
Bandwidth Guaranteed Virtual Network Function

Placement and Scaling in Datacenter Networks

Fangxin Wang∗,Ruilin Ling∗, Jing Zhu∗, Dan Li∗

∗Department of Computer Science and Technology, Tsinghua University

Abstract—Enterprises deploy their middlebox services in cloud
seeking for easy management, flexible scalability and economic
savings. However, existing elastic virtual network function(VNF)
placement strategy often leads to an unpredictable placing
location due to the ever-changing workload, which may waste
much precious bandwidth resource and bring a lot of VM
operation overhead(e.g. VM launch, termination and migration).
A key problem for cloud providers is how to conduct an effective
service placement and provide resource provision according to
various workload, satisfying the bandwidth requirement of each
service while saving as much cloud resource as possible.

In this paper we solve both the virtual network function(VNF)
placement and scaling problem based on preplanned allocation
with bandwidth guarantee. We first propose a concept of VNF in-
stance communication graph to describe the bandwidth demand
of each VNF instance and explore the placement requirement
for bandwidth savings. Then we design an on-line heuristic
algorithm to achieve approximate optimal allocation. At last, we
also provide an off-line optimal solution for comparison. Our
simulation shows that our heuristic solution saves 20% more
bandwidth resource and reduce more VM migration overhead
than existing elastic placement solution. Its performance is also
very close to the optimal solution.

I. INTRODUCTION

The technique of Network Function Virtualization (NFV)

enables network functions(e.g. Firewall, Load balancer, IDS,

etc.) to run on generic computing resources instead of ded-

icated hardware appliances, which provides great flexibility

for network function management. Enterprises or tenants are

motivated to deploy their network function service in cloud

datacenters because the combination of NFV and cloud com-

puting brings a lot of advantages – reducing operating cost,

saving one-off capital expenditures and providing scalable

services [1].

In current NFV environment, users are able to construct

their network services by composing a set of VNFs in prede-

fined order as service chains. They install specific policies

to VNFs [2] to process traffic traversing these chains and

accomplish different network functions. For tenants, they only

need to specify policies and composition for VNFs without

caring about the specific service chain enforcement in physical

datacenters. However, it is a key problem for cloud provider

to conduct an effective VNF instance placement.

This work is supported by the National Key Basic Research Program
of China (973 program) under Grant 2014CB347800, the National Natural
Science Foundation of China under Grant No.61170291, No.61432002, the
National High-tech R&D Program of China (863 program) under Grant
2013AA013303, and Tsinghua University Initiative Scientific Research Pro-
gram.

Existing VNF instance placement solution employs elastic

allocation [3], i.e. cloud system dynamically adjusts VNF

instance number and placement to meet the CPU and band-

width demand of different workload. Although the elasticity

brings much convenience, it still faces two problems. First, the

elastic placement may waste much computing and bandwidth

resource. Since the scaling of VNF instances is determined

dynamically based on the temporal workload, the specific

placement is unpredictable. A careless placement may cause

traffic a much longer traveling distance, which as a result

wastes the scarce bandwidth [4] as well as CPU resource.

Second, the elastic instance scaling may arouse much VM

operation overhead(e.g. VM launch, termination, migration

and state consistency). It often takes several seconds to conduct

a VM migration due to the overhead of consistency mainte-

nance [3], which introduces much extra traffic and increases

delays especially when traffic load is heavy. The ever-changing

workload in datacenter [5] may lead to frequent VNF instance

scaling and migration, which inevitably brings much VM

operation overhead.

In contrast to prior solutions, we propose a preplanned

VNF placement and scaling scheme for resource saving

and overhead reduction. Tenants specify multiple bandwidth

requirements between VNFs in their service chains during

different periods. We guarantee the required bandwidth and

allocate VNF instances into datacenter based on the pre-

planned bandwidth requirement instead of employing the

elastic allocation method. In this paper, we solve both the VNF

instance placement and scaling problems utilizing preplanned

allocation, which saves much network resource for future

tenant acceptance and reduces much VM migration overhead.

We mainly have the following contributions:

• We propose the VNF instance communication graph

abstraction, where tenants can specify bandwidth reserva-

tion between VNFs in a service chain. We also formulate

the placement principles for bandwidth saving.

• Building on top of the communication graph and place-

ment principle, we design an on-line heuristic algorithm

to allocate VNF instances effectively, achieving minimum

overall bandwidth occupancy, VM usage and migration

overhead while accepting as many requests as possible.

• We also provide an off-line programming based algorithm

to achieve optimal placement, which solves the initial

placement problem and scaling problem in a unified

way. Our simulation shows that our heuristic algorithm

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

performs close to the optimal allocation and accepts about

20% more bandwidth requests than state-of-the-art elastic

allocating algorithm.

II. BACKGROUND AND MODEL STATEMENT

In this section, we begin with some backgrounds and the

statement of our preplanned model.

A. Background

Service chain. Network function virtualization enables

users to flexibly compose rich and custom virtual network

functions into a service chain according to their particular

demand [6]. Users install predefined rules into each VNF to

execute particular function and steer traffic through different

VNFs in particular order [2]. Fig.1 shows an example of

service chains in which each node represents a VNF. Traffic

is divided into two paths by service classifier according their

different types. VNFs on each path are composed into a service

to accomplish a traffic processing function. For example, the

video traffic traverses path 2 for acceleration.

Traffic characteristics. Unlike traditional cloud computing,

VNF resource consumption can be quite diverse and workload

dependent [7]. We explore the characteristics of middlebox

service workload by observing a real traffic trace [8] of an

enterprise cluster, which captured the total network traffic

across the enterprise Big Marketing for one week. According

to our investigation shown in Fig.2, middlebox services may

encounter various traffic workloads during different periods,

and sometimes the workloads are regular and periodic(e.g.

a high bandwidth requirement at peak time while a low

requirement at trough time for several days).

VNF placement. Since VNFs are running on generic

servers whose traffic processing ability is limited, we usually

need several VNF instances to undertake one virtual function

cooperatively, especially when workload is heavy. We assume

all the servers in datacenters are homogeneous with the same

number of identical VM slots and each VM slot can hold

only one VNF instance. So what we need is to determine the

placement location for these VNF instances in datacenters. An

effective placement should satisfy two basic requirement: (1)

all VNF instances are assigned into available VM slots and

(2) the bandwidth requirement of each physical link does not

exceed its capacity.

Existing elastic placement. Existing VNF placement

mostly employ an elastic allocation strategy that VNF in-

stances elastically increase or decrease to satisfy the pro-

cessing demand for different workload. Elastic solutions such

as stratos [3] dynamically monitor the computing status of

each VNF instance and overall network status, and detect the

source of bottleneck. If there is a computing shortage, it adds

VNF instances to share the heavy workload. And when link

congestion occurs, the affected instances will migrate to other

location with enough bandwidth.

B. Model Statement of Preplanned Placement

Elastic placement is able to dynamically adjust the scale

of VNF instances, but the elasticity always comes with much

600

100

500

100

Content

Filter
Wan

Optimizer

Proxy
IDS/IPS

Service

Classifier

Traffic

Shaper

Firewall

600

100

500 500
300

Traffic path 1 Traffic path 2 VNF

Fig. 1. A case of NF service chains.

Fig. 2. A one week real traffic trace from Big Marketing company
that records the total traffic volume traversing its computer clusters.

resource wastage and migration overhead due to a lack of

global information for a optimized placement. In contrast

to elastic placement, we propose preplanned VNF instance

placement strategy.

Bandwidth requirement and guarantee. Beside the ser-

vice chain composition and rules for each VNF, users are

required to specify the bandwidth demand between each

upstream and downstream VNFs. As illustrated in Fig.1,

each value represents the bandwidth requirement between

VNFs. We provide bandwidth guarantee and conduct the VNF

instance placement according to the bandwidth requirement.

When a service chain request arrives, we judge whether the

residual cloud resource is able to satisfy the computing and

bandwidth demand. If so, we accept it and conduct a VNF

instance placement, otherwise we reject this request. We will

discuss the detail in §III.

In traditional cloud computing, tenants have to subscribe for

bandwidth based on the largest possible traffic load. However,

it is too stiff to restrict unchanged bandwidth reservation

since tenants are not responsible to pay for their unnecessary

bandwidth during trough time. Generally, considering the

regular and periodic features of workload, we allow tenants

to specify multiple bandwidth requirement on different time

periods according to their business. It not only helps tenants to

reduce their capital cost but also avoids much network resource

waste. Taking the case in Fig.2 for example, this enterprise can

specify 500Mbps and 100Mbps for the busy period and idle

period, respectively. We accept a service request only when

we can deploy it under the maximum bandwidth requirement.

Benefits. Based on the knowledge of service chain compo-

sition and bandwidth requirement provided by tenants, we can

conduct a more effective preplanned VNF instance placement

by fully considering the characteristics of the service chain and

current datacenter situation. Compared with existing elastic

placement, the preplanned placement have a lot of benefits as

follows.

• Saving bandwidth and VM slot resource by colocation.

Our preplanned placement strategy tries to place VNF

instances in a localized way by searching a minimum

feasible subtree in datacenter. By this way we can save

much bandwidth resource, especially the precious core-

level bandwidth.

• Reducing overhead for frequent VM migrations. For a

particular bandwidth requirement, we employ an one-off

VNF instances placement. When bandwidth requirement

changes, we try to conduct an incremental deployment

with little affect on the existing placement. By this way

we can largely reduce the times of VM migration, which

reduces migration overhead as a result.

III. DESIGN FOR VM PLACEMENT AND SCALING

In this section, we introduce our solutions to allocate VNFs

into physical datacenters. Given that current datacenters are

mostly organized in oversubscribed tree-like topology[4], we

consider three-layer single root tree-shaped datacenters for

simplicity, which is easy to expanded to multi-root topology.

The variables in this section are explained in Table.I.

TABLE I
NOTATIONS

t A particular subtree for VNF instance placement

G The VNF instance communication graph

Ubi Maximum traffic that individual instance of VNF i can
support

Ni The instance number of VNF i
bi binu→i and bouti→v represent incoming and outgoing bandwidth

of each instance of VNF i from VNF u and to VNF v,
respectively. bini =binall→i and bouti =bouti→all, bi=b

in
i +bouti

Bu→v The required bandwidth for communication between VNF u
and VNF v.

Bi The Bin
i and Bout

i are total incoming and outgoing band-

width for VNF i, Bi=B
in
i +Bout

i

γi γi means the gain/drop factor of VNF i, i.e. the change ratio
for ingress-to-egress traffic, γi=B

in
i /Bout

i

T t
u→v The internal bandwidth from VNF u to VNF v in subtree t
T t The total internal bandwidth in subtree t
Ci,t The Cin

i,t and Cout
i,t are incoming and outgoing bandwidth for

instances of VNF i in subtree t respectively.

Ct The total bandwidth for all instances in subtree t, also include
Cin

t and Cout
t , Ct=Cin

t +Cout
t

St A set of selected instances for placement in subtree t
Costt We assign different costs for links in different layer, e.g. the

bandwidth of upper layer is more scarce and precious, so it
deserves higher cost.

α The weight for VM slot utilization

β The weight for overhead of VM migration

Xs,i Xin
s,i represents the incoming bandwidth of VNF i on VM slot

s, and Xout
s,i represents the outgoing bandwidth. If Xs,i=0,

it means slot s doesn’t hold instance of VNF i.
M The migration times for VM scaling.

A. VNF instance communication graph and Bandwidth Saving

Principles

VNF instance communication graph. For each VNF in the

service chain, we need to provide enough capacity to process

2

1

3

4

6

5

8

7

9

800

500

300

400

300

v

s

u

Fig. 3. An example of VNF instance communication graph.

VMs to be placed Existing VMs

1

7

5

t

125

200

100

200
75

Subtree

Cross subtree traffic Internal traffic

125

25

Fig. 4. A case of VM placement as well as the bandwidth requirement.
Assume that VNF instance 1, 5, 7 are placed in subtree t, the internal
bandwidth and crossing subtree bandwidth are illustrated.

the traffic traversing this chain. We assume each instance of

VNF i has a maximal traffic processing capacity Ubi, which

can be easily obtained by running a pressure test. So the

minimal number of instances of VNF i is:

Ni = ⌈Bin
i /Ubi⌉. (1)

By this way we can get the least necessary number of instances

for all VNFs. Meanwhile, the required bandwidth for each

instance is equally shared with a load balance strategy.

bini = Bin
i /Ni; bouti = Bout

i /Ni; (2)

Thus, we can construct a VNF instance communication graph

composed of VNF instances and the bandwidth requirement

between them. Fig.3 describes an example of communication

graph based on a service chain with bandwidth requirement

labeled in it. Since Ub of each VNF is 200, 250 and 100(in

Mbps), the least instance number for each VNF is 4, 2 and 3.

We can also calculate bandwidth requirement of each instance

by equation (2). We notice that some network functions may

change the aggregate traffic volume through them(e.g. Wan

optimizer may compress traffic for acceleration). So we define

the traffic change ratio as γ.

Placement principles for bandwidth saving. The

placement procedure is actually allocating VNF instances into

each subtree of datacenter recursively until all VNF instances

are put into VM slots. For each subtree that holds a set of

VNF instances, we need to reserve internal bandwidth and

cross subtree bandwidth.

Principle 1: A VNF instance prefers to steel the traffic to

its downstream VNF instance inside the same subtree rather

than to those outside the subtree.

This principle is intuitive and easy to realize. We can steer the

incoming flows through SDN to achieve this goal, which is

our ongoing work. We assume some instances of VNF u and

VNF v are placed in subtree t(u is in upstream position and

v is in downstream position in communication graph). Based

on principle 1, we can get the internal bandwidth requirement:

T t
u→v = min(N t

ub
out
u→v, N

t
vb

in
u→v); (3)

Besides, instances of VNF i have to send or receive traffic

from other VMs outside subtree t when internal traffic can

not totally satisfy bandwidth demand. We can get the incoming

and outgoing traffic of VNF i across subtree t:

Cin
i,t = N t

i b
in
i −

∑

u∈t

T t
u→i; Cout

i,t = N t
i b

out
i −

∑

v∈t

T t
i→v; (4)

Thus, we can get the total traffic across subtree and the total

internal traffic by adding all of them.

Ct = Cin
t + Cout

t =
∑

i∈t

Cin
i,t +

∑

i∈t

Cout
i,t ; (5)

T t =
∑

u∈t

∑

v∈t

T t
u→v; (6)

By adding all the cross subtree bandwidth in one layer l in

datacenter, we can get the following formula.
∑

t∈l

Ct =
∑

t∈l

∑

i∈t

(N t
i b

in
i −

∑

u∈t

T t
u→i +N t

i b
out
i −

∑

v∈t

T t
i→v);

=
∑

i∈all

Nibi −
∑

t∈l

2T t; (7)

From this formula we know that
∑
t

(Ct+2T t) is a constant,i.e.

the sum of cross subtree bandwidth and two times of internal

bandwidth of each layer is fixed. So if we want to minimize

the overall link bandwidth consumption, we should try to

minimize the cross subtree bandwidth and maximize internal

bandwidth for each subtree. Thus the localized placement is

an effective placement strategy. Then we get the following

greedy placement principle.

Principle 2: For each placement in a subtree, we try to place

as many VNF instance as possible while minimizing Ct and

maximizing T t.

Fig.4 describes an example of VNF instance placement

according to the service chain in Fig.3. We assume that VM

1, 5 and 7 are placed in subtree t, while other VMs are placed

outside t. In this example, we get Cin
t =350, Cout

t =300 and

T t=200, respectively.

B. Heuristic Algorithm

Building on top of the VNF instance communication graph

and bandwidth saving principles above, we design an on-line

heuristic algorithm to achieve approximate optimal placement.

Our heuristic algorithm tries to place VNF instances in a

Algorithm 1: Handling request algorithm

Input: G:communication graph, T:tree topology

Output: Request acceptance or rejection.

1 while true do

2 l = 0;

3 while l ≤ height(T) do

4 foreach subtree t at level l do

5 if N ≤ slot(t) then

6 put all VMs into St;

7 Φ = Alloc(G,St, t);
8 if Φ.f lag == true then

9 return true;

10 l = l + 1;

11 if Φ.f lag == false then

12 G=Scale(G);

13 if the utilization of every instance is below ε then

14 break;

15 return false;

localized way recursively to save as much network resource

as possible.

Algorithm.1 describes the overall process to handle tenant

request. We traverse the datacenter topology from the lowest

level(level 0, physical servers) up to the root level(level 3)(line

2-3). For each subtree t, we first judge whether it is likely

to hold all the VNF instances by calculating the number of

available VM slots within it(line 4-5). If there are enough slots,

then instances are put into a set St and Alloc(·) is invoked to try

allocating the request into subtree t. Since bandwidth resource

inside t may be insufficient for the bandwidth demand, we

try another subtree once this trial fails. If all the possible

subtrees are unable to hold this request, we try to scale out

the communication graph by adding one instance to VNF i
which has the largest aggregate bandwidth requirement(i.e.

largest bi) according to formula (2)(line 12). By this way

we narrow the gap of bandwidth discrepancy among different

VNF instances and avoid the bandwidth bottleneck, which also

increases the possibility for request acceptance. However, we

can not keep on splitting VNF instances forever, because more

slot usage means more capital cost. Thus, we set a lowest

instance utilization threshold as ε, representing the ratio of

actual processing traffic to the maximum processing capacity.

Once utilization of every VNF instances is below ε, we stop

splitting and reject this tenant request(line 13-14). The value of

ε can be flexibly determined by different accounting strategy.

By traversing the datacenter network topology in a bottom-up

manner, our algorithm allocates VNFs into the lowest feasible

subtree in order to save precious core level bandwidth.

Algorithm.2 (Alloc(·)) shows each attempt to allocate the

selected instance set St in graph G into the given subtree t. It

is a trivial problem if we are trying to allocate St into a lowest

level subtree (physical servers) with enough VM slots(line 1).

Algorithm 2: Alloc algorithm

Input: G:communication graph, St:instance set for t
t:subtree for allocation

Output: Φ:the VM allocation and bandwidth reservation

1 if level(t)==0 then

2 map St into Φt; Φt.f lag == true;

3 else

4 sort subtrees of t in descending order of available

resource;

5 foreach subtree v of t do

6 cnt is assigned as the smaller value between

unused VM numbers in St and slot(v);
7 while cnt−− do

8 Sv = ∅;

9 First select the unused VM of the largest

aggregate bandwidth into Sv;

10 while |Sv| ≤ cnt and Cin
v ≤ bwin(v) and

Cout
v ≤ bwout(v) do

11 Sv += SelectV M(G,St);

12 Φv = Alloc(G,Sv, v);

13 if Φv.f lag == true then

14 reserve bandwidth for t;
15 Φt += Φv;

16 mark VMs in Sv as used;break;

17 if not all VMs in St are used then

18 DeAlloc(Φt);

19 return Φt;

The algorithm just puts instances into the server and returns

success(line 2). Note that communication between slots in the

same physical server does not occupy link bandwidth and

enjoys plenty of network bandwidth resources. Otherwise, if

t consists of multiple subtrees, the algorithm attempts to split

instances into as few subtrees as possible by colocation.

We sort the subtrees of t in a descending order according

to their available slots as well as bandwidth(line 4). For each

subtree v of t, we tries to allocate as much instances as

possible. We first decide the upper bound of VNF instance

numbers that subtree v can hold as cnt, which is initialized

as the smaller one between the residual VM slots of v and

the unused VM numbers in St(line 6). For each trial, we

first pick up an unused instance with the largest aggregate

bandwidth requirement and put it into Sv(line 9), because

larger subtree is more likely to accept instance with larger

aggregate bandwidth demand. Then we repeatedly pick up one

VNF instance into Sv until the aggregation bandwidth across

the subtree or slot usage exceeds the constraint(line 10-11). For

each SelectVM, we refer to principle 2 in §III-A. We invoke

Alloc(·) in a recursive way until all instances are placed in

physical servers(line 12). If the allocation for v is successful,

we reserve bandwidth for the link of subtree v and record

the placement in Φ(line 14-15). Besides, we mark those VMs

TABLE II
STEPS AND BANDWIDTH REQUIREMENTS TO PLACE THE

COMMUNICATION GRAPH INTO A GIVEN SUBTREE.

Step VM No. Cin
t Cout

t T t can
hold?

1 5 250 200 0
√

2 1 325 275 125
√

3 7 350 300 200
√

4 2 400 350 350
√

5 8 450 400 400
√

6 9 550 500 400 ×

in Sv as used and quit this process(line 16). Otherwise, we

decrease the upper bound cnt and begin another trial(line 7).

If VMs in St are not completely allocated after trying all its

subtrees, DeAlloc is invoked to release the reserved slots and

bandwidth resources(line 18). At last, we return the resource

allocation mapping Φ(line 19).

We explain this heuristic approach utilizing the communi-

cation graph example in Fig.3. Notice that VNF u has two

downstream VNFs, and the ratio of traffic distribution is 5:3.

So boutu→v=125Mbps and boutu→s=75Mbps respectively. VNF v
is able to compress traffic and γv is 80%. Assuming that we

are considering putting this communicate graph into subtree t
with 6 slots and 500Mbps bisectional bandwidth. Table.II lists

the specific steps as well as the bandwidth requirement of each

step. We can put five VNF instances into this subtree, while

the placement of the 6-th instance will exceed the bandwidth

constraints.

Our algorithm can also handle the scaling problem when

bandwidth requirement changes. We provide two alternatives

for VNF scaling. The first one is incremental deployment.

When demand increases, we treat the extra part of traffic

as another service chain. So we just execute resource allo-

cation for this new service chain without affecting existing

deployment. Similarly, we just remove those newly increased

part when bandwidth demand falls. The second alternative is

unified deployment, where we treat this service as an entirety

and reallocate all the traffic by invoking the heuristics again.

However, we still prefer to search subtrees holding old VNF

placement and try to place relevant VNF instances at their

original place. If fails, we then search other subtrees for

any possible allocation. We mainly consider to employ the

incremental deployment due to the high migration overhead,

while the unified deployment is also acceptable when traffic

load is very light.

C. Programming Solution

We then provide an off-line programming based algorithm

for comparison, which achieves optimal placements. For each

placement, our programming algorithm seeks to minimize (1)

the network wide bandwidth utilization of all links and (2)

the overall VM slot usage. By this way we can maximize the

available system capacity, which is important for scaling and

subsequent tenant acceptance.

In most situation we expect a load balance strategy among

instances of the same VNF, but sometimes we can loose this

restriction by distributing traffic to those instances asymmetri-

cally, which may save bandwidth as a result. For example, two

VNF instances with Ub=500Mbps need to process 900Mpbs

cooperatively. We can distribute 450Mbps traffic to each of

them, while we can also assign traffic as 500Mbps and

400Mbps respectively. Even we can add an instance and allo-

cate 300Mbps for each of them if needed. In our programming

solution, we mainly consider the loose condition(i.e. without

load balance).

Based on the condition above, we formulate the program-

ming model for VNF instance placement as follows:

Min :
∑

t

((Cin
t + Cout

t) ∗ Costt) + α ∗ Slot (8)

s.t.

∀s,
∑

i∈G

Xin
s,i = max

i∈G
{Xin

s,i} (9)

∀s, i, 0 ≤ Xin
s,i ≤ Ubi (10)

∀s, i, Xout
s,i = Xin

s,i ∗ γi (11)

∀i, Bout
i = Bin

i ∗ γi (12)

∀i, Bin
i =

∑

u∈upstream(i)

Bout
u (13)

∀i,
∑

s∈S

Xin
s,i = Bin

i (14)

∀u, v, T t
u→v = min{

∑

s∈t

Xout
s,u ,

∑

s∈t

Xin
s,v} (15)

∀i, u, Cin
t =

∑

i∈t

{
∑

s∈t

Xin
s,i −

∑

u∈t

T t
u→i} (16)

∀i, u, Cout
t =

∑

i∈t

{
∑

s∈t

Xout
s,i −

∑

v∈t

T t
i→v} (17)

The instance placement result is stored in X . We try to

minimize the both the bandwidth and VM slot usage in (8).

The VM slot usage is easily to get by counting the non-zero

Xin
s,i. We define the weight of VM slot usage as α, which

is used to adjust the importance of the two parts. Equation

(9) guarantees there is at most one VNF instance existing in

one slot at the same time. Equation (10) restricts the maximum

traffic each VNF instance can hold. Considering that workload

may change after going through some kinds of VNFs such as

wan optimizer, equation (12) reflects the ratio of ingress-to-

egress traffic. We guarantee that all the traffic for one VNF is

processed by (14). Equation (15) calculates the internal traffic

volume between VNF u and VNF v. Equation (16) gets the

total traffic coming into this subtree, and so is (17) for outgoing

traffic.

Scaling. A key consideration for VNF placement is how

and where to scale instances when traffic demand changes.

Our programming algorithm is also suitable to solve the VM

scaling problem. We just need to modify the input bandwidth

demand and invoke the programming algorithm again.

When considering scaling in or scaling out, we can add the

VM migration times as an optional optimizing objective. We

modify the original objective as follows:

Min :
∑

t

((Cin
t +Cout

t)∗Costt)+α∗Slot+β ∗M (18)

M represents the migration times and β is the weight for the

overhead of migration. M can be easily obtained by comparing

the new placement with the old placement. β can be flexibly

specified according to the actual system overhead, which may

vary in different situations. For example when traffic volume

is very low and flow numbers is very small, the migration

overhead can be small. But it may become a heavy burden

when load is heavy or traffic congestion exists.

Besides, we have another option for load balance among

VMs belonging to the same VNF. We just need to add a

constraint that for each particular VNF i, every Xin
s,i must

be zero or the same non-zero value. Tenants are able to make

their own choices by need.

IV. EVALUATION

In this section, we carry out a group of simulation based

on java and CPLEX [9] to evaluate the performance of our

heuristic and programming algorithm for resource allocation.

We consider the elastic placement strategy in Stratos [3] as a

baseline.

A. Simulation setup

Topology setting. We build a three-layer tree-shaped net-

work topology, i.e. the edge switches layer, the aggregate

switches layer and the core switch layer, similar to real

datacenter topology[4]. The core switch is connected to 8

aggregate switches and each aggregate switch has 16 edge

switches. Every rack contains 16 identical servers with the

same computing/storage resource, which we divide into 8

VM slots. That is a total of 2048 servers with 16,384 VM

slots(denoted as Vtotal). The link capacity of physical server

to switch is 1 Gbps. We set the oversubscription ratio between

each layer as 2:1.

Tenant Request synthesis. We randomly synthesize tenant

requests in a customized way based on our knowledge of

common service chain compositions. The length of every chain

is distributed equally between 3 to 6, which randomly has one

single path or is divided into two paths. The maximal capacity

of each kind of VNF instance is random defined between 100

to 300. For simplicity, we assume each tenant only request a

minimum and a maximum incoming bandwidth requirement.

The bandwidth requirement follows normal distribution, with

the mean value of the maximum bandwidth requirement as

Bmax and variation equal to Bmax/3. Thus, we can get

the least necessary VNF instance number under maximum

bandwidth requirement, denoted as Nl. We assume traffic

change ratio for each VNF is 1.

Tenant arrival and departure. In our simulation, we

assume the tenant will arrive and leave, which follows a

Poisson process [10]. The average arrival rate of tenant is λ
and each tenant has a resident time as T for average. We

suppose that each tenant request consists of at least Nl VMs.

Then we define load= λNlT
Vtotal

to describe the load of datacenter

excluding the influence of request size.

Besides, we set ε in heuristics as 30% and α in program-

ming objective as the value of Ubi for each kind of VNF. We

set Costi of each link as the oversubscription ratio of its layer.

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60
B
a
n
d
w
i
d
t
h

r
e
j
e
c
t
i
o
n

r
a
t
e
(
%
)

Bmax(Mbps)

optimal

heuristics

elastic

(a) Load=50%

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

B
a
n
d
i
w
d
t
h

r
e
j
e
c
t
i
o
n

r
a
t
e
(
%
)

Bmax(Mbps)

optimal

heuristics

elastic

(b) Load=80%

Fig. 5. The bandwidth rejection ratio for different Bmax. The Y-axis
represents the ratio of the total bandwidth of rejected requests to the
total bandwidth of all coming requests.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

B
a
n
d
w
i
d
t
h

r
e
j
e
c
t
i
o
n

r
a
t
e
(
%
)

Load(%)

optimal

heuristics

elastic

(a) Bmax=800Mbps

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

B
a
n
d
w
i
d
t
h

r
e
j
e
c
t
i
o
n

r
a
t
e
(
%
)

Load(%)

optimal

heuristics

elastic

(b) Bmax=1200Mbps

Fig. 6. The bandwidth rejection ratio under different load. The Y-axis
represents the ratio of the total bandwidth of rejected requests to the
total bandwidth of all coming requests.

B. Simulation Result

We first evaluate the impact of average Bmax and differ-

ent load on tenant acceptance, which is mainly represented

by bandwidth rejection ratio. We consider the allocation of

requests with Bmax. In Fig.5, we vary the Bmax from 200(in

Mbps) to 1400 to evaluate how requests with different band-

width affect the bandwidth rejection ratio. We find that under

50% workload in Fig.5(a), our heuristics algorithm is able

to accept all the tenant request with various Bmax request,

while rejection ratio of elastic reaches more than 20% at

a large Bmax. When the load is 80% in Fig.5(b), all three

algorithms begins to reject tenants. heuristics can accept all

request when Bmax is small, while elastic still rejects requests

under small Bmax(400 and 600). We can accept about 20%

bandwidth than stratos even under high Bmax requests. These

results reflect that our preplanned placement scheme can better

utilize the network resource and spare more bandwidth for

future request acceptance. Besides, these figures indicate that

heuristics achieves a approximate optimal result, since it is

very close to the optimal programming solution.

Similarly, we vary the load from 0 to 90% to study the

impact of diverse load under different Bmax in Fig.6. With

a relatively small bandwidth requirement(Bmax=800Mbps in

Fig.6(a)), heuristics can always control their rejection ratio

at a low level, while the rejection ratio of elastic increases

sharply when workload exceeds 50%. When it comes to a

large Bmax(1200Mbps in Fig.6(b)), our algorithms accept 20%

bandwidth request than elastic, which even rejects more than

half requests under 90% load.

We then evaluate the VM slot utilization of different algo-

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

V
M

s
l
o
t

u
t
i
l
i
z
a
t
i
o
n
(
%
)

Load(%)

optimal_bv

optimal_b

heuristics

elastic

Fig. 7. Average VM slot utilization of different algorithms under
various load.

50 80
0

5

10

15

V
M

m
i
g
r
a
t
i
o
n

t
i
m
e
s

Load(%)

optimal_bvm

optimal_bv

heuristics

elastic

Fig. 8. Average VM migration times for each algorithms.

rithms. We consider various objectives for the programming

algorithm, optimal b and optimal bv, each minimizing only

bandwidth and both bandwidth and VM slot, respectively.

Fig.7 describes the VM slot utilization under different load.

When traffic load is low, all the four solutions performs the

same, which do not bring much VNF scaling since the slope

of all lines is nearly one. As workload increases, optimal b

increases the fastest due to its ignorance of VM slot usage.

optimal bv and heuristics have a lower VM utilization than

elastic under middle workload but a higher utilization under

high workload. This is because both heuristics and optimal bv

avoid unnecessary scaling under the middle workload and thus

can accept more VMs under the high workload. When the load

is nearly full, our algorithms can achieve more than 95% VM

utilization, while elastic can only utilize 85% VM resource,

leaving the datacenter full of fragments.

We also evaluate the impact of different algorithms on the

VM migration when bandwidth demand changes. We assume

each request has a minimum bandwidth and a maximum

bandwidth, with the maximum value as twice of the min-

imum value. The request will increase from the minimum

to the maximum, each of which lasts the same time. Fig.8

shows the number of migration times of each algorithm under

different load when Bmin=400Mbps and Bmax=800Mbps.

optimal bvm brings fewer VM migration than optimal bv

since it takes migration overhead into consideration. Heuristics

prefers to employ the incremental deployment and it still

migrate some existing instances. Elastic even migrates newly

added VMs under high load. This is because when network

resource is scarce(load=80%), it has to migrate frequently once

it detects a bottleneck due to its per-instance scaling strategy.

V. RELATED WORK

Integrating VNFs. To enforce diverse virtual network func-

tions in generic software defined platforms, previous works

seek to integrate VNFs by novel architectures. CoMb [11]

exploits middlebox structure to consolidate heterogeneous

middlebox applications onto commodity hardware, but does

not address the issue of placement and scaling. xMob [12] is

a framework for programmable middleboxes using commodity

servers. This novel architectures provide implementing basis

for VNFs.

VNF control plane design. A lot of works have focused on

NFV control plane and seek solutions for better management.

OpenNF [13] utilizes central controller to maintain network

wide state consistency on VNF instance migration. [14] studies

the stability of middlebox states and presents a dynamically

elastic virtual network function provision system. SIMPLE

and FlowTags [15], [16] consider the traffic modification and

integrate an effective flow steering and management by using

tags.

VM placement and traffic steering. Proper VM placement

and traffic steering help to save network resource wastage and

improve efficiency. StEERING [17] and [18] both consider

VNF placement and steer traffic through network services

in order, while neither of them have bandwidth guarantee.

[19] only focuses on initial placement by minimizing VM

communication distance and setup cost, which ignores the

VNF scaling problem. Stratos [3] builds up a network-aware

orchestration layer for virtual middleboxes. It considers a

native rack aware heuristic VM placement, while its elastic

placement strategy consumes much bandwidth resource and

brings a lot of migration overhead.

bandwidth guaranteed virtual network abstraction. To

provide predictable network application performance, many

previous works have proposed novel virtual network abstrac-

tions to specify bandwidth requirement among VMs. Oktopus

[20] and [21] consider to solve homogeneous and hetero-

geneous hose models for VM communication, while [22]

and [23] mainly focus on pipe models requiring tenant to

specify more fine grained bandwidth between every VM pairs.

CloudMirror [24] proposes an application driven network

abstractions, guaranteeing bandwidth components. Our work

is related to these network abstraction models.

VI. CONCLUSION AND FUTURE WORK

The combination of NFV and cloud computing introduces

a lot of benefits for enterprise to deploy their middlebox

services in cloud, while the elastic VNF allocation strategy

often leads to an ineffective instance placement. We propose

a novel preplan allocating solution according to the bandwidth

requirement between each VNF provided by users, which

includes an abstraction of VNF instance communication graph,

an on-line heuristic algorithm and an off-line optimal program-

ming model. Our solution saves as much network resource as

possible and reduces VM migration overhead.

Our ongoing work is to explore flow schedule strategy using

SDN technique to flexibly steer traffic according to our band-

width restriction. Besides, we seek to implement our place-

ment approach in practical system, such as OpebMano[25],

OPNFV[26], OpenStack Nova[27].

REFERENCES

[1] J. Sherry et al., “Making middleboxes someone else’s problem: network
processing as a cloud service,” ACM SIGCOMM Computer Communi-

cation Review, vol. 42, no. 4, pp. 13–24, 2012.
[2] P. Quinn et al., “Network service chaining problem statement,” In-

ternet Engineering Task Force, Internet-Draft draft-quinn-nsc-problem-

statement-03, 2013.
[3] A. Gember et al., “Stratos: A network-aware orchestration layer for

virtual middleboxes in clouds,” arXiv preprint arXiv:1305.0209, 2013.
[4] N. Farrington and A. Andreyev, “Facebook’s data center network archi-

tecture,” in IEEE Optical Interconnects Conf. Citeseer, 2013.
[5] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement. ACM, 2010, pp. 267–280.
[6] “NFVWhitePaper,” http://www.etsi.org/technologies-clusters/

technologies/nfv.
[7] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource schedul-

ing for packet processing,” in Proc. SIGCOMM, 2012.
[8] “Vast Challenge.” http://vacommunity.org/VAST+Challenge+2013%

3A+Mini-Challenge+3.
[9] “CPLEX,” http:www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/.
[10] Z. Guo et al., “Improving the performance of load balancing in software-

defined networks through load variance-based synchronization,” Com-

puter Networks, vol. 68, pp. 95–109, 2014.
[11] V. Sekar and e. a. Egi, Norbert, “Design and implementation of a

consolidated middlebox architecture,” in NSDI, 2012, pp. 24–24.
[12] J. W. Anderson et al., “xomb: extensible open middleboxes with

commodity servers,” in ANCS. ACM, 2012, pp. 49–60.
[13] A. Gember-Jacobson et al., “Opennf: Enabling innovation in network

function control,” in Proceedings of the 2014 ACM conference on

SIGCOMM. ACM, 2014, pp. 163–174.
[14] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,

“Split/merge: System support for elastic execution in virtual middle-
boxes.” in NSDI, 2013, pp. 227–240.

[15] Z. A. Qazi et al., “Simple-fying middlebox policy enforcement using
sdn,” in Proceedings of the ACM SIGCOMM 2013 conference on

SIGCOMM. ACM, 2013, pp. 27–38.
[16] S. K. Fayazbakhsh et al., “Enforcing network-wide policies in the pres-

ence of dynamic middlebox actions using flowtags,” in Proc. USENIX

NSDI, 2014.
[17] Y. Zhang, N. Beheshti et al., “Steering: A software-defined networking

for inline service chaining,” in Network Protocols (ICNP), 2013 21st

IEEE International Conference on. IEEE, 2013, pp. 1–10.
[18] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan,

and T. Wood, “Virtual function placement and traffic steering in flexible
and dynamic software defined networks,” Mij, vol. 101, p. 1.

[19] L.-E. Liane, S. N. Joseph, C. Rami, and R. Danny, “Near optimal
placement of virtual network functions,” in Proc. IEEE INFOCOM,
2015.

[20] H. Ballani et al., “Towards predictable datacenter networks,” in ACM

SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 242–253.

[21] J. Zhu, D. Li et al., “Towards bandwidth guarantee in multi-tenancy
cloud computing networks,” in Network Protocols (ICNP), 2012 20th

IEEE International Conference on. IEEE, 2012, pp. 1–10.
[22] C. Guo et al., “Secondnet: a data center network virtualization architec-

ture with bandwidth guarantees,” in Proceedings of the 6th International

COnference. ACM, 2010, p. 15.
[23] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of

data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

[24] J. Lee et al., “Application-driven bandwidth guarantees in datacenters,”
in Proceedings of the 2014 ACM conference on SIGCOMM. ACM,
2014, pp. 467–478.

[25] “OpenMano,” https://github.com/nfvlabs/openmano.
[26] “OPNFV,” https://www.opnfv.org/.
[27] “Nova,” https://wiki.openstack.org/wiki/Nova.

