
Pirogue, a lighter dynamic version of the

Raft distributed consensus algorithm

Jehan-François Pâris Darrell D. E. Long1

Department of Computer Science

University of Houston

Houston, TX, USA 77204-3010

jfparis@uh.edu

Department of Computer Science

University of California

Santa Cruz, CA, USA 95064

darrell@cs.ucsc.edu

Abstract—Raft is a new distributed consensus algorithm that

is easier to understand than the older Paxos algorithm. Raft’s

major drawback is its high energy footprint: as it relies on static

quorums for deciding when it can commit updates, it requires

five participants to protect against two simultaneous failures. We

propose to reduce this footprint by replacing the static quorums

that Raft currently uses by quorums that vary according to the

number of currently available participants. We present first a

modified dynamic-linear voting protocol that disables single-

server updates and show that a Raft cluster with four partici-

pants managed by this protocol would be almost as available as a

conventional Raft cluster with five participants and always toler-

ate the irrecoverable failure of any single participant without any

data loss. In addition, we show a Raft cluster with three partici-

pants and a witness managed by an unmodified dynamic-linear

voting protocol would be more available than a conventional Raft

cluster with five participants and could still tolerate most

irrecoverable failures of any single participant while maintaining

recoverability.

Keywords-Distributed computing; Fault-tolerant computing;

Green computing; Distributed consensus; Raft algorithm.

I. INTRODUCTION

Distributed consensus algorithms allow multiple partici-

pants in a distributed system to agree on the values of the data

they share. They are essential to the development of fault-

tolerant services because they allow multiple servers to act as

one. They are also notoriously complex because they have to

handle both server crashes and communication failures of all

kinds.1

Since it was proposed in the late nineties, Leslie Lamport’s

Paxos algorithm [8, 9] has been the gold standard for

distributed consensus algorithms because it has been proven

correct and is efficient in the standard case. At the same time, it

remains very hard to understand and quite difficult to imple-

ment [12]. To quote the authors of a full size implementation of

Paxos, “[t]here are significant gaps between the description of

the Paxos algorithm and the needs of a real-world system.” [3]

1 Supported in part by the National Science Foundation under awards CCF-

1219163 and CCF-1217648, by the Department of Energy under award DE-

FC02-10ER26017/DE-SC0005417 as well as by the industrial members of the

Storage Systems Research Center.

Ongaro and Ousterhout recently proposed the Raft consen-

sus algorithm to overcome these limitations [11, 12]. As noted

by Howard et al. [5], Raft is easier to understand and easier to

implement than Paxos. A remaining limitation of Raft is the

large number of servers it requires. Because it uses majority

consensus voting to decide when to commit an update, Raft

requires 2n + 1 participants to protect against n simultaneous

failures. As a result, most Raft clusters use five servers in order

to be able to tolerate two failures. This requirement is likely to

remain acceptable as long as Raft supports lightweight

services that can run on low-power nodes, thus maintaining a

low energy footprint. This is much less true when applications

require full-fledged servers.

We believe that reducing the energy footprint of the RAFT

protocol is essential to ensure its continuous success. We

addressed the issue in a previous paper [14] and proposed two

approaches for reducing the number of servers involved in a

Raft cluster without significantly altering the Raft algorithm

[14]. Our first proposal consisted of adjusting Raft quorums in

a way that would allow updates to proceed with as few as two

servers while requiring a larger quorum for electing a new

leader. For instance, a Raft cluster with four nodes, an update

quorum of two and a leader election quorum of three would offer

good protection against data loss while remaining slightly more

available than a conventional cluster with three nodes. Our

second proposal consists of replacing some Raft servers with

witnesses, that is, lightweight servers that maintain the same

metadata as their peers but hold no data [13]. We found that

clusters having one or two of their servers replaced by these

witnesses provided similar cluster availabilities as a cluster

with five full servers and very good to adequate protection

against data loss depending on the number of servers replaced

by witnesses.

The approach we propose here is more ambitious. Pirogue

replaces the static voting quorums that Raft uses by dynamic

quorums that shrink when the number of active servers dimin-

ishes and grow when this number increases. As a result, each

Pirogue cluster will have to maintain a consistent view of the

number and the identities of all its active servers. We found out

that this additional complexity produced much higher service

availabilities than our previous proposals:

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

Client

Consensus

module
State

machine

Log

Fig. 1. The Raft architecture (after [12]).

̈ A Pirogue cluster with four servers managed by a

dynamic linear voting protocol that does not allow

single-server updates would provide nearly the same

service availability as a Raft cluster with five servers

and still guarantee that a single irrecoverable server

failure would never result in a data loss.

̈ A Pirogue cluster with four servers and no restrictions

on the size of its quorums would provide a better service

availability than a Raft cluster with five servers.

̈ We can even replace one of the four servers in the above

cluster by a witness and still provide better service

availability than a Raft cluster with five servers.

The remainder of this paper is organized as follows.

Section II reviews the relevant features of the Raft algorithm.

Section III introduces our proposal and Section IV evaluates

the performance of three Pirogue configurations in terms of

system availability and risk of data losses. Finally, Section V

has our conclusions.

II. THE RAFT ALGORITHM

In this section, we present the salient features of the Raft

algorithm focusing on its update algorithm and the protocol it

uses for handling leader failures.

A. Overview

Ongaro and Ousterhout designed the Raft algorithm to run

on clusters consisting of at least three servers, like the one in

Fig. 1. Each of its component servers includes a log, a consen-

sus module and a state machine. Raft guarantees that, at any

time, a majority of these state machines will remain in agree-

ment. In other words, each Raft cluster implements a repli-

cated state machine [16].

Raft uses a strong leader model where each cluster has a

single leader that manages the whole cluster and other servers

are mere followers. As a result, the cluster leader is solely

empowered to receive requests from clients, forward them to

its followers and decide when they can be safely applied to

everyone’s state machines.

Leaders maintain their leadership status by sending peri-

odic heartbeats to their followers. Any follower that stops

receiving these heartbeats will call for an election and propose

itself as the new leader.

Raft partitions time into terms of arbitrary length that are

identified by consecutive sequence numbers. A new term

starts each time a server calls for an election. It will either end

if the election results in a split vote or continue as long as the

newly elected leader maintains its leadership status. Terms

play in Raft the role of a logical clock [7] and allow servers to

detect obsolete information, such as requests from a stale

leader. All communications between servers include the

sequence number of the current term.

B. Normal operation

When a leader receives a request from a client, it appends

it to its log, gives it a sequence number within the current term

and forwards it to its followers through an AcceptEntry()

remote procedure call. All followers that have up-to-date logs

append the new command to their logs and notify the leader of

that fact. Whenever the leader notices that some followers did

not reply, it resends the command and repeats the process until

all followers have acknowledged the request.

As soon as the leader has replicated the log entry on a

majority of the servers, it commits it and applies it to its own

state machine. This action also applies to all preceding entries

in the leader’s log, including entries created by a former leader

in a previous term. Commit decisions are propagated to other

servers by including the index of the last committed update in

all future messages coming from the leader, including

AcceptEntry() calls and heartbeats.

C. Handling leader failures

Raft uses a timeout mechanism for detecting leader fail-

ures: any follower that has not received a message from its

leader in a given amount of time will call for an election,

announce its candidacy for the cluster leadership position and

vote for itself. A main problem with this solution is that split

votes will occur whenever two followers call for elections at

the same time. Raft reduces, but does not completely eliminate

this risk, by using randomized election timeouts.

When a former follower becomes a candidate for the

cluster leadership position, it sends to all other servers a

message containing a summary of the state of its log. Servers

receiving that message will vote for the candidate unless any

of following three conditions holds:

1. They believe they still have a leader,

2. They have already voted for another candidate, or

3. Their own log is more “up to date” than the candidate’s

log.

The last restriction ensures that a candidate cannot collect a

majority of the votes unless its log contains all committed

updates.

The newly elected candidate will require all its followers

to duplicate in their logs the contents of its own log. To

achieve that, it will resend to each of its followers all its log

entries starting from the last entry for which both servers

agree.

D. Cluster membership changes

Raft handles cluster membership changes by requiring the

change to involve both a majority of the servers in the old

cluster and a majority of the servers in the new cluster.

III. INTRODUCING PIROGUE

The main reason for the high energy footprint of the Raft

algorithm is its reliance on majority consensus voting [17, 18]

for defining both its write quorum and its election quorum.

Since these quorums must contain a majority of the cluster

servers, a Raft cluster must comprise at least 2n + 1 servers to

be able to tolerate n server failures.

A much more efficient solution is to make these quorums

dynamic and require them to contain a majority of the active

servers of a given cluster, thus excluding servers that have

crashed and have not been formally reintegrated. So if a cluster

contains four servers, its initial majority will be defined as

three servers out of four. Should one of the servers fail, the new

majority will be two out of three. After a second server failure,

it will be two out of two. What happens after a third failure

depends on the way the protocol handles ties. The original

dynamic voting (DV) protocol [4] did not assign weights to

servers and did not include a tie-breaking rule. As a result, it

required a minimum of two communicating servers to allow

updates. A simple extension, known as dynamic-linear voting

(DLV) [6], solves these ties by applying a total ordering to the

servers. Overall, both DV and DLV require n + 2 servers per

cluster to be able to tolerate n failures. Pirogue takes

advantage of this property to reduce from five to four, the

number of servers required to tolerate two failures, thus

resulting in a 25 percent reduction of the energy footprint of

Raft.

Since Pirogue relies on dynamic quorums to decide when to

commit updates and to elect new leaders, it will have to main-

tain additional dynamic metadata. The simplest solution is to

use cohort sets [10] and let Pirogue manage them on the top of

the Raft update protocol.

Ć. Cohort sets

By definition, the cohort set of a Pirogue cluster represents

the set of servers that are allowed to participate in a leader

election. This set is customarily stored in a bitmap. Updating

that bitmap is the responsibility of the leader of the cluster. It

will do so whenever it detects (a) that a server has ceased to

reply to an update request and (b) the recovery of a server that

was previously unavailable.

Bitmap updates are pushed to other servers in the same way

as regular updates: the server assigns to each update a sequence

number within the present term and forwards it to its followers

through an AcceptEntry() remote procedure call. All followers

that have up-to-date logs append the new update to their logs

and notify the leader of that fact. As soon as the leader has

replicated the update on a majority of the servers in the

current cohort set, it commits it, applies it to its own state

machine and notifies its followers.

The leader will normally detect follower failures and

recoveries by keeping track of which followers acknowledge

its AcceptEntry() requests. Whenever user-generated update

requests are less than frequent, this approach may result in

unacceptable delays between the time a server fails and the

time the cluster leader detects that failure. The simplest

solution to this problem is to let the leader generate a dummy

AcceptEntry() request whenever a fixed interval has lapsed

without any user-generated update requests.

ć. Handling leader failures

Under Pirogue, only servers that belong to the last commit-

ted cohort set are allowed to have their vote counted. Let us see

how Pirogue achieves this goal.

1. Any candidate for the cluster leadership position will

include its version of the cluster cohort set in the

message it sends to other servers.

2. As in the Raft election protocol, servers receiving a

vote solicitation will withhold their vote if any of the

three following conditions holds:

a) They believe they still have a leader,

b) They have already voted for another candidate, or

c) Their own log is more “up to date” than the candi-

date’s log.

3. Servers voting for a candidate will attach to their votes

their version of the cluster cohort set.

4. When a candidate tallies the votes it has received, it

compares their versions of the cluster cohort set. In

doing so, it ascertains the current value of that set and

disregards the votes of all servers that are not in the

current cluster cohort set when deciding the election

outcome.

Note that all servers in the current cluster cohort do not

necessarily share the same view of that set. Consider, for

instance a Pirogue cluster with four servers, respectively

named A, B, C and D, and let us assume that server A is the

current leader of the cluster. When all four servers are opera-

tional, the cluster cohort set is {A, B, C, D}:

A B C D

{A, B, C, D} {A, B, C, D} {A, B, C, D} {A, B, C, D}

and all four servers are in perfect agreement about that value.

After cluster D fails, the new cohort set of the cluster will

be {A, B, C}:

A B C [D]

{A, B, C} {A, B, C} {A, B, C} {A, B, C, D}

Assume now that server D has recovered and that server A

has added it to its version of the cohort set but has crashed

before having propagated its new cohort set to either of its

followers:

A B C D

{A, B, C. D} {A, B, C} {A, B, C} {A, B, C, D}

Since A failed to propagate the new value of the cohort set

to a majority of the servers in the current cohort set, that

current cohort set remains valid and server A remains in it.

Ĉ. Reliability Issues

Because Raft relies on majority consensus voting, a Raft

cluster with five servers will protect the cluster and the data it

holds against:

1. The simultaneous failure of two of its five servers, and

2. The irrecoverable failure of two servers.

This is not true for Pirogue clusters as they will occasion-

ally run with only one or two operational servers. As a result,

Pirogue only needs four servers to protect the service against

the simultaneous failure of two of them. The drawback is that

Pirogue will not always preserve the cluster state in the pres-

ence of two irrecoverable server failures. Depending on the

way the cluster voting is set up, a Pirogue cluster may

occasionally run with only one or two operational servers. As a

result, there will be relatively brief intervals during which the

cluster state may either be left unprotected or only protected

against a single irrecoverable server failure. This is to say that

any given Pirogue cluster will be able to tolerate more

simultaneous server failures than a Raft cluster with the same

number of servers, but will also offer less protection against

irrecoverable server failures.

We do not believe it to be a major issue because most

irrecoverable data losses result from irrecoverable disk failures

and these failures are likely to be much less frequent than

server crashes. Even assuming a disk failure rate of 11.8 per-

cent per year, which is typical for consumer disks at the very

end of their useful lifetime [2], disk mean times to failure

would remain close to eight years and a half. We can expect

most disks to be more reliable than that and solid-state devices

to be even more reliable. When this is insufficient, Pirogue

offers its users the option of requiring all updates to be propa-

gated to all least two servers.

IV. REALIZATIONS

In this section, we evaluate three realizations of the

Pirogue algorithm that correspond to three different tradeoffs

between cluster availability, the risk of data loss and the

energy footprint of the cluster. These three realizations are:

4 3 2

4そ 3そ

1'

0''

2'3'

2そ そ

た 2た

た た た 2そ

1''2''

2そ そ

た 2た

2た そ2た そ2た そ

た 2た

Fig. 2. A Pirogue cluster with four servers, that does not allow updates in

single-server mode.

1. A four-server Pirogue cluster that requires all updates

to be propagated to at least two servers;

2. A four-server Pirogue cluster that allows updates

even when only a single server remains operational;

and

3. A Pirogue cluster with three servers and one witness

replacing the fourth server.

We will use three performance indexes to evaluate these

three realizations:

1. The cluster availability, that is, the fraction of time it

will be able to process user requests;

2. The cluster exposure to double irrecoverable server

failures, that is, the fraction of time the cluster will

run on two operational servers; and

3. The cluster exposure to single irrecoverable server

failures, that is, the fraction of time the cluster will

run on a single server.

To derive these values, we need to make a few working

assumptions. We will model our cluster as a set of servers with

independent failure modes. Whenever a server fails, a repair

process is immediately initiated for that server. Should several

servers fail, this repair process will be performed in parallel on

those servers. We assume that server failures are independent

events and are exponentially distributed with mean λ. In the

same way, we require repair times to be exponentially

distributed with mean μ. Both hypotheses are necessary to

represent our system by a Markov process with a finite

number of states.

Even though it is not necessary, we will assume that

cluster leaders can quickly detect server failures and repairs,

possibly with the help of dummy queries as we sketched in

Section III.

Ć. A four-server cluster prohibiting single-server updates

We will consider first a four-server Pirogue cluster that

requires all updates to be propagated to at least two servers in

order to protect the cluster state against single irrecoverable

server failures.

The behavior of our cluster can be described by its state

transition diagram. As Fig. 2 shows, the cluster has nine

possible states. State <4> is the original state where all four

servers are available. In that state the cluster quorums are three

out of four. A failure of one of the servers will bring the

cluster to state <3> and changes the cluster quorums to two

out of three. A second failure would take the cluster to state

<2> and the cluster quorums to two out of two. As a result, a

cluster in state <2> will only have two up-to-date servers.

A third failure will move the cluster to state <1'>, which is

an unavailable state since no possible quorum can be formed.

We observe three distinct transitions from state <1'>:

1. A failure from the last server will bring the cluster to

state <0''>.

2. A recovery of the other up-to-date server l will bring

the cluster back to state <2> and allow the cluster to

process again client requests.

3. A recovery of either of the two other servers will bring

the cluster to state <2'> and leave the server unable to

process client requests.

All primed states are states where the cluster is unavailable

even though they contain one operational server that has the

most current version of the log. We see two possible recovery

transitions from state <0''>.

1. A recovery of either of the last two up-to-date servers

will return the cluster to state <1'>.

2. A recovery of either of the other two servers will bring

the cluster to state <1''>.

All double primed states, such as state <1''> and state

<0''> are unavailable states like all the primed states. Primed

and double primed states differ in the composition of their sets

of operational servers. All transitions from a double primed

state to a primed state correspond to the recovery of one of the

two up-to-date servers of the cluster. Similarly, all transitions

from a primed state to a non-primed state correspond to the

recovery of the other up-to-date server of the cluster and allow

it to process again user requests. There is no state <3''> as any

grouping of three recovering servers will necessarily contain

one of the two up-to-date servers.

The equilibrium conditions for our system are:

,2)3(

,24)3(

),(4

''2'2'3

'2243

'334

ppp

pppp

ppp

μμμλ
μμλμλ

μλ
+=+

++=+
+=

),(4

,22)3(

,22)3(

),

,)22(

(22)22(

,3)22(

''1'1''0

''0''2'2''1

''0'22'1

''1'3''2

''1'1'3'2

'132

ppp

pppp

pppp

ppp

pppp

ppp

+=
++=+
++=+

+=+
++=+

+=+

λμ
μλλμλ
μλλμλ

μλμλ
μλμλ

μλμλ

where pi is the probability of the cluster being in state <i>, with

the additional condition:

.1=∑i ip

Solving the system of linear equations and substituting

μλρ = , we obtain:

1. The availability of the cluster A4R(ȡ)

,

3)+6+8+(31)+(

3+21+68+97+68+23+3

)(

235

23456
2344

ρρρρ
ρρρρρρρ

=
++= pppA R

2. The cluster exposure to double irrecoverable server

failures)(2,4 ρRE

.
3)+6+8+(31)+(

18+42+39+17+3
)(

235

23456

22,4 ρρρρ
ρρρρρρ == pE R

Deriving the same values for conventional Raft clusters

with respectively three and five servers is a much easier task

because both clusters require a majority of their servers to be

available in order to perform both log updates and leader elec-

tions. Observing that the availability of a single server A is

1

 1

+= ρA ,

we have

3

2

2,3

3

23

3

)1(

 3

)1(3)(

)1(

 1 3

)1(3)(

+=
−=

+
+=

−+=

ρ
ρρ ρ

ρρ

AAE

AAAA

for a Raft cluster with three servers, and

0)(
)1(

1 5 01

)1(10)1(5)(

2,5

5

2

2345

5

= +
++=

−+−+=

ρ ρ
ρρρ

E

AAAAAA

for a Raft cluster with five replicas.

4 3 2 1

4そ 3そ そ

2' 1' 03'

3そ 2そ そ

た 2た 3た

た 2た 3た

た た た た そそ

Fig. 3. A Pirogue cluster with four servers, that allows updates in single-server

mode.

ć. A four-server cluster allowing single-server updates

Let us now consider what would happen if we removed the

requirement that all updates must be propagated to at least two

servers and allowed the cluster to operate when a single server

remains operational.

As Fig. 3 shows, the cluster has eight possible states. State

<4> is the original state where all four servers are available. In

that state the cluster quorums are three out of four. A failure of

one of the servers will bring the cluster to state <3> and

changes the cluster quorums to two out of three. A second

failure would take the cluster to state <2> and the cluster

quorums to two out of two. As a result, a cluster in state <2>

will only have two up-to-date servers.

A third failure will create a tie. Dynamic-linear voting will

break it by comparing the linear ordering of the server that

failed with that of the server that remained operational. As a

result, we will observe two failure transitions from state <2>,

namely:

1. A failure transition to state <1>, which corresponds to a

failure of the server that follows the surviving server in

the linear ordering of all servers and leaves the cluster

in state <1>, still able to process client requests. The

cluster quorums are now one out of one.

2. A failure transition to state <1'>, which corresponds to a

failure of the server that precedes the surviving server

in the linear ordering of all servers and leaves the

cluster in state <1'>, unable to process client requests.

Note that all primed states are states where the cluster is

unavailable because they correspond to cluster configurations

where the set of operational servers do not contain the server

that has or could have the sole up-to-date version of the log.

Both states <1> and <1'> have identical failure transitions

to state <0'> but their recovery transitions are quite different.

When the cluster is in state <1>, a recovery of any of the three

failed servers will always bring the cluster to state <2> while

state <1'> has two possible recovery transitions, namely:

1. A recovery transition to state <2>, which corresponds

to the recovery of the server that has or could have the

sole up-to-date version of the log.

2. A recovery transition to state <2'>, which corresponds

to the recovery any of the three other servers.

Once the system is in a primed state it has to wait for the

recovery of the server that has or could have the sole up-to-

date version of the log in order to be again able to process

client requests. For instance, state <3'> is an unavailable

state even though three of the four servers of the cluster are

operational

The equilibrium conditions for our system are:

,'4

,32)3(

,)3(

,23)22(

,33)22(

,)3(

,24)3(

),(4

11'0

'0'22'1

'021

'1'3'2

'1132

'2'3

'2243

'334

ppp

pppp

ppp

ppp

pppp

pp

pppp

ppp

λλμ
μλλμλ

μλμλ
μλμλ

μμλμλ
μμλ

μμλμλ
μλ

+=
++=+

+=+
+=+

++=+
=+

++=+
+=

where pi is the probability of the cluster being in state <i>, with

the additional condition:

.1=∑i ip

Solving the system of linear equations and substituting

μλρ = , we obtain:

1. The availability of the cluster A4(ȡ)

,

6)+15+17+(1)+(

6+39+113+152+102+35+6

)(

234

23456
12344

ρρρρ
ρρρρρρρ

=
+++= ppppA

2. The cluster exposure to double irrecoverable server

failures)(2,4 ρE

.
6)+15+17+(61)+(

36+42+18
)(

2

33

234

22,4 ρρρρ
ρρρρ == pE

3. The cluster exposure to single irrecoverable server

failures)(1,4 ρE

.
6)+15+17+(61)+(

12+24+17+6
)(

234

3456

11,4 ρρρρ
ρρρρρ == pE

Ĉ. A three-server cluster incorporating a witness

Let us now return to our example and consider the server

that is the last in the linear ordering of all four servers. That

server will never be allowed to become the single remaining

operational server of the cluster because it will never be

selected by the tie-breaking rule of the dynamic-linear voting

protocol. As a result it could be replaced by a witness without

affecting the availability of the cluster. Witnesses are small

entities that contain enough metadata to participate in all

quorums but hold no data [13]. In our context, it means that

witnesses will keep track of the sequence number of the current

term, cohort set contents, and the indexes of all log updates, but

not their contents. In the same way, they will lack an associated

state machine but will keep track of the term number and the

index of the last known update applied by the leader to its state

machine. Since witnesses hold no data, they can run on very

low-power nodes such as FAWN nodes [1] or the Raspberry

Pi [19], thus reducing the energy footprint of the whole

cluster.

The sole drawback of that approach is a higher exposure to

single and double irrecoverable server failures because:

̈ Some configurations that previously consisted of two

operational servers will now consist of a single

operational server and a witness, and

̈ Some configurations that previously consisted of three

operational servers will now consist of two opera-

tional servers and a witness.

A good combinatorial approximation of this impact is to

assume that 3/4 of configurations that comprised three

operational servers will now comprise two operational servers

and a witness while 1/2 of those that comprised two opera-

tional clusters will now comprise a single operational server

and a witness. As a result:

1. The cluster exposure to double irrecoverable server

failures)(2,13 ρ+E :

,2/4/3)(232,13 ppE +=+ ρ

2. The cluster exposure to single irrecoverable server

failures)(1,13 ρ+E :

.2/)(121,13 ppE +=+ ρ

where the pi’s are the same as those obtained for the configura-

tion with four servers.

ĉ. Comparing the three realizations

Fig. 4 compares the availabilities offered by the three

Pirogue realizations with those offered by Raft configurations

with three or five servers for values of the failure rate-to-repair

rate ratio ȡ between zero and 0.20. A zero value indicates a

server that would never crash and a 0.20 value a server that

would be available 83.3 percent of the time. Conversely, a

server that would be available 95 percent of the time would

have a ȡ ratio equal to 0.0526.

As we can see, the availabilities offered by the Pirogue

configurations with four servers and three servers and a witness

(PIROGUE(4)) and (PIROGUE(3+1)) provide slightly higher

cluster availabilities than the original Raft protocol with five

servers (RAFT(5)). Conversely, the configuration with four

servers that disallows single-server updates (RESTRICTED
PIROGUE(4)) performs slightly worse.

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

A
v
a
la
b
il
it
y

Failure rate to repair rate ratio

PIROGUE(4)

PIROGUE(3+1)

RAFT(5)

RESTRICTED PIROGUE(4)

RAFT(3)

Fig. 4. Compared availabilities of the three Pirogue configurations.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20P
ro
b
(o

n
ly

 2
 u
p

 to
 d
a
te

 s
e
rv
e
rs
)

Failure rate to repair rate ratio

RAFT(3)

PIROGUE(3+1)

PIROGUE(4)

RESTRICTED PIROGUE(4)
RAFT(5)

Fig. 5. Compared exposures to double irrecoverable server failures of the three

Pirogue configurations.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

P
ro
b
(o
n
ly

 o
n
e

 u
p

 to
 d
a
te

 s
e
rv
e
r)

Failure rate to repair rate ratio

PIROGUE(3+1)

PIROGUE(4)

ALL OTHERS

Fig. 6. Compared exposures to single irrecoverable server failures of the three

Pirogue configurations.

Given a typical crash rate of at most one failure per month

and a typical repair time of 24 hours, the μλ ratio of a typical

cluster should rarely exceed 0.033. At that rate, the availabili-

ties of all three Pirogue configurations are indistinguishable

from that of a Raft cluster with five servers.

The same is not true for the durability of the log updates.

As Fig. 5 shows, the Pirogue configuration with three servers

and one witness has the same exposure to double irrecoverable

server failures as a conventional Raft configuration with three

servers (RAFT(3)). Conversely this exposure remains quite

limited for Pirogue configurations with four servers.

These trends are confirmed when we consider exposure to

single irrecoverable server failures. As Fig. 6 shows, the

Pirogue configuration with three servers and one witness has

become significantly vulnerable to these failures when the

failure rate to repair rate ratio ȡ exceeds 3 to 5 percent.

Conversely the Pirogue configuration with four servers that

allows log updates in single-server mode remains much less

exposed as long as system crashes are not frequent. Both the

Pirogue configuration that prohibits single-user updates and the

original Raft configuration have a zero exposure because they

do not allow log updates when a single server is operational.

V. CONCLUSION

While the Raft consensus algorithm is both easier to under-

stand and more straightforward to implement than the older

Paxos algorithm, it requires five servers to ensure both the

availability and the durability of its log updates.

We have shown how this footprint could be reduced by

replacing the static quorums that Raft currently uses by

quorums that vary according the number of currently available

participants. We have presented first a Pirogue configuration

with four servers that disallows single-user updates and shown

that this configuration would be nearly as available as a

conventional Raft cluster with five participants and would

always tolerate the irrecoverable failure of any single

participant without any data loss. In addition, we have shown

that a Pirogue cluster with three servers and a witness managed

by an unmodified dynamic-linear voting protocol would be

more available than a conventional Raft cluster with five

participants and could still tolerate most irrecoverable failure of

any single participant without any data loss.

At typical server and crash rates, the three Pirogue

configurations that we have presented offer availabilities that

are indistinguishable from that of a conventional Raft cluster

with five servers even though these Pirogue configurations

require either four servers or three servers and a lightweight

witness. In other words, switching from Raft to Pirogue could

result in power savings between 20 and 40 percent.

A potential avenue for further work is allowing failed

witnesses to be promptly regenerated on spare sites [15].

REFERENCES

[1] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan

and V. Vasudevan, FAWN: A fast array of wimpy nodes, Proc. 22nd

ACM Symposium on Operating System Principles, Big Sky, MT, pp.

1–14, Oct. 2009.

[2] Brian Beach, “How long do disks last?”

https://www.backblaze.com/blog/how-long-do-disk-drives-last/,

retrieved March 25, 2015.

[3] T. D. Chandra, R. Griesemer, J. Redstone. Paxos made live: an

engineering perspective. Proc. 26th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC ’07),

Portland, OR, pp. 398–407, Aug. 2007.

[4] D. Davcev and W.A. Burkhard, Consistency and recovery control for

replicated files. Proc. 10th ACM Symposium on Operating System

Principles, (1985) pp. 87–96.

[5] H. Howard, M. Schwarzkopf, A. Madhavapeddy, J. Crowcroft.

Raft refloated: do we have consensus? ACM SIGOPS Operating

Systems Review - Special Issue on Repeatability and Sharing of

Experimental Artifacts, 49(1):12–21 , Jan. 2015

[6] S. Jajodia and D. Mutchler, Dynamic voting algorithms for

maintaining the consistency of a replicated database, ACM Trans. on

Database Systems, 15(2):230–280, June 1990.

[7] L. Lamport, “Time, clocks and the ordering of events in a distributed

system,” Communications of the ACM, 21(7): 58–65, July 1978.

[8] L. Lamport. The part-time parliament. ACM Transactions on

Computer Systems, 16(2):133–169, May 1998.

[9] L. Lamport. Paxos made simple. ACM SIGACT News,32(4):18–25,

Dec. 2001.

[10] D. D. E. Long and J.-F. Pâris, Voting without version numbers, Proc.

1997 International Phoenix Conference on Computer and

Communication (IPCCC’97), Phoenix, AZ, pp. 139-145, Feb. 1997.

[11] D. Ongaro, J. Ousterhout. In Search of an understandable consensus

algorithm (Extended Version). Tech Report. May, 2014.

http://ramcloud.stanford.edu/Raft.pdf

[12] D. Ongaro, J. Ousterhout. In Search of an understandable consensus

algorithm. Proc. 2014 USENIX Annual Technical Conference (ATC

‘14), Philadelphia, PA, pp. 305–319, June 2014.

[13] J.-F. Pâris, Voting with witnesses: a consistency scheme for replicated

files, Proc. 6th International Conference on Distributed Computing

Systems (DCS ’86), Cambridge, MA, pp. 606–612, May 1986.

[14] J.-F. Pâris and D. D. E. Long, Reducing the Energy Footprint of a

Distributed Consensus Algorithm, Proc.11th European Dependable

Computing Conference (EDCC 2015), Paris, France, Sep. 2015,to

appear.

[15] C. Pu , J. D. Noe , A. Proudfoot, Regeneration of replicated objects: A

technique and Its Eden implementation, Proc. 2nd International

Conference on Data Engineering (ICDE ’86), Los Angeles, CA,

pp.175–187, Feb. 1986

[16] F. B. Schneider. “Implementing fault-tolerant services using the state

machine approach: A tutorial.” ACM Computing Surveys, 22(4):299–

319, Dec. 1990.

[17] J. Seguin, G. Sergeant, and P. Wilms, A majority consensus algorithm

for the consistency of duplicated and distributed information, Proc.

First International Conference on Distributed Computing Systems,

Huntsville, AL, pp. 617–624, Oct. 1979.

[18] R. H. Thomas, A majority consensus approach to concurrency control,

ACM Transactions on Database Systems, 4(2):180–209, June 1979.

[19] E. Upton, G. Halfacree. Raspberry Pi User Guide, Wiley, Sep. 2014

