
OMO: Optimize MapReduce Overlap with a Good

Start (Reduce) and a Good Finish (Map)

Jiayin Wang∗

jane@cs.umb.edu

Yi Yao†

yyao@ece.neu.edu

Ying Mao∗

yingmao@cs.umb.edu

Bo Sheng∗

shengbo@cs.umb.edu

Ningfang Mi†

ningfang@ece.neu.edu

∗Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
†Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115

Abstract—MapReduce has become a popular data processing
framework in the past few years. Scheduling algorithm is crucial
to the performance of a MapReduce cluster, especially when the
cluster is concurrently executing a batch of MapReduce jobs.
However, the scheduling problem in MapReduce is different
from the traditional job scheduling problem as the reduce phase
usually starts before the map phase is finished to “shuffle”
the intermediate data. This paper develops a new strategy,
named OMO, which particularly aims to optimize the overlap
between the map and reduce phases. Our solution includes two
new techniques, lazy start of reduce tasks and batch finish of
map tasks, which catch the characteristics of the overlap in
a MapReduce process and achieve a good alignment of the
two phases. We have implemented OMO on Hadoop system
and evaluated the performance with extensive experiments. The
results show that OMO’s performance is superior in terms of
total completion length (i.e., makespan) of a batch of jobs.

I. INTRODUCTION

MapReduce [1] has become a popular data processing

framework in the past few years. Its open source implemen-

tation Hadoop [2] and the corresponding eco-system have

attracted a lot of attentions and been widely adopted in many

fields. With the rise of cloud computing and the high demand

of big data processing, we envision that more and more users

will launch a MapReduce cluster to process a large volume of

data in various applications. A typical MapReduce job includes

many identical map tasks and much fewer reduce tasks. Map

tasks process the raw data in parallel and generate intermediate

data in a form of < key, value >. The reduce tasks compute

the intermediate data and produce the final results.

This paper aims to develop an efficient scheduling scheme

in a MapReduce cluster to improve the resource utilization

and reduce the makespan (i.e., the total completion length)

of a given set of jobs. Given a limited set of resources in

a MapReduce cluster, scheduling algorithm is crucial to the

performance, especially when concurrently executing a batch

of MapReduce jobs. Without an appropriate management, the

available resources may not be efficiently utilized, which leads

to a prolonged finish time of the jobs. The scheduling in

MapReduce, however, is quite different from the traditional

job scheduling in the previous work. MapReduce is composed

of ‘map’ phase and ‘reduce’ phase, where the intermediate

output of ‘map’ serves as the input of ‘reduce’. A typical

MapReduce job consists of multiple map tasks and reduce

tasks. Thus, the scheduling algorithm in MapReduce needs to

handle both job-level and task-level resource management. In

addition, a complicated dependency exists between map tasks

and reduce tasks of the same job. First, reduce tasks need the

output of map tasks, thus cannot be finished before the map

phase is done. However, reduce tasks can start earlier before

the completion of the map phase (for transferring/shuffling

the intermediate data). These factors make the scheduling

design extremely challenging yet the existing products have

not thoroughly addressed these issues.

This paper develops a new strategy, named OMO, which

particularly aims to optimize the overlap between map and

reduce phases. We observe that this overlapping period plays

an important role in the MapReduce process especially when

the map phase generates a large volume data to be shuffled. A

good alignment of the map and reduce phases can reduce the

job execution time. Compared to the prior work, our solution

considers more dynamic factors at the runtime and allocates

the resources based on the prediction of the future task

execution and resource availability. Specifically, our solution

OMO includes two new techniques, lazy start of reduce tasks

and batch finish of map tasks. The first technique attempts

to find the best timing to start reduce tasks so that there is

sufficient time for reduce tasks to shuffle the intermediate data

while the resources are allocated to serve map tasks as much as

possible. We introduce a novel predication model to estimate

the resource availability in the future which further helps make

scheduling decision. The second technique is to increase the

execution priority of the tailing map tasks in order to finish

them in a wave. Different from the prior work that prefers

wave-like execution throughout the map phase, we only focus

on the last batch of the map tasks. Both techniques catch the

characteristics of the overlap in a MapReduce process and

achieve a good alignment of the map and reduce phases.

The remainder of this paper is organized as follows. Sec-

tion II presents the related work of this paper. In Section III,

we formalize the problem considered in this paper. Sections IV

describes the details of the solution. Section V provides the

experimental evaluation of OMO. Finally, we summarize our

work in Section VI.

II. RELATED WORK

In Hadoop system, job scheduling is a significant direction.

The default FIFO scheduler cannot work fairly in a shared

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

cluster with multiple users and a variety of jobs. FAIR SCHED-

ULER [3] and Capacity Scheduler [4] are widely used to ensure

each job to get a proper share of the available resources.

To improve the performance, Quincy [5] and Delay Schedul-

ing [6] optimize data locality in the case of FAIR SCHEDULER.

Coupling Scheduler in [7], [8] aims to mitigate the starvation

of reduce slots in FAIR SCHEDULER and analyze the perfor-

mance by modeling the fundamental scheduling characteristics

for MapReduce. Another category of schedulers consider user-

level goals while improving the performance. iShuffle [9] sep-

arates shuffling from the reduce phase and provides a platform

service to manage and schedule data output from map phase.

However, reduce slots will be occupied for shuffling from

the beginning of the map phase and such resources are not

efficiently used since a part of time is used to wait for the ends

of map tasks. Recent work TuMM [10], [11] and FRESH [12]

have developed dynamic slot configurations in Hadoop based

on FIFO and FAIR SCHEDULER. A free task slot will be

assigned as map slot or reduce slot according to the workload

of the map and reduce phase for all jobs running concurrently

in the cluster. Some other work focuses on heterogeneous

environments. LATE scheduler [13] was proposed to stop

unnecessary speculative executions in order to improve the

performance in a heterogeneous Hadoop cluster. LsPS [14]

uses the present heterogeneous job size patterns to tune the

scheduling schemes.Some other work [15], [16] focused on

the skew problem in MapReduce.

The Hadoop community recently released Next Generation

MapReduce (YARN) [17]. In YARN, instead of fixed-size

slots, each task specifies a resource request in the form of

<memory size, number of CPU cores> and each slave node

offers resource containers to process such requests. Some

recent work [18], [19] proposed to use multiple scheduler to

solve the scalability issue. Mesos [20] introduced a distributed

two-level scheduling mechanism to share clusters and data

efficiently between different platforms such as MapReduce,

Dryad [21] and others. Our work can be integrated into these

platforms as a single low-level scheduler.

III. PROBLEM FORMULATION

In this paper, we consider a Hadoop cluster as the MapRe-

duce service platform. Currently, there are two branches

of Hadoop frameworks available, Hadoop [2] and Hadoop

YARN [17]. Our solution and implementation are based on

the first generation of Hadoop [2]. But the techniques we

present can be easily extend to Hadoop YARN [17]. We will

also compare the performance with Hadoop YARN in our

evaluation (Section V).

In our problem setting, we consider that a Hadoop cluster

consists of a master node and multiple slave nodes. Each node

is configured with multiple slots which indicate its capacity

of serving tasks. A slot can be set as a map slot or reduce

slot to serve one map task or reduce task, respectively. We

assume there are totally S slots and the cluster has received

a batch of n jobs for processing. J represents the set of jobs,

J={J1,J2,...,Jn}. Each job Ji is configured with mi map tasks

and ri reduce tasks. In a traditional Hadoop system, the cluster

administrator has to specify the numbers of map slots and

reduce slots in the cluster. A map/reduce slot is dedicated to

serve map/reduce tasks throughout the lifetime of the cluster.

In this work, however, we adopt a dynamic slot configuration

that we have developed in our prior work [10], [12], where

a slot can be set as a map slot or reduce slot during the job

execution based on the scheduler’s decision. Therefore, there

is no need to configure the number of map slots and reduce

slots before launching the cluster. The system will dynamically

allocate slots to serve map and reduce tasks on-the-fly. We

omit the details of its implementation in this paper because our

focus is a different scheduling strategy based on the dynamic

slot configuration. Essentially, our objective is to develop a

scheduling algorithm that assigns tasks to available slots in

order to minimize the makespan of the given set of MapReduce

jobs. Table I lists the notations we use in the rest of this paper.

TABLE I: Notations

n/K/S # of jobs / # of active jobs / # of slots in the cluster

Ji/mi/ri i-th job / number of its map tasks / number of its reduce tasks

Fo/Ao observed slot release frequency / observed # of available slots

Fe/Ae estimated slot release frequency / estimated # of available slots

Tm/Ts execution time of a map task / execution time of the shuffling phase

Tw/Rt length of a historical window / # of slots released in the t-window

ft slot release frequency in the t-th window, ft = Rt/Tw

at # of available slots in t-th window

m′

i
of pending map tasks of job Ji

α gap from the end of map phase to the end of shuffling phase

d/B size of data generated by one map task / network bandwidth

IV. OUR SOLUTION : OMO

In this section, we present our solution OMO which aims to

reduce the execution time of MapReduce jobs. We develop two

new techniques in our solution, lazy start of reduce tasks and

batch finish of map tasks. In the rest of this section, we first

describe a monitor module that serves as a building block for

both techniques. And then, we introduce these two techniques

individually and present a complete algorithm that integrates

both of them. The entire solution is mainly developed as a

new Hadoop scheduler. The implementation details will be

introduced in Section V.

A. Slot release frequency

Both of our new techniques rely on an important parameter

which is the estimated frequency of slot release in the system.

For a Hadoop scheduler making decisions of resource alloca-

tion, this parameter represents the system resource availability

in the future. We find that it is a critical factor for the system

performance, but neglected by all the prior work. While the

details will be discussed in the following subsection, we first

present the basic method to estimate the slot release frequency.

We define two parameters Fo and Fe to represent the

observed slot release frequency and estimated slot release

frequency respectively, i.e., Fo or Fe slots released per time

unit. Fo is a measurement value obtained by monitoring the

job execution and Fe is the estimation of the future release

frequency that will be used by the scheduler. In addition, we

introduce available slots to describe the slots that could be

possibly released in the near future. Available slots include all

the slots serving map tasks and the slots serving a job’s reduce

tasks if the job’s map phase has be finished. In other words,

the available slots exclude the slots serving the reduce tasks

of a job with unfinished map tasks in which case the release

time of the slots is undetermined. In our solution, we suppose

that for a particular circumstance, the slot release frequency

is proportional to the number of available slots.

Specifically, we monitor a historic window to measure the

number of released slots and the number of available slots in

the window indicated by Rt and at (for the t-th window),

respectively. Assume that the window size is Tw seconds. The

slot release frequency in this window will be ft = Rt

Tw

and

the ratio between slot release frequency and the number of

available slots is ft
at

= Rt

at·Tw

. In our design intuition, this

ratio is supposed to be consistent over a certain period. For

each window t, we thus record the (ft, at) pairs and derive the

average value of the slot release frequency Fo and the average

number of available slots denoted by Ao. We use the common

method of exponential moving average (EMA) to catch the

dynamics during the execution,

Fo(t) = α · f(t) + (1− α) · Fo(t− 1),

Ao(t) = α · a(t) + (1− α) ·Ao(t− 1),

where Fo(t) or Ao(t) is the value of Fo or Ao after the t-th

window and Fo(t− 1) or Ao(t− 1) indicates the old value of

Fo or Ao after the (t− 1)-th window.

When estimating Fe for a future time, we first need to

determine the number of available slots (Ae) at that point.

Then, based on the assumption that the slot releasing frequency

is proportional to the number of available slots, we can

calculate Fe as Fe = Fo·Ae

Ao

. This component of estimating

the slot release frequency will be used by both of our new

techniques which will be presented later in this section. We

will introduce more details, such as how to obtain the value

of Ae, in the algorithm descriptions.

B. Lazy start of reduce tasks

The goal of our first technique is to optimize the start time

of the reduce phase of MapReduce jobs. We first show how a

traditional Hadoop system controls the overlapping period and

give the motivation of our design. Then, we will introduce the

intuitions of our solution and the details of the algorithm.

1) Motivation: One important feature of MapReduce jobs

is the overlap between the map and reduce phase. The reduce

phase usually starts before the map phase is finished, i.e., some

reduce tasks may be concurrently running with map tasks of

the same job. The benefit of this design is to allow the reduce

tasks to shuffle (i.e., prepare) the intermediate data (partially)

created by map tasks before the entire map phase is done

to save the execution time of the reduce tasks. In Hadoop, a

system parameter slowstart can be configured to indicate when

to start the reduce tasks. Specifically, slowstart is a fractional

value representing the threshold for the map phase’s progress

exceeding which reduce tasks will be allowed to execute.

Apparently, setting slowstart to 1 yields the worst perfor-

mance because all data shuffling happens after the map phase

is finished. However, if we start reduce tasks too early, it will

not only affect the reduce progress of other jobs, but also the

execution of map tasks because those occupied slots could

otherwise serve map tasks.

In practice, it is extremely hard for a user to specify the

value of slowstart before launching the cluster. And the pre-

configured value will not be the optimal for various job

workloads. In this paper, we develop a new technique, lazy

start of reduce tasks, to improve the performance. The basic

idea is to postpone the start of reduce phase as much as

possible until data shuffling will incur additional delay in the

process. Ideally, a perfect alignment of the map and reduce

phases is that the last reduce task finishes the data shuffling

right after the last map task is completed. However, simply

using the slowstart threshold is difficult to achieve the best

performance because it depends on not only the progress of

the map phase but also other factors such as the map task

execution time and shuffling time. In the rest of this subsection,

we present our solution that determines the start time of reduce

tasks during the execution of the job. We first introduce an

algorithm for single job execution to illustrate our design

intuition, and then extend it for multiple job execution.

2) Single Job: The original design of the slowstart pa-

rameter in Hadoop indicates that the progress of the map

phase is certainly important for deciding when to start the first

reduce task. The best start time of the reduce phase, however,

also depends on the following factors. (1) Shuffling time:

This is determined by the size of intermediate data generated

by map tasks and the network bandwidth. Intuitively, a job

generating more intermediate data after the map phase needs

a longer shuffling time in its reduce phase. Thus, we should

start the reduce tasks earlier. The intermediate data size is

generally proportional to the progress of the map phase. Thus,

by monitoring the finished map tasks, we can obtain a good

estimation of the final data size. (2) Map task executing time:

The benefit of starting reduce tasks before the end of the map

phase is to overlap the shuffling in the reduce phase with the

execution of the rest of map tasks (the last a few waves of

map tasks). Therefore, given a certain shuffling time, if each

map task of a job requires longer time to finish, then we prefer

to start the reduce phase later. (3) Frequency of slot release:

How frequently a slot is released and becomes available in

the cluster is also an important factor. For both map and

reduce phases, the tailing tasks have the critical impact on

the overlapping period. Once we specify a target start time

for the last reduce task, we can use the slot release frequency

to derive when we should start the reduce phase.

Our solution monitors the above three parameters to decide

the start time of the reduce phase. Before introducing the de-

tailed algorithm, we first present and prove a design principal.

Principle 1: Once the reduce phase of a job is started, all

reduce tasks of the job should be consecutively executed in

order to minimize the job execution time.

Proof: We prove this principle by contradiction. Assume

that the best arrangement does not follow this principle, i.e.,

some map tasks are launched after the first reduce task is

started, and before the last few reduce tasks are started. We

identify the last such map tasks, e.g., task B in Fig. 1, and

the first reduce task, e.g., task A in Fig. 1. Then, we form

another arrangement by switching these two tasks and show

that the performance is no worse than the original arrangement.

After the switch, the finish time of the map phase becomes

earlier because task A occupies a slot at a later time point

and that slot could serve map tasks before task A is started.

Meanwhile, the shuffling performance keeps the same, i.e., the

gap from the end of the map phase to the end of the shuffling

has no change because the bottleneck of the shuffling is the

last reduce task, i.e., task C in Fig. 1. Therefore, if we consider

the end of the shuffling phase as the performance indicator,

the new arrangement after the switch is no worse than the

original solution. We can keep applying the same switch on

new arrangements and get a solution where reduce tasks are

consecutively executed with no interruption of map tasks.

!"#$

%&'(!&)*

+$,-.$(!&)*

/

000(000

000(000

1

!"#$

!"#$

2

Fig. 1: Illustration of the proof.

Based on the above prin-

cipal, we analyze the gap

from the end of the map

phase to the end of the shuf-

fling phase and derive the

best start time of the reduce

phase to minimize this gap.

Assume the running job has

m map and r reduce tasks.

When a slot becomes avail-

able, our scheduler needs to

assign it to a new task. When

the reduce phase has not started, there are just two options,

to serve a map task or to serve a reduce task which starts the

reduce phase.

Let α be the time gap from the end of the map phase to

the end of the shuffling stage (see Fig. 2) and assume that

variable x represents the number of pending map tasks. We

first derive α as a function x and then decide the time to

start the reduce phase. Additionally, we use Tm to indicate

the average execution time of a map task, and Ts to represent

the estimated shuffling time of the last reduce task.

!"#$

%&'(!&)*

+$,-.$(!&)*

!"#$%&'(()"*!+

!!!"!!!

!"#$%&'(()"*!+

!!!"!!!

/"0)1(0$,-.$(1&)*

2&)1(0$,-.$(1&)*

2&)1(#&'(1&)*

!!

!"

"#$#

"#$#

!

Fig. 2: Lazy Start of Reduce Tasks: illustrating the alignment of map
phase and shuffling phase.

Since all reduce tasks are executed consecutively and reduce

task slots will not be released until the end of a job, after

the last reduce task is assigned, the number of available

slots becomes S − r. Therefore, the estimated frequency of

slot release is decreased to Fe = Fo·(S−r)
S . Assuming the

slots to be released at a constant rate with an interval of 1
Fe

between any two consecutive releases, the execution time for

the remaining map tasks can be expressed as x
Fe

+ Tm (see

Fig. 2). Therefore, we express α as a function of x:

α = Ts − (
x

Fe
+ Tm) = Ts − (

x · S

Fo · (S − r)
+ Tm), (1)

where Fo is a measured value as described in Section IV-B

and Tm records the average execution of a map task. Both Fo

and Tm are updated once a task is finished. To estimate Ts, we

measure the average size of the intermediate data generated by

a map task (indicated by d) and the network bandwidth in the

cluster (indicated by B). Ts can be expressed as: Ts =
d·m
B·r

During the execution of a job, our scheduler forms α as

the function of x and then calculates the values with different

x whenever a slot is released. When the actual number of

the pending map tasks m′ satisfies the following equation, the

reduce phase will be started, i.e., the first reduce task will be

assigned to the current available slot:

m′ = arg min
x∈[m′,m]

α.

3) Multiple Jobs: Now, we extend our design for serving

multiple MapReduce jobs. Our scheduler is built upon FAIR

SCHEDULER which evenly distributes slots to all the active

jobs. Specifically, if there are S slots in the cluster and K

jobs running concurrently, each job can occupy S
K slots and

the effective slot release frequency for each job is Fo

K .

Following Eq. (1), we calculate the gap α for each job Ji,

α = Ts(i)− (
xi

Fe
+ Tm(i)),

where xi is the variable representing the number of the

pending map tasks of Ji and parameters Ts(i) and Tm(i) are

also specific to Ji. The estimated slot release frequency Fe

can be estimated as Fo·Ae

Ao·K
, where Fo and Ao are common

parameters for all the jobs. With multiple jobs running, Ao

may not be the same as S as in the case of single job execution.

When calculating α for Ji, we will use the measured value of

Ao. However, the following equation still holds Ae = Ao−ri,

where ri is the number of the reduce tasks in Ji. Therefore,

α = Ts(i)− (
xi ·Ao ·K

Fo · (Ao − ri)
+ Tm(i)). (2)

Finally, the reduce phase should be started when the number

of pending map tasks m′

i satisfies the following equation:

m′

i = arg min
x∈[m′

i
,mi]

α.

It is possible that multiple jobs satisfy the above equation, in

which case our scheduler will allocate the slot to the job that

has occupied the fewest slots among all the candidates.

The details of our algorithm are shown in Algorithm 1.

Function LazyStartReduce() is supposed to return the index

of the job that should start its reduce phase. If there is no

candidate, the function will return “−1”. The variable res

records the set of candidate job indexes. Specifically, lines

1–6 set the number of active jobs (K). Lines 5–14 enumerate

all the running jobs that have not started their reduce phases,

and use Eq. (2) to determine if they are candidate jobs to

start the reduce phase. Eventually, when there are multiple

candidates in res, the algorithm return the index of the job

with the minimum occupied slots (lines 15–19).

Algorithm 1 Function LazyStartReduce()

1: K = 0, res = {}
2: for i = 1 to n do

3: if Ji is running then

4: K ← K + 1
5: for i = 1 to n do

6: if Ji is running and has not started reduce phase then

7: αOPT = Ts(i)− (
m′

i
·Ao·K

Fo·(Ao−ri)
+ Tm(i))

8: selected = true

9: for x = m′

i + 1 to mi do

10: α = Ts(i)− (xi·Ao·K
Fo·(Ao−ri)

+ Tm(i))
11: if α < αOPT then

12: selected=false; break;

13: if selected == true then

14: res = res+ {i}
15: if res is empty then

16: return −1
17: else

18: sort all the job indexes in res in the ascending order of

the number of occupied slots

19: return the first index in the sorted list

C. Batch finish of map tasks

Our second technique aims to improve the performance of

the map phase by arranging the tailing map tasks to be finished

in a batch. In this subsection, we first show how the alignment

of map tasks affects the execution time of a MapReduce job,

and then present our algorithm to improve the performance.

1) Motivation: In the design of a Hadoop system, the map

tasks are expected to finish in waves to achieve the good

performance. The misalignment of map tasks, especially the

tailing map tasks may significantly degrade the overall job

execution time. With a misalignment, the last few pending

map tasks will incur an additional round of execution in the

map phase, and the reduce tasks that have been started have to

wait for the finish of these map tasks causing poor utilization

of their occupied slots.

In practice, however, map tasks are barely aligned as waves

because the number of map tasks may not be a multiple of the

number of the allocated slots. In a traditional Hadoop system,

the number of map slots in the cluster is a system parameter,

and unknown to the user who submits the job. In our solution

with dynamic slot configuration, the same problem remains

and with no reserved slots for map or reduce tasks, the number

of slots assigned to map tasks is even more uncertain. In

addition, when multiple jobs are concurrently running, the

misalignment of map tasks is more serious because of the

heterogeneous execution times of map and reduce tasks and

various scheduling policies.

Therefore, in our solution, we aim to arrange the tailing

map tasks in a batch to address this issue. Our intuition is to

let the Hadoop scheduler increase the priority of the tailing

map tasks when assigning tasks to available slots, which may

violate its original policy. The decision depends on the number

of pending map tasks and the estimation of the slot release

frequency in the future. Basically, given the number of the

pending map tasks of a job, if the scheduler finds that the

cluster will release a sufficient number of slots in a short

time window, it will reserve those future slots to serve the

pending map tasks. The benefit is that the target job’s map

phase can be finished more quickly and the slots occupied by

its reduce tasks will become available sooner. The downside

is a possible delay incurred to other active jobs because those

reserved future slots could otherwise serve them.

2) Algorithm Design: First of all, the candidate jobs for

batch finish of map tasks must have started their reduce phase.

Otherwise, if we apply this technique to the jobs that have not

started their reduce phases, then the result is equivalent to

launching their reduce phases after the map phases without

any overlap. Second, for each candidate job, our scheduler

analyzes the benefit and penalty of finishing the pending map

tasks in a batch and then chooses the job which yields the

most reward to apply this technique.

Specifically, we examine each job that has started its reduce

phase and determine if the batch finish of its map tasks is

appropriate. We first analyze the performance under regular

FAIR SCHEDULER and then compare to the case if we finish

all the pending map tasks in a batch. For each job Ji, recall

that m′

i be the number of its pending map tasks and ri be the

number of reduce tasks. Given the slot release frequency Fo,

a slot will be allocated to job Ji every K
Fo

, where K is the

number of active jobs in the cluster. Under FAIR SCHEDULER,

Ji will finish its map phase in tfair time units,

tfair =
K ·m′

i

Fo
+ Tm(i). (3)

Meanwhile, other jobs get
Fo·(K−1)

K slots per time unit, thus

the total number of slots that other jobs obtain is

s =
Fo · (K − 1)

K
·tfair = (K−1)·m′

i+
Fo · (K − 1) · Tm(i)

K
.

Now if we decide to increase the priority of Ji’s pending map

tasks and finish them in batch, then the map phase will be

finished in m′

i ·
1
Fo

+ Tm time unites. After that, Ji’s reduce

slots become available and the slot release frequency will be

increased to Fe = Fo·(Ao+ri)
Ao

. To contribute s slots to other

jobs, the time required is

tbatch =
s

Fe
=

s ·Ao

Fo · (Ao + ri)
. (4)

If tbatch < tfair, then the batch finish of map tasks becomes

superior because it achieves the same scenario, i.e., Ji’s map

phase is finished and all the other jobs get s slots, in a

shorter time period. The details are illustrated in Algorithm 2.

Function BatchFinishMap returns the index of the job that

should apply the batch finish to its pending map tasks. Variable

c represents the index of the candidate job. If there is no such

candidate, the function will return “−1”. The algorithm mainly

includes a loop (lines 5–9) that enumerates every active job

and calculates tfair and tbatch to determine if it is worthwhile

to apply the technique. Variable max is defined to temporarily

record the current maximum difference between tfair and

tbatch. Eventually, the index of the job with the maximum

benefit is returned.

Algorithm 2 Function BatchFinishMap ()

1: K = 0,max = 0, c = −1
2: for i = 1 to n do

3: if Ji is running then

4: K ← K + 1
5: for i = 1 to n do

6: if Ji is running and has started reduce phase then

7: Calculate tfair and tbatch as in Eq. (3) and Eq. (4)

8: if tbatch < tfair and tfair − tbatch > max then

9: max = tfair − tbatch, c = i

10: return c

D. Combination of the two techniques

Finally, our scheduler integrates our two techniques intro-

duced above into the baseline fair scheduler for the execution

of all the jobs. The challenge in the design is that there could

be conflict between these two techniques. For example, when

a slot is released, the first technique may decide to use this slot

to start a job’s reduce phase, i.e., assigning a reduce task to it,

while the second technique may prefer to reserve the slot as

well as the following consecutive slots to finish another job’s

pending tasks in a batch. In our solution, we adopt a simple

strategy to solve the issue: when there is a conflict, we give

the technique of lazy start of reduce tasks a higher priority.

The intuition is that when a new job starts its reduce phase,

the decision of batch finish of map tasks could be affected

because there is a new candidate for applying the technique.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of OMO and

compare it with other alternative schemes.

A. Testbed setup and workloads

1) Implementation: We implemented our new scheduler

OMO on Hadoop version 0.20.2 by adding a set of new

components to support our solution. First, we create four

new modules into JobTracker: the Task Monitor (TM), the

Cluster Monitor (CM), the Execution Predictor (EP) and

the Slot Assigner (SA). TM is responsible for recording the

size of the intermediate data created by each map task, the

execution progress of each task, the execution time of each

completed task and the numbers of the finished and pending

map/reduce tasks of each job. According to the statistics from

TM and the number of concurrent jobs in the cluster from

JobInProgress, CM collects the number of released slots in

the whole cluster in real-time and updates the slot release

frequency dynamically. It is also responsible for collecting

the total intermediate data output by the map phase of each

job. Based on above statistics, EP is responsible to predict

the overall slot frequency of the cluster, the best time point

to apply the algorithm of the batch finish of map tasks, the

remaining execution time of the map phase and the execution

time of the shuffling of each job. Furthermore, the role of SA

is to assign a map or reduce task to every released slot with

the information received from EP.

2) Hadoop cluster: All the experiments are conducted on

NSF CloudLab platform at the University of Utah [22]. Each

server has 8 ARMv8 cores at 2.4GHz, 64 GB memory and

120 GB storage. We create two Hadoop clusters with 20 and

40 slave nodes. Each slave node is configured with 4 slots.

OMO and other schedulers for Hadoop are compared on the

20 slave nodes platform. And we use other cluster to evaluate

the scalability of OMO. Additionally, we also launch another

YARN cluster (v2.6.0) with 20 slave nodes (node managers)

for performance comparison. Instead of specifying the number

of slots, each node declares 8 CPU cores and 40 GB memory

as the resource capacity.

3) Workloads: Our workloads for evaluation consider gen-

eral Hadoop benchmarks with large datasets as the input. In

particular, we use six datasets in our experiments including

10GB/20GB wiki category links data, 10GB/20GB Netflix

movie rating data, and 10GB/20GB synthetic data. The wiki

data includes wiki page categories information, the movie

rating data is the user rating information and the synthetic

data is generated by the tool TeraGen in Hadoop. We choose

the following six Hadoop benchmarks from Purdue MapRe-

duce Benchmarks Suite [23] to evaluate the performance: (1)

Terasort: Sort (key,value) tuples on the key with the synthetic

data as input. (2) Sequence Count: Count all unique sets of

three consecutive words per document with a list of Wikipedia

documents as input. (3) Word Count: Count the occurrences

of each word with a list of Wikipedia documents as input. (4)

Inverted Index: Generate word to document indexing with

a list of Wikipedia documents as input. (5) Classification:

Classify the movies based on their ratings with the Netflix

movie rating data as input. (6) Histogram Movies: Generate

a histogram of the number of movies in each user rating with

the Netflix movie rating data as input.

Table II shows the details of all six benchmarks in our

tests, including the benchmark’s name, input data type/size,

intermediate data size, and the number of map/reduce tasks.

B. Evaluation

In this subsection, we present the performance of OMO and

compare it to other solutions. We mainly compare OMO to

the following alternative schedulers in the prior work: (1) FAIR

SCHEDULER: We use the Hadoop’s default slot configuration,

i.e, each slave has 2 map slots and 2 reduce slots. The slowstart

TABLE II: Benchmark Characteristics

Benchmark
Input Input Shuffle map, reduce

Data Size Size #

Terasort Synthetic
20 GB 20 GB 80, 2

10 GB 10 GB 40, 1

SeqCount Wikipedia
20 GB 17.5 GB 80, 2

10 GB 8.8 GB 40, 1

WordCount Wikipedia
20 GB 3.9 GB 80, 2

10 GB 2 GB 40, 1

InvertedIndex Wikipedia
20 GB 3.45 GB 80, 2

10 GB 1.7 GB 40, 1

HistMovies Netflix
20 GB 22 KB 80, 2

10 GB 11 KB 40, 1

Classification Netflix
20 GB 6 MB 80, 2

10 GB 3 MB 40, 1

is set from the default value 0.05 to 1, represented as Fair-

0.05, Fair-0.2, Fair-0.4, Fair-0.6, Fair-0.8 and Fair-1. (2)

FRESH [12]: Our previous work FRESH also adopts dynamic

slot configuration. The slowstart is set to 1.

1) Performance: We compare our solutions with other

schedulers in a Hadoop cluster with 20 slave nodes. We first

show the makespan performance of Lazy Start and Batch

Finish individually. Then we show the performance with the

combination of these two techniques.

In each set of experiments, we consider both simple and

mixed workloads. For each test of simple workloads, we create

8 jobs of the same benchmarks with the same input data. The

size of each data size is 20 GB. Therefore, there are overall

160 GB data processed in each experiment and each job has

80 map tasks and 2 reduce tasks. All jobs are consecutively

submitted to the Hadoop system with an interval of 2 seconds.

To further validate the effectiveness of OMO, we evaluate

the performance with mixed workloads consisting of different

benchmarks. We conduct eight job sets (Set A to H) of mixed

jobs whose details are introduced in Table. III. Set A is mixed

with all six benchmarks including both heavy-shuffling and

light-shuffling ones. A recent trace from Cloudera shows that

about 34% of jobs have at least the same amount of output

data as their inputs [24]. So, during the 12 jobs in Set A,

there are 4 heavy-shuffling jobs and 8 light-shuffling jobs.

Each benchmark has two jobs, one with 20 GB input data and

the other with 10 GB input data. Set B is a mixed job set with

the two heavy-shuffling benchmarks: Terasort and Sequence

Count. For each benchmark, there are 8 jobs, four with 20

GB input data and the other four with 10 GB input data. Set

C is for scalability experiments of OMO.

TABLE III: Sets of Mixed Jobs

Job
Benchmarks

Job Input map, reduce

Set # Size #

A All benchmarks
6 20 GB 80, 2

6 10 GB 40, 1

B TeraSort, SeqCount
4 20 GB 80, 2

4 10 GB 40, 1

C All benchmarks
12 20 GB 80, 2

12 10 GB 40, 1

Makespan Performance of Lazy Start: First, we disable

Batch Finish algorithm in the Execution Predictor (EP)

module in OMO to show the performance of Lazy Start.

Fig. 3 shows the makespan performance of FAIR SCHEDULER,

FRESH and Lazy Start in both simple and mixed benchmarks.

Due to the page limit, we show the simple workloads evalua-

tion results with three benchmarks.

TeraSort SeqCount WordCount Set A Set B
0

500

1000

1500

2000

2500

3000

3500

M
a
k
e
s
p
a
n
 (

S
e
c
)

Fair:0.05
Fair:0.2
Fair:0.4
Fair:0.6
Fair:0.8
Fair:1
FRESH
Lazy Start

Fig. 3: Execution time under FAIR SCHEDULER, FRESH and Lazy
Start (with 20 slave nodes)

In the simple workloads experiments, for heavy-shuffling

benchmarks, such as Terasort and Sequence Count, FAIR

SCHEDULER can achieve best makespan performance when

the slowstart is set as 0.05 or 0.2 and Lazy Start improves

11.6% and 15.9% in makespan compared to the best one

in FAIR SCHEDULER, and 24.5% and 23.8% compared to

FRESH. For light-shuffling benchmarks, such as Word Count,

FAIR SCHEDULER results in similar performance with dif-

ferent values of the slowstart. Since the shuffling time is

short, FRESH achieves the good performance. On average,

the makespan in Lazy Start is 27.8% shorter than FAIR

SCHEDULER and 15.8% shorter than FRESH.

In the mixed workloads experiments, Fair-1 yields the worst

performance with different sets of jobs in FAIR SCHEDULER.

In job set A, Lazy Start improves 18.1% of makespan com-

pared to the best performance in FAIR SCHEDULER and 20.2%

to FRESH. In job set B, Lazy Start improves 15.6% and

20.7% of makespan compared to the best performance in FAIR

SCHEDULER and FRESH.

Makespan Performance of Batch Finish: To show the

evaluation results of Batch Finish, we disable Lazy Start

technique in OMO. Fig. 4 shows the makespan performance

of Fair-1, FRESH and Batch Finish in both simple and mixed

workloads. The value of the slowstart is 1 for all these

schedulers. FRESH achieves better performance in makespan

than Fair-1. On average, the makespan of FRESH is 7.26%

and 12.3% less than Fair-1 in simple and mixed workloads

experiments. And Batch Finish decreases the makespan by

7.1% and 11% compared to FRESH.

TeraSort SeqCount WordCount Set A Set B
0

500

1000

1500

2000

2500

3000

M
a
k
e
s
p
a
n
 (

S
e
c
)

Fair:1
FRESH
Batch Finish

Fig. 4: Execution time under FAIR SCHEDULER, FRESH and Batch
Finish (with 20 slave nodes)

Performance of OMO: Finally, we show the evaluation

results of OMO, the combination of the two techniques above.

First, we show the makespan performance of OMO with both

simple and mixed workloads compared with other schedulers.

Then we illustrate the breakdown execution time in both the

map phase and the shuffling phase of each experiment.

The experiment results of three simple workloads and two

sets of mixed workloads are shown in Fig. 5. Fair:best rep-

resents the best makespan performance in FAIR SCHEDULER.

From the evaluation results, Lazy Start shows more signifi-

cant improvement of makespan in heavy-shuffling benchmarks

and Batch Finish shows better performance in light-shuffling

benchmarks. OMO takes advantage of both techniques and

achieves better makespan performance than either of them.

On average, OMO improves 26% and 29.3% in makespan

compared to Fair:best and FRESH.

TeraSort SeqCount WordCount Set A Set B
0

1000

2000

3000

M
a
k
e
s
p
a
n
 (

S
e
c
)

Fair:best
FRESH
Lazy Start
Batch Finish
OMO

Fig. 5: Execution time under FAIR SCHEDULER, FRESH, Lazy Start,
Batch Finish and OMO (with 20 slave nodes)

2) Comparison with YARN: In addition, Table. IV shows

the comparison with YARN. Note that not all the benchmarks

are available in the YARN distribution and we only use

Terasort in our experiments with YARN. In each experiment,

there are 8 Terasort jobs with 20 GB input data. For each

YARN job, we set the CPU requirement of each task to be

2 core so that there are at most 4 tasks running concurrently

at each node. YARN uses a new mechanism to assign reduce

tasks. Basically, for each job, reduce tasks can be assigned

according to the processing of the map phase (slowstart) and

a memory limitation for reduce tasks in the cluster (maxRe-

duceRampupLimit). We use the default configuration in the

experiments. During the experiments, we set the memory

demand of each map/reduce task of each job to be 2 GB,

4 GB, 6 GB and 8 GB, represented by YARN:2, YARN:4,

YARN:6 and YARN:8 in Table. IV. In the YARN cluster,

the makespan of YARN:2 is about 6.6% larger than the

one with other memory requirements. And OMO improves

the makespan by 17.3% compared to YARN:2 and 11.6%

compared to the others. Note that YARN adopts a fine-grained

resource management implying inherited advantages over the

Hadoop system OMO is built on. But OMO still outperforms

the YARN system. Our design can be easily extended and

ported to the YARN system which is a part of our future

work. When it is done, we certainly expect a more significant

overall improvement.

TABLE IV: Execution time of Terasort benchmark under YARN and
OMO (with 20 slave nodes).

YARN:2 YARN:4 YARN:6 YARN:8 OMO

Makespan 1583s 1490s 1464s 1481s 1319s

3) Scalability: Finally, we test Set C on a large cluster

with 40 slave nodes to show the scalability of OMO and the

evaluation results are shown in Table V. We can observe

a consistent performance gain from OMO as in the smaller

cluster of 20 slave nodes with Set A. Compared to FAIR

SCHEDULER and FRESH, OMO reduces the makespan by

37%. The improvement is consistent with the experiments with

Set A and the 20-node cluster.

TABLE V: Makespan of Set H with 40 slave nodes

Fair-default Fair-1 FRESH OMO

Makespan of Set D 1885s 2258s 2037s 1238s

Overall, OMO achieves an excellent and stable makespan

performance with both simple workloads and mixed workloads

of different sets of jobs.

VI. CONCLUSION

This paper studies the scheduling problem in a Hadoop

cluster serving a batch of MapReduce jobs. Our goal is to

reduce the overall makespan by the appropriate slot alloca-

tion. We develop a new scheme OMO which particularly

optimizes the overlap between the map and reduce phases.

We have implemented our solution on the Hadoop platform,

and conducted extensive experiments with various workloads

and settings. The results show a significant improvement on

the makespan compared to a conventional Hadoop system,

especially for heavy-shuffling jobs.

Acknowledgment: This project was supported by National

Science Foundation grant CNS-1552525.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” vol. 51, no. 1, Jan. 2008, pp. 107–113.

[2] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/

[3] Fair scheduler. [Online]. Available: http://hadoop.apache.org/common/docs/r1.0.0/

fair scheduler.html

[4] Capacity scheduler. [Online]. Available: http://hadoop.apache.org/common/docs/

r1.0.0/capacity scheduler.html

[5] M. Isard, V. Prabhakaran, J. Currey et al., “Quincy: Fair scheduling for distributed

computing clusters,” in SOSP, 2009, pp. 261–276.

[6] M. Zaharia, D. Borthakur et al., “Delay scheduling: A simple technique for

achieving locality and fairness in cluster scheduling,” in EuroSys, 2010.

[7] J. Tan, X. Meng, and L. Zhang, “Performance analysis of coupling scheduler for

mapreduce/hadoop,” IBM T. J. Watson Research Center, Tech. Rep., 2012.

[8] ——, “Coupling task progress for mapreduce resource-aware scheduling,” in

INFOCOM’13, 2013, pp. 1618–1626.

[9] Y. Guo, J. Rao, and X. Zhou, “ishuffle: Improving hadoop performance with

shuffle-on-write,” in ICAC, 2013, pp. 107–117.

[10] Y. Yao, J. Wang, B. Sheng et al., “Using a tunable knob for reducing makespan

of mapreduce jobs in a hadoop cluster,” in CLOUD, June 2013, pp. 1–8.

[11] ——, “Self-adjusting slot configurations for homogeneous and heterogeneous

hadoop clusters,” Cloud Computing, IEEE Transactions on, pp. 1–14, March 2015.

[12] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “Fresh: Fair and efficient slot

configuration and scheduling for hadoop clusters,” in CLOUD, 2014.

[13] M. Zaharia, A. Konwinski et al., “Improving mapreduce performance in hetero-

geneous environments,” in OSDI, 2008.

[14] Y. Yao, J. Tai, B. Sheng, and N. Mi, “Scheduling heterogeneous mapreduce jobs

for efficiency improvement in enterprise clusters.” in IM, pp. 872–875.

[15] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: Mitigating skew in

mapreduce applications,” in SIGMOD, 2012, pp. 25–36.

[16] Y. Le, J. Liu, F. Ergün, and D. Wang, “Online load balancing for mapreduce with

skewed data input,” in INFOCOM, 2014.

[17] Apach Hadoop YARN. [Online]. Available: http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html

[18] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, low

latency scheduling,” in SOSP, 2013, pp. 69–84.

[19] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek et al., “Omega: Flexible,

scalable schedulers for large compute clusters,” in EuroSys, 2013, pp. 351–364.

[20] B. Hindman, A. Konwinski, M. Zaharia et al., “Mesos: A platform for fine-grained

resource sharing in the data center,” ser. NSDI. USENIX, 2011, pp. 22–22.

[21] M. Isard, M. Budiu, Y. Yu et al., “Dryad: Distributed data-parallel programs from

sequential building blocks,” in EuroSys, 2007, pp. 59–72.

[22] Nsf cloudlab. [Online]. Available: https://www.cloudlab.us/

[23] Purdue mapreduce benchmarks suite. [Online]. Available: http://web.ics.purdue.

edu/∼fahmad/benchmarks.htm

[24] S. A. Y. Chen and R. Katz, “Interactive analytical processing in big data systems: A

cross-industry study of mapreduce workloads.” ser. VLDB, 2012, pp. 1802–1813.

