
SDN-based TCP Congestion Control in Data Center
Networks

Yifei Lu, Shuhong Zhu
School of Computer Science and Engineering

Nanjing University of Science and Technology
Nanjing, China

luyifei@njust.edu.cn

Abstract—TCP incast usually happens when a receiver
requests the data from multiple senders simultaneously. This
many-to-one communication pattern constantly appears in the
data center networks due to the data are stored at multiple
servers. With Software Defined Networks (SDN), the centralized
control methods and the global view of the network can be an
effective way to handle this problem. In this paper, we propose a
SDN-based TCP (SDTCP) congestion control mechanism at
network side. Our approach enables controller to select a long-
lived flow to reduce sending rate by adjusting the TCP receive
window of ACK packet after OpenFlow-switch triggered a
congestion message to controller. The key benefit of SDTCP is
that, with global perspective, we can accurately decelerate the
rate of long-lived flow to ensure the performance other flows.
The experiments indicate that we can achieve almost zero packet
loss for TCP incast and guarantee goodput for the high propriety
flows.

Keywords—Data center networks; TCP; Incast; Congestion

control; SDN

I. INTRODUCTION
Data centers are becoming one of hottest topics in both

research communities and IT industry. In today’s data center
networks, TCP has been used as the de facto transport layer
protocol to ensure reliable data delivery. However, the unique
workloads scale and environments of the data center work
violate the WAN assumptions on which TCP was originally
designed. A reported open problem is TCP incast [1, 2] .

TCP incast problem was initially identified in distributed
storage cluster [1] and has nowadays become a practical issue
in data center networks. TCP incast, which results in gross
under-utilization of link capacity, occurs in synchronized
many-to-one communication patterns. Fig. 1 shows a typical
TCP incast scenario used by many literatures. In such a
communication scenario, a receiver issues data requests to
multiple senders. The senders respond to the request and return
an amount of data to the receiver. The data from all senders
pass through a bottleneck link in a many-to-one pattern to the
receiver. When the number of synchronized senders increases,
throughput observed at the receiver drops to one or two orders
of magnitude below the link capacity.

Fig. 1. TCP incast scenario

Data centers provide resources for a broad range of services,
such as web search, email, web sites, etc., each with different
delay requirements. For example, web search should cater to
users’ requests quickly, while data backup has no special
requirement on completion time. In order to design efficient
transmission mechanisms for data centers, the analysis of data
center traffic characteristics is important [3, 4]. The flows in a
data center networks tend to be bursty and they are either large
data flows that require high throughput and delay-insensitive
(background flows) or short control or web search flows that
require low delay (bursty flows) [5]. TCP incast problem would
severely degrade the application performance especially those
bursty and delay-sensitive communications such as
MapReduce [6], Dryad [7], and large-scale partition/aggregate
web applications [2, 8]. In this paper, we presume background
and bursty flows coexist in data center networks.

Previous solutions, focused on either reducing the waiting
time for packet loss recovery by faster retransmissions [9], or
controlling switch buffer occupation to avoid overflow by
using ECN and modified TCP at both sender and receiver sides
[2]. These solutions need to modify the TCP at end-system and
does not consider the characteristics of flow.

Software Defined Networking (SDN) [10] is a
revolutionary network architecture that separates out network
control functions from the underlying equipment and deploys
them centrally on the controller, where OpenFlow is the
standard interface. This technique enables the network

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

administrators and the application developers to dynamically
manage and alter network parameters in runtime and according
to the current demand [11]. Unique characteristics of SDN
have made it an appropriate choice for data center network and
in particular suited for cloud networking [12].

An important capability of SDN is the fact that it enables
applications to be aware of the network topology and
congestion. In this paper, we use this feature of SDN to design
and implement an innovative SDN-based TCP congestion
control mechanism (SDTCP). The key design principle behind
SDTCP is that we avoid network congestion by adjusting the
TCP receive window of ACK packet at controller to reduce
sender’s transmission rate. We employ a very simple queue
management scheme in OpenFlow-switch (OF-switch) that
will trigger a congestion notification to controller when queue
occupancy is greater than threshold K. When controller
receives this signal, it will select a long-lived flow and push a
modify command to modify receive window of ACK packet at
OF-switch automatically.

The rest of the paper is organized as follows. Section II
discusses related works. Section III describes the design
rationale of SDTCP. Section IV shows the implementation of
SDTCP. Section V presents experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORKS
Since the TCP incast problem was proposed by Nagle et al.

in [1], some work has been done to address it. It is well known
that plenty of existing work with respect to TCP congestion
control has been proposed so far. In this section, we just
summarize the most relevant works. We discuss two kinds of
existing solutions to TCP incast problem: window-based
solutions and recovery-based solutions respectively.

Window-based Solutions
The window-based solutions such as DCTCP [2] and

ICTCP [13] have been proposed to mitigate TCP incast
congestion. The key idea of those window-based solutions is to
adjust the congestion or receive window to control inflight
traffic, so that it will not overfill the switch buffer.

DCTCP aims to ensure low latency for short flows and
good utilization for long flows by reducing switch buffer
occupation meanwhile minimizing buffer oscillation. In
DCTCP, ECN with thresholds modified is used for congestion
notification, while both TCP sender and receiver are slightly
modified for a novel fine grained congestion window
adjustment. Reduced switch buffer occupation can effectively
mitigate potential overflow caused by incast. D3 [8] uses
explicit rate control to apportion bandwidth according to flow
deadlines. Given a flow’s size and deadline, source end hosts
request desired rates to switches. The switches assign and
reserve allocated rates for the flows. ICTCP [13], on the other
hand, adaptively adjusts the receive window on the receiver
side to throttle aggregate throughput. ICTCP measures
available bandwidth and per-flow throughput in each control
interval. It only increases the receive window when there is
enough available bandwidth and the difference of measured

throughput and expected throughput is small. Foremost, ICTCP
fails to work well if the bottleneck is not the link that connects
to the receiver.

Recovery-based Solutions
Unlike window-based solutions, recovery-based solutions

address incast congestion via reducing the impact of timeouts.

In [14], several trials have been made to avoid TOs, such as
reducing the duplicate ACK threshold of entering Fast
Retransmission (FR) from 3 to 1, disabling slow start phase,
and trying different TCP versions. V. Vasudevan et al [9]
suggested reducing RTOmin to alleviate the goodput decline
and uses high-resolution timers to enable microsecond-
granularity TCP timeouts. In this way, TCP can retransmit lost
packets quickly without leaving the link idle for a long time.
CP proposed in [15] simply drops a packet’s payload at an
overloaded switch and uses a SACK-like ACK mechanism to
achieve rapid and precise notification of lost packets.

OpenTCP [16] is presented as a system for dynamic
adaptation of TCP based on network and traffic conditions in
Software-Defined Networks (SDNs). OpenTCP is not a new
variation of TCP. Instead, it complements previous efforts by
making it easy to switch between different TCP variants
automatically (or in a semi-supervised manner), or to tune TCP
parameters based on network conditions. For instance, one can
use OpenTCP to either utilize DCTCP or CUBIC in a data
center environment. The decision on which variant to use is
made in advance through the congestion control policies
defined by the network operator.

These protocols discussed above have suffered from limited
deployability, as most of them require custom modifications to
switches, end-hosts, or even both. Consequently, these
protocols have seen little practical use, arguably due to their
difficulty of deployment.

 The major difference of our work with theirs is that our
target is to avoid packet loss, while they focus on how to
mitigate the impact of packet loss, either less frequent timeouts
or faster retransmission on timeouts. This makes our work
complementary to previous work. While our focus is
congestion avoidance in software defined networks to prevent
packet loss in TCP incast, which is not considered in previous
work.

III. DESIGN OF SDTCP ALGORITHM

A. Basic Idea

The goal of SDTCP is to achieve high burst tolerance, low
latency, and high throughput, in software defined networks. To
this end, SDTCP is designed to reduce throughput of
background flows to guarantee bursty flows which are usually
more important.

SDTCP uses a simple queue management scheme at OF-
switches that trigger a congestion notification, referred to as
OFPT_BUF_ALARM message in extended OpenFlow
protocol, to controller as soon as the buffer occupancy exceeds
a fixed threshold. This notification message which contains

queue length and OF-switch identify and port information is
forwarded to controller via OpenFlow channel.

When receiving the notification message, the controller
selects a long-lived flow and pushes a modify command to OF-
switch, which will react by reducing the receive window of
ACK packets in response to the long-lived flow. In this
procedure, the controller is responsible for calculating a
specific value for receive window of ACK packet.

Subsequently, sender will decrease the send window which
will result in reducing transmission rate after gaining the
receive window of ACK. After that, if buffer occupancy is
smaller than the threshold, a recover notification message is
forwarded to controller, which reacts by pushing a recover
command to OF-switch. With this new command, ACK packet
will not be modified and transmission rate of long-lived flow
will recover.

The process of SDTCP algorithm is shown in Fig. 2.

Fig. 2. The process of SDTCP

In what follows, we will mainly elaborate SDTCP
mechanism we proposed by answering the following three
questions.

(1) How to trigger network congestion?

(2) How to choose a suitable flow when congestion
happening?

(3) How to adjust the size of receive window?

The first question is dealt with by the OF-switch and the
other two are handled by controller.

B. Network Congestion Trigger

SDTCP uses tail-drop queue management which is already
available in current commodity switches and Open vSwitch
(OVS) [17] in our experiment. This queue management
monitors the current queue size and triggers a congestion
notification message when queue size is higher than a threshold
value (K). This notification message, referred to as
OFPT_BUF_ALARM in extended OpenFlow, contains current
queue size and port rate. In the meantime, OF-switch turns into
congestion state by setting variable trigger = 1 and monitors the
queue length periodically with a timer. If queue size is still
greater than a threshold when timer expires, congestion
notification message is triggered to controller. If queue size is

smaller than a threshold last for three cycles, OF-switch sends a
recover notification message, named by
OFPT_BUF_NORMAL, to controller. At same time, OF-
switch turns off timer and sets trigger = 0 to exit the congestion

state. In our paper, the value of timer is RTT

2

1 so that it need

at least
RTT

2

3 time to recover transmission rate of long-lived

flow.

C. Flow Selection

When the controller receives congestion notification
message from OF-switch, it will first parse the message and get
useful information including OF-switch (

i

S) and port (
i

P)
where congestion has happened. After that, controller finds
flows by a rule that flows must pass through the OF-switch Si
with the output port Pi. There may be several flows matching
this rule and we choose a longest-lived data flow

i

f . After a

RTT

2

3 cycle, if receiving congestion notification message

again, controller will choose another longest-lived flow
ijf

j

, .

D. Receive Window Adjusting

After choosing a long-live flow
c

f , controller pushes a

flow table matching the flow
c

f with the actions for OF-
switch to adjust receive window of ACK packet.

Suppose that there are N incast flows in the OF-switch with
the same roundtrip times RTT, then we have σ ௜ܹሺݐሻ௜אே ൌ ܥ כ ܴܶܶ ൅ ܳሺݐሻ (1)

where W୧ሺtሻ is the window size of flow i. C is the capacity of a
bottleneck link. The queue size in switch at time t is given by Qሺtሻ.

According to equation (1), the size of current send window ௖ܹ 	of flow ௖݂, also denoted as the size of average send window,
is given by:

௖ܹ ൌ పܹതതത ൌ ஼כோ்்ାொሺ௧ሻே (2)

We can gain ௥ܹ , the size of receive window, and queue
length ܳሺݐሻ when parsing the ACK packet received by
controller from OF-switch. Then, it’s easy to get ௖ܹ according
to equation (2). Finally, we can obtain ௥ܹᇱ, the size of receive
window we need modify, as follows.

௥ܹᇱ ൌ ቀௐ೎ଶ	ሺ݉݅݊	ݔܽ݉ ǡ ௥ܹቁ 	ǡ ሻ (3)ܵܵܯ

Subsequently, ௥ܹᇱ is updated once for OF_switch receives a
new ACK as follows:

௥ܹᇱ ൌ ൫	ሺ݉݅݊	ݔܽ݉ ௥̴ܹ௢௟ௗᇱ െ Ƚሺܵܵܯሻǡ ௥ܹ൯	ǡܵܵܯሻ (4)

where ܹԢ௥̴௢௟ௗ is the size of receive window of new ACK and ߙ is a integer and 	Ƚ ൒ ͳ. We set Ƚ ൌ 5 in our implementation.

It is possible that all the flows are greedy flow. Hence,
when the entire flows are punished by the controller, ௥ܹᇱ of
each flow is altered as equation (5) suggested. ௥ܹᇱ ൌ ሺ	ሺ݉݅݊	ݔܽ݉ ௖ܹǡ ௥ܹሻ	ǡܵܵܯሻ (5)

E. Receive Window Renewing

When receives the OFPT_BUF_NORMAL message from
OF-switch, the controller extracts the information from the
message and examines the database (we will discuss in Č.A)
for the logs of the burst flows that using this port. Only if the
controller acquires the OFPT_BUF_NORMAL message and
all the FIN messages of the burst flows, the controller will
renew the receiver window of the long-lived flows.

IV. IMPLEMENTATION
In this section, we discuss implementation details of

SDTCP. We implement the SDTCP mechanism in Open
vSwitch and Floodlight [18] with OpenFlow 1.3. We use
Mininet [19] to experiment the SDN-based data center
networks.

A. Flow Table Generation

In order to communicate between client and server, TCP
uses a three-way handshake to establish a connection, and a
four-way handshake for connection termination. In the
establish connection, TCP options carried in the SYN and
SYN-ACK packets are used to negotiate optional functionality.

Fig. 3. TCP connection

As shown in Fig. 3, OF-switch send SYN packet to
controller via Packet_in message when finding no matching
entry in flow table. When receiving this Packet_In message,
the controller generates routing table and pushes it to OF-
switch. At same time, the controller records the information of
the flow to form data flow table including source IP address,
source port, destination IP address, destination port and time.
Fig. 4 shows the detail of global information database.

Fig. 4. Global information database

In the same way, receiver will reply a SYN-ACK packet
when receiving SYN packet. This SYN-ACK packet will have
the same procedure as we discussed above.

The process of connection termination is shown in Fig. 5.

Fig. 5. TCP termination

B. OFPT_BUF_ALARM and NORMAL Packet Type

We extend the standard OpenFlow 1.3 to create the new
OFPT_BUF_ALARM and OFPT_BUF_NORMAL packet,
which are used to trigger the control action on the controller.
The packet’s fields include the standard OpenFlow header
ofp_header, the ofp_port object specifying the detail of the
port which the congestion happened, port_buf field indicating
the buffer size of the port, the cookie field and priority field,
as shown in Fig. 6. The ofp_header is described in the
OpenFlow Specification and the type field in our new message
is OFPT_BUF_ALARM and OFPT_BUF_NORMAL.

Fig. 6. OFPT_BUF_ALARM format

C. TCP_FLAGS Match Field

In the version 1.3, the TCP_FLAGS is not added into the
standard Openflow protocol, but the Openvswitch 2.3.0 has
already implemented the TCP_FLAGS as NXM (Nicira
extensible match) for it. Therefore, we extend the protocol on
the controller to create the OFPT_FLOW_MOD message with
specific OXM TLV header to generate the flow entries with
TCP_FLAGS match field. The OXM_OF_TCP_FLAGS is
defined as NXM_1, oxm_filed:34. Hence, the 32-bit value of
OXM TLV header is 0x00014402 (unmasked) or 0x00014504
(masked).

This match field can bitwise match on the TCP flags and
contains two values: flags and mask. They are 16-bit numbers
written in decimal or in hexadecimal prefixed by 0x. Each 1-
bit in mask requires that the corresponding bit in flags must
match and 0-bit means to be ignored. For example,
0x0002/0x0012 means the flow entry will match the packet
with TCP SYNs which are not ACKs.

The FIN messages are handled to the controller to update
the globe information database via Packet_In messages. Thus,
all the switches contain a high priority flow entry to match the
packets with FIN message and output it to the controller.

D. MOD_WINDOW Action

The MOD_WINDOW action is an extended subset action
of the OFPAT_SET_FIELD in the Openflow 1.3 and it
requires one parameter. When a flow is matched and the
parameter is smaller than the original TCP window, this action
will modify window size to a certain value as the parameter
suggested. The parameter of the action will self-decrease by 5
MSS every time a packet matches this flow. Before pushes the
flow to the switch, the controller checks the suggested TCP
window to ensure it is greater than the size of 1 MSS.

Considering the window scaling mechanism, the controller
will record the window scale value when the TCP connection
is establishing. In the following example and other
experiments, we choose 9 (real window size is the TCP
window field multiply by 29) as the default TCP window scale
value. Here is an example of using the extensional
MOD_WINDOW action:

idle_timeout=10,hard_timeout=0,priority=65535,tcp,in_po
rt=3,dl_src=3a:07:ce:24:87:3c,dl_dst=ea:0d:62:a4:e3:c3,nw
_src=10.0.0.2,nw_dst=10.0.0.1,tp_src=56467,tp_dst=7000,act
ions=mod_window:2000,output:1

V. EXPERIMENTAL RESULTS
In this section we examine the performance of SDTCP

dealing with TCP incast problem. We measure it in three
experiments. First, with background flow, we examine the
properties of SDTCP, such as the buff size, the single flow
goodput and total goodput while comparing it with the original
TCP protocol and the DCTCP. Second, with no background
flow, we evaluate the SDTCP’s with same properties. Finally,

we design a pressure test for the controller to examine the
performance of handling the large number of synchronous
Packet_In packets. For DCTCP implementation, we use public
code from [20] and add ECN capability to SYN packets [21].

To these ends, we conducted series experiments in the
Mininet v2.2.1, using the Floodlight as the controller and the
Openvswitch v2.3.0 as the OpenFlow switch. The experiments
were performed on an 8 core, 2.4 GHz machine with 16 GB of
RAM, and the operating system is Ubuntu 14.04.2 (kernel
3.16.0-30-generic).

Mininet is chosen for two reasons. First, Mininet serves as a
real-time emulator for rapid prototyping of OF-switches.
Second, Mininet is easily integrates with the OpenFlow 1.3
software switch. Our SDTCP controller is implemented on top
of the floodlight platform which is an open source controller
written in Java. It provides a modular programming
environment so that we can easily add new modules on top of
it and decide which existing modules to be run.

Fig. 7. Experiment topology

We deployed a testbed with 40 senders and two software
switch (OVS). The topology of our testbed is shown in Fig. 7,
where 40 senders connect to the SW1; multiply receivers
connect to SW2 and a link between SW1 and SW2. The links
have a 1Gbps throughput and a latency of 5ms each to create
30ms fixed RTT. We can know that incast congestion happens
in the intermediate link. We allocate a static buffer size of 100
packets (100 × 1.5KB =150KB) to the port with congestion.
When a background flow exists, it indicates that other
receivers have built TCP connections with the senders before
the TCP incast happened. We use TCP New Reno [22] as our
congestion control algorithm and disable the delayed ACK.
TCP New Reno has been used with a minRTO of 200ms, an
initRTO of 3s and a Maximum Segment Size (MSS) of 1460B.

A. SDTCP performance with background flow

We establish the connections between the R2 with S11-20
as the background flows and R1with S1-S10 as burst flows. In
order to trigger the SDTCP, the background flows were set to
achieve almost 1Gbps of throughput. The total traffic volume
of the burst flows is fixed with 50MB and both of the SDTCP
and TCP are using the tail-drop queue management.

(a) (b)

Fig. 8. SDTCP flow and total goodput with background flow

(a) (b)

Fig. 9. TCP flow and total goodput with background flow

(a) (b)

Fig. 10. Time series of buffer size and buffer size CDF

(a) (b)

Fig. 11. SDTCP flow and total goodput with no background flow

Note that both TCP and SDTCP achieve the maximum
throughput of 0.97Gbps as shown in the Fig.8, 9, but the key
differences are the transmission time of burst flows and the
total traffic volume. Firstly, TCP consumes 1480ms to finish
the transmission while SDTCP consumes 1280ms. Secondly,
the TCP achieves 404MB of the total traffic volume as the
SDTCP achieves 453MB.

When the burst flows arrive at a switch, the switch’s buffer
exceeds the threshold immediately due to the background
flows. Then, the controller pushes the MOD_WINDOW flow
entries to the switch to reduce the background flows’
throughput as shown in the Fig.8. When the burst flows exist,
the goodput of the background flow decreases constantly as
we as mentioned in Subsection III.D.

We observe that TCP quickly suffer for several packet
losses when the incast congestion happens. The Fig.9 (b)
shows that the total goodput of the TCP is fluctuate from
0.2Gbps to 0.7Gbps while the SDTCP still maintains around
0.8Gbps as shown in Fig. 8 (b). Note the decreasing around
time 2800ms in Fig. 8(b), it is due to the MOD_WINOW flow
entries in the switches which are still functioning while the
burst flows have finished the whole transmission. In another
words, this phenomenon is not caused by the packet loss.

To evaluate the effectiveness of SDTCP on switch buffer
controller, the buffer sizes are logged during a 14-serconds
TCP transmission. The result is shown in the Fig. 10. The
SDTCP maintains a stable, low buffer size as the DCTCP
while the TCP causes wide oscillations in the buffer size.
Although, at the buffer size control aspect, the SDTCP is not
performed as well as DCTCP, SDTCP reveal satisfactory
performance as we expected.

B. SDTCP performance without background flow

In the previous experiments, SDTCP guarantees the

goodput by punishing the long-lived background flows.
Indeed, as describe in the abstract, the existence of
background flows is an advantage for SDTCP which is design
for this scenario. Still, it is possible that all of them are burst
flows when the TCP incast happens. In this experiment, we
test SDTCP with such setting.

Under the same setup, R1 to S1-S10 as Burst flow1, R2 to
S11-S20 as burst flow 2 and R3 to S21-S30 as burst flow 3.
Fig. 11 details the goodput of the SDTCP when dealing with
multi burst flows with no background flow. At the beginning,
three burst flows’ throughput grows rapidly. In the meantime,
the controller pushes the flow entries to reduce the TCP
window of one burst flow while the others maintain high
goodput. The congestion notification is triggered for the three
times through all. As we can observe in the Fig. 11 (b), the
total goodput drop to a low level around 400ms when all of
the flows are punished. We describe this scenario in III.D
which all the flows are greedy flows and have been inhibited
by decreasing the TCP window. Then, the TCP windows of
the flows are set to an appropriate value which they can share
the goodput equally

Through this experiment, SDTCP maintains 0.9Gbps of
goodput, thus demonstrating the advantage of SDTCP when
dealing with multi burst flows.

C. Packet_In Packets Pressure test

In the OpenFlow network, the first packet of a flow needs to
send to the controller through Packet_In to determine the
routing information, and, in the SDTCP, the global
information database needs to be built on the controller at the
same time. Hence, with large quantities of Packet_In messages
springing to the controller, the query delay of the first packet
can be an issue of SDTCP. It is highly possible that multi new
flows connections are establishing at the same time in the TCP

incast scenario. In order to prove the feasibility of SDTCP, the
controller must withstand this pressure.

Fig. 12. RTTs with different numbers of senders

The topology is built as the Fig.6 shows and R1 establishes
the connections to the senders simultaneously. We record the
query delays in 100 trials while the number of sending servers
varies.

As shown in the Fig. 12, with the increasing of the senders,
the average query delays have no obvious changing. These
RTTs contain the 30ms basic transmission delay and the
controller handling time. Due to the average RTTs are stable
around 40ms, therefore, the high latency of maximum RTTs
do not affect the performance of SDTCP seriously. In
summary, the result shows that SDTCP can easily handle the
TCP incast with 50 senders.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present SDTCP, a new transport protocol

for providing high-throughput transmission service for the
SDN-based data center networks. When burst flows arrive at
bottleneck switch and queue length is higher than threshold,
SDTCP reduces transmission rate of long-lived flow
proactively to guarantee burst flows by adjusting the receive
window of ACK packet. SDTCP only needs no modification to
existing TCP and makes use of extended OpenFlow, a
technology already available in current commodity switches.
We evaluate SDTCP via extensive simulations. Our results
suggest that SDTCP can make burst flows meet high
throughput effectively without starving long-lived flows.
Experimental demonstration implementation results show that
the SDTCP scheme deals with TCP incast problem excellently
as it guarantees the throughput of burst flows and long-lived
flows at the same time with no packet loss.

In future work, we are going to use priorities in the
controller to determine which flow to be punished. The
priorities may composed by 5-tuple (Destination IP, Source IP,
Destination Port, Source Port, Protocol), traffic volume, exist
time and etc. This approach may enable SDTCP to choose
the flow more precisely than just using existing time.

REFERENCES

[1] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale
Storage Cluster: Delivering scalable high bandwidth storage. In SC’04:

Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,
Washington, DC, USA, 2004.

[2] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. DCTCP: Eƥcient Packet Transport for
the Commoditized Data Center. In Proc. SIGCOMM, 2010.

[3] T. Benson, A. Akella, and D. A. Maltz, Network traffic characteristics of
data centers in the wild, in Proc. of ACM SIGCOMM Internet
Measurement Conference (IMC), Melbourne, Australia, Nov. 2010.

[4] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, The
nature of data center traffic: measurements & analysis, in Proc. of ACM
SIGCOMM Internet Measurement Conference (IMC), Chicago, Illinois,
USA, Nov. 2009.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.
A. Maltz, P. Patel, and S. Sengupta, VL2: A Scalable and Flexible Data
Center Network, in Proc. of ACM SIGCOMM, Barcelona, Spain, Aug.
2009.

[6] J. Dean and S. Ghemawat, MapReduce: simplified data processing on
large clusters, Communications of the ACM, pp. 107–113, 2008.

[7] Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: distributed
data-parallel programs from sequential building blocks, ACM IGOPS
Operating Systems Review, pp. 59–72, 2007.

[8] Wilson C, Ballani H, Karagiannis T, et al. Better never than late:
meeting deadlines in datacenter networks. Proceedings of the ACM
SIGCOMM 2011 Conference (SIGCOMM’11), Aug 15-19, 2011,
Toronto, Canada. New York, NY, USA: ACM, 2011: 50-61.

[9] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen, G.
Ganger, G. Gibson, and B. Mueller. Safe and Effective Fine-grained
TCP Retransmissions for Datacenter Communication. In Proc.
SIGCOMM, 2009.

[10] Software-Defined Networking: The New Norm for Networks, White
Paper, Open Networking Foundation (ONF), Apr. 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf

[11] Keith Kirkpatrick, Software-Defined Networking, ACM Communication,
vol. 56, no.9, pp.16-19, 2013.

[12] S. Azodolmolky, P. Wieder, R. Yahyapour, Cloud computing
networking: challenges and opportunities for innovations, IEEE
Communications Magazine, vol. 51, no. 7, pp. 54-62, 2013.

[13] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion
Control for TCP in Data Center Networks. In ACM CoNEXT, 2010.

[14] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, Measurement and Analysis of
TCP Throughput Collapse in Cluster-based Storage Systems, in
USENIX FAST, 2008.

[15] R. S. C. L. Peng Cheng, Fengyuan Ren, Catch the Whole Lot in an
Action: Rapid Precise Packet Loss Notification in Data Centers, in NSDI
2014.

[16] M. Ghobadi, S. Yeganeh, and Y. Ganjali, Rethinking end-to-end
congestion control in software-defined networks, in Proceedings of the
11th ACM Workshop on Hot Topics in Networks. ACM, 2012, pp. 61–
66.

[17] Open vSwitch. [Online]. Available: http://openvswitch.org/
[18] Floodlight. [Online]. Available: http://www.projectfloodlight.org/

floodlight/
[19] Mininet. [Online]. Available: http://mininet.org/
[20] DCTCP Patch,http://simula.stanford.edu/׽alizade/Site/DCTCP.html.
[21] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ramakrishnan, Adding

Explicit Congestion Notification (ECN) Capability to TCP’s SYN/ACK
Packets, draft-ietf-tcpm-ecnsyn-03 (work in progress), 2007.

[22] Sally Floyd and Tom Henderson. The NewReno modification to TCP’s
fast recovery algorithm. RFC 2582, April 1999.

