGINE, 
NID_DRIVER field etc. Dynamic part is the rest part of JRU, 
which could change at any time, such as TIME, V_TRAIN, 
TRAIN_POSITION field etc. The content of static part is the 
one of the source of unnecessary redundancy. For instance, 
there are no less than 438 bits content of the JRU prefix 
(around 438/(108×8)Ĭ50% content) will not change when 
the train is running in stable status. Moreover, if two pieces 
of JRU data have the same FID, this will cause more unnec-
essary redundancy. In extreme case, when the length of Var-
iables field is zero, 90% content of two pieces of JRU data 
are the same. 

Basing on the characteristic of JRU data, we define few 
concept below: 
  Public Byte: bytes appear in the same position of both 

pieces of JRU data 
  Private Byte: bytes other than public bytes of two pieces 

of JRU data 
  Public String: a string consists of continuous public byte 
  Private String: a string consists of continuous private byte 

In other words, each piece of JRU data is composed of 
public strings and private strings. Figure 3 illustrates the re-
lationship between public strings and private strings in JRU 
data. In the Figure 3, Sij,n indicates the nth public string be-
tween two pieces of JRU data i and j, and Dij,n indicates the 
nth private string. As illustrate, Figure 3 shows a special situ-
ation that each piece of JRU data shares the same public 
strings with each other. Because of the existence of a great 
amount of public string, the common compression algorithms 

Fields NID_MESSAGE L_MESSAGE DATE TIME TRAIN_POSITON

Length(Bits) 8 11 16 22 75

V_TRAIN NID_DRIVER NID_ENGINE LEVEL MODE Variables

7 384 24 3 4 From 0 to 
relate to NID_MESSAGE

JRU Data Prefix of JRU Suffix of JRU (State of train)

…

JRU Data Prefix of JRU Suffix of JRU (Communication Data)

Prefix of message Suffix of message

Packet A1

Message of JRU Data

Packets of Message Packet An Padding



 

 

have to use more space to record those repeated strings. Such 
as deflate algorithm, public strings will be replaced by triples. 
However, even if these strings have been compressed, triples 
will still take up a lot of space. Therefore, a preprocessing 
algorithm, which remove the public string as much as possi-
ble, is needed before compression. 

 
Figure 3. JRU Data Divided by Public and Private Strings 

IV. DELTA-ENCODING ALGORITHM 

A. Basic Idea 
The basic idea of delta-encoding is reducing the unneces-

sary redundant information in original data by a prepro-
cessing algorithm to improve the compression ratio of com-
mon compression algorithm. The reference [12] and [13] puts 
forward two similar solution, which is based on the difference 
algorithm. Difference algorithm utilizes the data structure to 
reduce the redundancy and avoid the repeated transmission. 
In this paper, preprocessing algorithm will refer to difference 
algorithm. We will discuss the difference algorithm and the 
improvement of it below. 

Figure 4 demonstrates the result of compressing the data, 
which is illustrated in Figure 3, with difference algorithm. 
Difference algorithm compresses data by encoding one piece 
of data in terms of base-data which is set as the first piece of 
JRU data in this case. After that, other pieces of JRU data will 
take bitwise difference operation with base-data, and the re-
sult is called delta, which records the difference between two 
pieces of data. Note that, in this case, delta is composed of 
private strings. Difference algorithm uses delta and base-data 
to represent the content in original data with less space. As 
illustrated in Figure 4, when the volume of original data is 
huge enough, the compressed size with difference algorithm 
will approximate to the proportion of private strings. Never-
theless, high reduction is under two assumptions of huge data 
volume and low proportion of private strings. In practical, 
however, both of two assumptions may be invalid. In order to 
improve the performance of difference algorithm, we need to 
consider the relationship between those two factors and com-
pression efficiency. 

On the one hand, without the huge data volume, we can-
not ignore the fact that recording delta need extra space, be-
cause the exact position of delta in the original data is need to 
be saved, and this will increase the compressed size. The ref-
erence [12] and [13] use bitmap and difference-coding to rec-
ord delta respectively. Bitmap denotes if there are public 
bytes between two pieces of JRU data. The original data 
could be expressed by private strings and the bitmap. Differ-
ent from the bitmap, difference-coding uses NOR operation 

to get the difference. Note that, the NOR operation will bring 
sequential ‘0’ when there are public strings between two 
pieces of JRU data. To reduce redundancy, a encode algo-
rithm, such as run-length, is needed. Because the difference-
coding could lead to overmuch ‘0’ fragments, which will take 
up more space than bitmap, we propose bitmap way in this 
paper. 

 
Figure 4. JRU Data with Difference Algorithm 

On the other hand, it is difficult to decrease the proportion 
of private strings with only one base-data. Different struc-
tures of JRU data will lead to widely different in both content 
and length between two pieces of JRU data. In addition, the 
compressed size will increase with the increase of delta (pri-
vate strings). Therefore, instead of single base-data, we need 
to involve multi-base-data to overcome this disadvantage. By 
finding a proper base-data for each piece of JRU data, we 
could decrease the proportion of private strings. To locate 
base-data, the structure of data should be under consideration, 
because same structure between two pieces of JRU data will 
lead to higher similarity and less difference (private strings). 
As result, each piece of JRU data should have the same struc-
ture with its base-data. On this premise, the problem is turned 
into finding the most similar data. Different from the base-
file choosing algorithm in [12], we solve this problem by a 
more precise approach instead of random sampling. As men-
tioned above, FID can represent the structure of each piece of 
JRU data. So we could classify the dataset by FID. Moreover, 
an equivalence class of FID, in which elements have the same 
FID, is defined. Basing on this classification, we could 
quickly locate the most similar data, which is the proper base-
data, in equivalence class. 

B. Notation 
We define several notation to help the descrption of the 

delta-encoding algorithm, they are shown in Table II. 

Table II. Notation of Delta-Encoding 
Notation Description 

Fi A piece of JRU data with a serial number i. In the delta-
encoding, each piece of JRU data has different serial 
number. 

/ Separator between two pieces of JRU data. 

x:y The connection between string x and y. 

M Original JRU data, which is composed of several pieces 
of data. It can be expressed as M=Fa1:/:Fa2:/:Fa3: … …. 

E(x) The feature of JRU data x. It is used for the classifica-
tion of JRU data. In this paper, it is equal to the FID. 

�� �� �� �� �� …
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2

3
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Private
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R An equivalence relation, xRy means that x and y have 
the same feature. 	x
R Equivalence class of x under the equivalence relation R, 
it can be expressed as  	x
R = {y|yęM ∧ E�x�=E�y�} |x| The length of string x (in byte) 

Fi[n] The content of nth byte in Fi 

Diff(Fi,Fj) Difference between Fi and Fj (in byte). It is recorded 
in bitmap. If Fi	n
=Fj	n
, the nth bit of Diff(Fi,Fj) is 0, 
otherwise, the nth bit of Diff(Fi,Fj) is 1. 

Sij,n The nth public string between Fi and Fj 

Dij,n The nth private string between Fi and Fj 

Ni The serial number of the base-data of Fi 

F  i*  The result of Fi after being preprocessed. 

Prefix(Fi
*) Prefix of F  i*  which record the serial number of the 

base-data and the delta bitmap. 

Suffix(Fi
*) Suffix of F  i*  which record the content of delta. 

M* Preprocessed JRU data, which can be expressed as 
M*=F1

*:/:F2
*:/:F3

*: … … . 

Z Represent a kind of compression algorithm. 

Z-1 The uncompression algorithm of Z. 

 

C. Proposed Algorithm 

1)  Compression process 

The compression process is separated into following steps:  

Step 1: Divide the original data M into several pieces of JRU 
data (Fi), and set serial number for each piece of data based 
on the original order. M can be expressed as 
M=F1:/:F2:/:F3: … … 

Step 2: Get the feature (FID) for each piece of JRU data. 

Step 3: Follow the operations below for each piece of JRU 
data in ascending order of serial number: 

a) If i is the smallest serial number in M, set Ni=i , 
Fi

*=Ni:Fi, and repeat the Step 3. 
b) If i is the smallest serial number in 	Fi
R, set Ni=i-1, 

or else Ni= arg  max
Fję	Fi
R,j<i

∑�Sij,m�  . 
c) Set Fi

*=Ni:|Fi|:Diff(Fi,FNi): DiNi,1
 :…… , and repeat 

the Step 3. 

Step 4: Set M*=F1
*:/:F2

*:/:F3
*: … …, and compress M* with 

a compression algorithm Z. 
Note that, as mentioned in Step 3, the base-data selected 

in delta-encoding is not always the optimal one. This is based 
on the following considerations. First, finding the global op-
timal base-data will increase the time complexity of the algo-
rithm. Second, because of the characteristic of JRU data, it is 
easier to find an approximately optimal base-data, which still 
has a high similarity with the optimal one, near the target data. 
Finally, without the restriction of the serial number of base-

data, two pieces of JRU data might choose each other as the 
base-data, and it is impossible to extract the origin data in 
uncompression process.  

Figure 5 demonstrates the result of JRU data after being 
preprocessed. Each line denotes structure of F  i* . The array 
in the Figure 5 points from F  i*  to its base-data. For instance, 
data F1 and F3 have the same FID and belong to class A; 
F2 and F4 share the other FID and belong to class B. Based 
on the compression process, F3 selects F1 as the base-data, 
and F4 selects F2 as the base-data. As note that F1 does 
not need to do any difference operation, because F1 has the 
smallest serial number in all of the JRU data. As result, delta-
encoding algorithm have to storage the whole content of F1. 
In addition, there is no equivalence element before F2, so F2 
has to do the difference operation with F1, even if they are 
not belong to the same equivalence class. 

 
Figure 5. JRU Data with Pre-Processing Algorithm 

2)  Uncompression process 

The uncompression process is divided into following sev-
eral steps: 
Step 1: Extract M* from the compressed data with the algo-
rithm Z-1.  

Step 2: Divide M*  into substring (Fi
*) by the separator /, 

each substring correspond to a piece of JRU data (Fi). Set 
serial number for each substring with the same strategy in 
compression process, we get {F1

*, F2
*, F3

*, … …}. 

Step 3: Follow the operations below for each substring in as-
cending order of serial number: 

a) Scan the prefix of Fi
*, and read the message of Ni, |Fi|, and Diff(Fi,FNi). 

b) If Ni=i, set Fi
 =Suffix(Fi

*), or else, get Fi
  from FNi  

and Diff(Fi,FNi), repeat Step 3.  

Step 4: Set M=F1:/:F2:/:F3: … …, recover the original data 
from compressed data. 
D. Precondition of Algorithm 

In this part, we will discuss the precondition of delta-en-
coding, because it will guarantee the improvement in com-
pression ratio. 

First, we will approximately evaluate the compression ra-
tio of common compression algorithm. We assume that the 
similarity between two pieces of JRU data, which are belong 

No.

1

2

3

4

JRU Data with Preprocessing Algorithm

Prefix Suffix��=1 �� ������, ��� ����,� ����,� … …
Prefix Suffix��=1 ��

Prefix Suffix��=1 �� ������, ��� ����,� ����,� … …
Prefix Suffix��=2 �� ������, ��� ����,� ����,� … …

Class

A

B

A

B



 

 

to the same equivalence class, is δ% in average. In addition, 
we suppose that common algorithms have compression ratio r�  for public strings in original data, and r�  for private 
strings. Based on the assumption above, the compression ra-
tio r� for JRU data with common compression algorithms 
can be approximated as: 

roĬ δ·rS + (1-δ)·rD 
In delta-encoding, a common algorithm will compress the 

preprocessed data which consist of bitmap and the content of 
private strings. To distinguish between public bytes and pri-
vate bytes, delta-encoding have to use bitmap which will take 
up extra space around 12.5% of the length of the original data. 
Besides, bitmap not only records the position of public and 
private strings, it also keeps the information of the data struc-
ture which is related to original data. Therefore, we could as-
sume that the compression ratio for bitmaps with common 
algorithms can be seen as same as the compression ratio rS 
for public strings. The compression ratio rdc of delta-encod-
ing can be approximated as: 

rdc Ĭ 12.5%·rS + (1-δ)·rD 
Therefore, as long as the average similarity in the same 

equivalence class is higher than 12.5%, delta-encoding will 
have advantage in compression ratio. 

E. Optimization and Time Complexity 
To optimize the delta-encoding, we will limit ourselves to 

the consideration of preprocessing algorithm, because the op-
timization of common compression algorithms is not the fo-
cus of this paper. The preprocessing algorithm needs to 
search a proper base-data for each Fi. Without considering 
the content of JRU data, the search times will increase and 
the search process will take more time when serial number of 
Fi is large, because the algorithm needs to traverse all of the 
possible equivalence element of Fi. As note that, JRU data 
records a large amount of static information which will not 
change much in a short time. Moreover, the serial number is 
relate to the temporal order of each piece of JRU data. We 
could assume that, there is higher possibility for two pieces 
of JRU data to be similar when their serial number are closer. 
Therefore, we will reach the proper base-data in several 
search without traversing all of the equivalence elements. De-
tails of choosing proper search times will be discussed in Sec-
tion V. 

 The time complexity of delta-encoding is the superposi-
tion of preprocessing algorithm and common compression al-
gorithm, because those two algorithms are individual to each 
other. We assume that there are m pieces of JRU data that 
need to be compressed, and the size of the whole JRU data is 
n bytes. The preprocessing part is divided into two processes, 
classification and encoding. The time complexity of classifi-
cation process is O(m), because it is easy to get FID from 
specify position in m pieces of JRU data. In encoding process, 
because the algorithm will traverse all content for bytewise 
NOR operation, the time complexity of encoding is O(n). 
Note that n≫m, the time complexity of delta-encoding is 
O(n). As result, delta-encoding will cost O(n) more time to 
improve the common compression algorithm. 

V. EXPERIMENT AND EVALUATION 

This section discusses the performance of delta-encoding 
algorithm. The test dataset is provided by Beijing National 
Railway Research & Design Institute of Signal & Communi-
cation Ltd. Based on this dataset, the compression time and 
compression ratio of delta-encoding will be tested. We 
choose several state-of-the-art compression algorithms as 
contrastive algorithm of delta-encoding, include LZMA [6], 
Deflate [5], and Bzip2 [10]. At the same time, delta-encoding 
will hybrid these algorithms to figure out if delta-encoding 
takes advantage in compression. 

A. Experiment Design 
There are two experiments designed to evaluate delta-en-

coding in different ways: 
Efficiency of Preprocessing: This experiment is designed 

to evaluate and maximize the efficiency of preprocessing al-
gorithm of delta-encoding. As mentioned in section IV, we 
do not have to traverse all the elements in the equivalence 
class. It is important to fix a threshold of search times for each 
base-data. By comparing the compressed size, we will fix the 
best search times of preprocessing. That will help us find the 
proper base-data in the shortest time. 

Efficiency of Delta-Encoding: This experiment is de-
signed to evaluate the efficiency of delta-encoding. It will 
compare the compression ratio and time between some com-
mon compression algorithms and their hybrid algorithm with 
preprocessing algorithm (delta-encoding).  

B. Evaluation Metrics 
There are two metrics to evaluate the efficiency of 

compression algorithm in this paper, compression ratio and 
compression time. Compression ratio is defined as the ratio 
between the uncompressed size and compressed size [19]. 
Smaller compression ratio means that the algorithm could 
reach smaller compressed size with the same original data. 
Compression time evaluates the speed of a compression 
algorithm. Smaller compression time denotes that the 
algorithm is faster in compression. In practical, there is a 
contradiction between compression ratio and compression 
time. Usually, higher compression ratio will sacrifice the 
compression time, and vice versa. 

C. Result and Discussion 
All experiments were performed on a laptop with an Intel 

Core i5 CPU 2.4GHz and 8GB RAM running in 64 bit Win-
dows 8. The range of the size of data buffer is from 5 to 2500, 
which cover the range of both real-time data and delayed data. 
The result of experiments is shown below. 

1)  Effciency of Preprocessing 

Figure 6 illustrates the relationship between search times 
and the size of preprocessed data. The horizontal axis indi-
cates the search times, and the vertical axis indicates the com-
pression ratio and time of preprocessing algorithm. As illus-
trated, the increase of search times will decrease the compres-
sion ratio before the 5th search. After that, an inflection point 
occurs, and the compression ratio remains steady at around 



 

 

24%. Different from compression ratio, compression time 
performs reserved trend. Time consumption tends to increase 
with the search times growing, and remains steady when the 
search times is more than 30. We believe that this phenome-
non is caused by small equivalence class, because the search 
will be ended in advance when all possible elements have 
been traversed. Based on the analysis above, the search times 
of preprocessing algorithm is set as 5. This will have a better 
result and an acceptable time consumption. 

 
Figure 6. Algorithm Efficiency with Different Search Times 

Basing on the search times set above, we also make a 
comparison between several common algorithms and the pre-
processing algorithm, the result is shown in Figure 7 and 8. 
The horizontal axis indicates the buffer size, and vertical axis 
indicates the compression ratio and time of preprocessing, 
only the vertical axis of Figure 8 is non logarithmic. 

As illustrated in Figure 7, the preprocessing algorithm is 
light-weight. Its time consumption is only a half of other al-
gorithms. Delta-encoding has a shorter compression time, 
however, in Figure 8, its compression ratio is more than two 
times as much as other algorithms. Fortunately, prepro-
cessing algorithm keeps the structure of original data, it is 
easy for the algorithm behind to make further compression.  

2) Effciency of Delta-Encoding 

The result of this experiment is listed in Table III. We an-
alyze the data from two aspects.  

First, we compare the efficiency among all of test algo-
rithms. As illustrated, both delta-encoding with Deflate and 
Bzip2 perform well on compression ratio no matter what the 
size of data buffer, and the compression ratio is close to or 
even exceed the LZMA, which is known as one of the most 
efficiency compression algorithm in the world. Moreover, 

delta-encoding use less time to approach the similar compres-
sion ratio of LZMA. Delta-encoding algorithm save around 
99% compression time compared with LZMA. 

Next, each common compression algorithm is compared 
with delta-encoding. We also define the increase rate for both 
evaluation metrics. The increase rate denotes the improve-
ment of delta-encoding compared with original compression 
algorithm. Delta-encoding will have a better performance if 
the increase rate is positive, or else, the original algorithm 
performs better. In Deflate, the compression ratio have a 20% 
growth in real-time data, and 36.5% in delayed data. This in-
dicates that delta-encoding decreases the redundancy effi-
ciently. However, delta-encoding benefits the compression 
ratio at the expense of compression time. No matter what the 
amount of data, delta-encoding with Deflate takes 60% more 
time compared to original Deflate. Besides, Bzip2 has some 
different result from Deflate. In this case, delta-encoding im-
proves both evaluation metrics. Delta-encoding with Bzip2 
has similar improvement in compression ratio compared to 
Deflate. Moreover, there are more growth in compression 
time, and the maximum increase rate can reach 43.2%. Bas-
ing on experiments above, we can confirm that delta-encod-
ing has advantage in the compression of high-speed train data 
stream. 

 
Figure 7. Compression Time of Different Algorithms  

 
Figure 8. Compression Ratio of Different Algorithms 

 
Table III. Efficiency of different algorithms 

 Real-time data Delayed data 
Compression 

Ratio(%) 
Increase 
Rate(%) 

Compression 
Time(ms) 

Increase 
Rate(%) 

Compression 
Ratio(%) 

Increase 
Rate(%) 

Compression 
Time(ms) 

Increase 
Rate(%) 

Deflate 20.73 
+18.6 

22.2 
-59.9 

13.44% 
36.5 

9.94 
-64.5 Delta-Encoding  

with Deflate 16.87 35.5 8.54% 16.35 

Bzip2 20.57 
+7.2 

234.6 
+15.3 

11.6% 
33.0 

88.81 
+43.2 Delta-Encoding  

with Bzip2 19.1 198.8 7.77% 50.44 

LZMA 16.38 / 4115 / 8.76% / 2564 / 
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VI. CONCLUSION AND FUTURE WORKS 

JRU data is one of the main content in high-speed train 
data stream. By collecting and analyzing the information in 
JRU data, train scheduling center could optimize the opera-
tion of the whole system. In order to reduce the bandwidth of 
the high-speed train system, JRU data need to be compressed 
before transmission. Different from regular data format, JRU 
data has much unnecessary redundant information between 
two pieces of data. Delta-encoding is an algorithm designed 
to compress this kind of data. It is a hybrid algorithm with 
preprocessing algorithm and common compression algorithm. 
Preprocessing algorithm compresses the public content of 
JRU data, and retains the main content of the private part. 
This ensures that the common algorithm behind will still have 
a good performance on compression. Delta-encoding can re-
duce the compressed size of high-speed train data by 35%, 
which is significant for data transmission.  

Furthermore, delta-encoding algorithm is also suitable in 
some scenario of IoT. In the world of IoT, there are number 
of kinds of format similar to JRU data, which has much un-
necessary redundant information. For instance, in a scenario 
of wireless sensor network, a sensor node need to upload data 
to gateway node. One piece of transmitted data, which is 
based on XML, is demonstrated in Figure 9. Identically, this 
kind of data contains less valuable information (private 
string), and large amount of public string. In order to reduce 
the bandwidth, there is no need to transmit the redundant in-
formation. Delta-encoding meets this demand, and will have 
a better performance than common algorithm as long as the 
data format has the characteristics mentioned above.  

 
Figure 9. XML based data format in wireless sensor network 

Though delta-encoding has various application scenarios, 
there are still some problems need to be solve. In the classifi-
cation process, it is easy for some well-defined data format to 
locate its feature (such as FID) from specific position. How-
ever, in other situations, due to the restriction of the protocol, 
some classification message could be filtered out. Without 
detailed description, manual classification in advance will not 
work well. Therefore, a machine learning algorithm is needed 
to replace the manual approach. It will capture the feature 
from the whole content of each piece of data but not from 
specific position. This simplify the work of manual definition, 
and it becomes the next step of research. 
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<?xml version="1.0" encoding="UTF-8"?>
<CommonData>

<Data Type="sensor1">
<Value>100</Value>

</Data>
<Data Type="sensor2">

<Value>200</Value>
</Data>
<Data Type="sensor3">

<Value>300</Value>
</Data>

</CommonData>


