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Abstract—Raft is a new distributed consensus algorithm that 

is easier to understand than the older Paxos algorithm. Raft’s 

major drawback is its high energy footprint: as it relies on static 

quorums for deciding when it can commit updates, it requires 

five participants to protect against two simultaneous failures. We 

propose to reduce this footprint by replacing the static quorums 

that Raft currently uses by quorums that vary according to the 

number of currently available participants. We present first a 

modified dynamic-linear voting protocol that disables single-

server updates and show that a Raft cluster with four partici-

pants managed by this protocol would be almost as available as a 

conventional Raft cluster with five participants and always toler-

ate the irrecoverable failure of any single participant without any 

data loss. In addition, we show a Raft cluster with three partici-

pants and a witness managed by an unmodified dynamic-linear 

voting protocol would be more available than a conventional Raft 

cluster with five participants and could still tolerate most 

irrecoverable failures of any single participant while maintaining 

recoverability. 

Keywords-Distributed computing; Fault-tolerant computing; 

Green computing; Distributed consensus; Raft algorithm. 

I. INTRODUCTION 

Distributed consensus algorithms allow multiple partici-

pants in a distributed system to agree on the values of the data 

they share. They are essential to the development of fault-

tolerant services because they allow multiple servers to act as 

one. They are also notoriously complex because they have to 

handle both server crashes and communication failures of all 

kinds.1 

Since it was proposed in the late nineties, Leslie Lamport’s 

Paxos algorithm [8, 9] has been the gold standard for 

distributed consensus algorithms because it has been proven 

correct and is efficient in the standard case. At the same time, it 

remains very hard to understand and quite difficult to imple-

ment [12]. To quote the authors of a full size implementation of 

Paxos, “[t]here are significant gaps between the description of 

the Paxos algorithm and the needs of a real-world system.” [3] 

                                                           
1 Supported in part by the National Science Foundation under awards CCF-

1219163 and CCF-1217648, by the Department of Energy under award DE-

FC02-10ER26017/DE-SC0005417 as well as by the industrial members of the 

Storage Systems Research Center. 

Ongaro and Ousterhout recently proposed the Raft consen-

sus algorithm to overcome these limitations [11, 12]. As noted 

by Howard et al. [5], Raft is easier to understand and easier to 

implement than Paxos. A remaining limitation of Raft is the 

large number of servers it requires. Because it uses majority 

consensus voting to decide when to commit an update, Raft 

requires 2n + 1 participants to protect against n simultaneous 

failures. As a result, most Raft clusters use five servers in order 

to be able to tolerate two failures. This requirement is likely to 

remain acceptable as long as Raft supports lightweight 

services that can run on low-power nodes, thus maintaining a 

low energy footprint. This is much less true when applications 

require full-fledged servers.  

We believe that reducing the energy footprint of the RAFT 

protocol is essential to ensure its continuous success. We 

addressed the issue in a previous paper [14] and proposed two 

approaches for reducing the number of servers involved in a 

Raft cluster without significantly altering the Raft algorithm 

[14]. Our first proposal consisted of adjusting Raft quorums in 

a way that would allow updates to proceed with as few as two 

servers while requiring a larger quorum for electing a new 

leader. For instance, a Raft cluster with four nodes, an update 

quorum of two and a leader election quorum of three would offer 

good protection against data loss while remaining slightly more 

available than a conventional cluster with three nodes. Our 

second proposal consists of replacing some Raft servers with 

witnesses, that is, lightweight servers that maintain the same 

metadata as their peers but hold no data [13]. We found that 

clusters having one or two of their servers replaced by these 

witnesses provided similar cluster availabilities as a cluster 

with five full servers and very good to adequate protection 

against data loss depending on the number of servers replaced 

by witnesses.  

The approach we propose here is more ambitious. Pirogue 

replaces the static voting quorums that Raft uses by dynamic 

quorums that shrink when the number of active servers dimin-

ishes and grow when this number increases.  As a result, each 

Pirogue cluster will have to maintain a consistent view of the 

number and the identities of all its active servers. We found out 

that this additional complexity produced much higher service 

availabilities than our previous proposals: 
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Fig. 1. The Raft architecture (after [12]). 

̈ A Pirogue cluster with four servers managed by a 

dynamic linear voting protocol that does not allow 

single-server updates would provide nearly the same 

service availability as a Raft cluster with five servers 

and still guarantee that a single irrecoverable server 

failure would never result in a data loss. 

̈ A Pirogue cluster with four servers and no restrictions 

on the size of its quorums would provide a better service 

availability than a Raft cluster with five servers. 

̈ We can even replace one of the four servers in the above 

cluster by a witness and still provide better service 

availability than a Raft cluster with five servers. 

The remainder of this paper is organized as follows. 

Section II reviews the relevant features of the Raft algorithm.  

Section III introduces our proposal and Section IV evaluates 

the performance of three Pirogue configurations in terms of 

system availability and risk of data losses. Finally, Section V 

has our conclusions. 

II. THE RAFT ALGORITHM 

In this section, we present the salient features of the Raft 

algorithm focusing on its update algorithm and the protocol it 

uses for handling leader failures.  

A. Overview 

Ongaro and Ousterhout designed the Raft algorithm to run 

on clusters consisting of at least three servers, like the one in 

Fig. 1. Each of its component servers includes a log, a consen-

sus module and a state machine. Raft guarantees that, at any 

time, a majority of these state machines will remain in agree-

ment. In other words, each Raft cluster implements a repli-

cated state machine [16]. 

Raft uses a strong leader model where each cluster has a 

single leader that manages the whole cluster and other servers 

are mere followers. As a result, the cluster leader is solely 

empowered to receive requests from clients, forward them to 

its followers and decide when they can be safely applied to 

everyone’s state machines. 

Leaders maintain their leadership status by sending peri-

odic heartbeats to their followers. Any follower that stops 

receiving these heartbeats will call for an election and propose 

itself as the new leader. 

Raft partitions time into terms of arbitrary length that are 

identified by consecutive sequence numbers. A new term 

starts each time a server calls for an election. It will either end 

if the election results in a split vote or continue as long as the 

newly elected leader maintains its leadership status. Terms 

play in Raft the role of a logical clock [7] and allow servers to 

detect obsolete information, such as requests from a stale 

leader. All communications between servers include the 

sequence number of the current term. 

B. Normal operation 

When a leader receives a request from a client, it appends 

it to its log, gives it a sequence number within the current term 

and forwards it to its followers through an AcceptEntry() 

remote procedure call. All followers that have up-to-date logs 

append the new command to their logs and notify the leader of 

that fact. Whenever the leader notices that some followers did 

not reply, it resends the command and repeats the process until 

all followers have acknowledged the request. 

As soon as the leader has replicated the log entry on a 

majority of the servers, it commits it and applies it to its own 

state machine. This action also applies to all preceding entries 

in the leader’s log, including entries created by a former leader 

in a previous term. Commit decisions are propagated to other 

servers by including the index of the last committed update in 

all future messages coming from the leader, including 

AcceptEntry() calls and heartbeats. 

C. Handling leader failures 

Raft uses a timeout mechanism for detecting leader fail-

ures: any follower that has not received a message from its 

leader in a given amount of time will call for an election, 

announce its candidacy for the cluster leadership position and 

vote for itself. A main problem with this solution is that split 

votes will occur whenever two followers call for elections at 

the same time. Raft reduces, but does not completely eliminate 

this risk, by using randomized election timeouts.  

When a former follower becomes a candidate for the 

cluster leadership position, it sends to all other servers a 

message containing a summary of the state of its log. Servers 

receiving that message will vote for the candidate unless any 

of following three conditions holds: 

1. They believe they still have a leader, 

2. They have already voted for another candidate, or 

3. Their own log is more “up to date” than the candidate’s 

log.  

The last restriction ensures that a candidate cannot collect a 

majority of the votes unless its log contains all committed 

updates. 

The newly elected candidate will require all its followers 

to duplicate in their logs the contents of its own log. To 



achieve that, it will resend to each of its followers all its log 

entries starting from the last entry for which both servers 

agree. 

D. Cluster membership changes 

Raft handles cluster membership changes by requiring the 

change to involve both a majority of the servers in the old 

cluster and a majority of the servers in the new cluster. 

III. INTRODUCING PIROGUE 

The main reason for the high energy footprint of the Raft 

algorithm is its reliance on majority consensus voting [17, 18] 

for defining both its write quorum and its election quorum. 

Since these quorums must contain a majority of the cluster 

servers, a Raft cluster must comprise at least 2n + 1 servers to 

be able to tolerate n server failures. 

A much more efficient solution is to make these quorums 

dynamic and require them to contain a majority of the active 

servers of a given cluster, thus excluding servers that have 

crashed and have not been formally reintegrated. So if a cluster 

contains four servers, its initial majority will be defined as 

three servers out of four. Should one of the servers fail, the new 

majority will be two out of three. After a second server failure, 

it will be two out of two. What happens after a third failure 

depends on the way the protocol handles ties. The original 

dynamic voting (DV) protocol [4] did not assign weights to 

servers and did not include a tie-breaking rule. As a result, it 

required a minimum of two communicating servers to allow 

updates. A simple extension, known as dynamic-linear voting 

(DLV) [6], solves these ties by applying a total ordering to the 

servers. Overall, both DV and DLV require n + 2 servers per 

cluster to be able to tolerate n failures. Pirogue takes 

advantage of this property to reduce from five to four, the 

number of servers required to tolerate two failures, thus 

resulting in a 25 percent reduction of the energy footprint of 

Raft. 

Since Pirogue relies on dynamic quorums to decide when to 

commit updates and to elect new leaders, it will have to main-

tain additional dynamic metadata. The simplest solution is to 

use cohort sets [10] and let Pirogue manage them on the top of 

the Raft update protocol. 

Ć. Cohort sets 

By definition, the cohort set of a Pirogue cluster represents 

the set of servers that are allowed to participate in a leader 

election. This set is customarily stored in a bitmap. Updating 

that bitmap is the responsibility of the leader of the cluster. It 

will do so whenever it detects (a) that a server has ceased to 

reply to an update request and (b) the recovery of a server that 

was previously unavailable. 

Bitmap updates are pushed to other servers in the same way 

as regular updates: the server assigns to each update a sequence 

number within the present term and forwards it to its followers 

through an AcceptEntry() remote procedure call. All followers 

that have up-to-date logs append the new update to their logs 

and notify the leader of that fact. As soon as the leader has 

replicated the update on a majority of the servers in the 

current cohort set, it commits it, applies it to its own state 

machine and notifies its followers. 

The leader will normally detect follower failures and 

recoveries by keeping track of which followers acknowledge 

its AcceptEntry() requests. Whenever user-generated update 

requests are less than frequent, this approach may result in 

unacceptable delays between the time a server fails and the 

time the cluster leader detects that failure. The simplest 

solution to this problem is to let the leader generate a dummy 

AcceptEntry() request whenever a fixed interval has lapsed 

without any user-generated update requests. 

ć. Handling leader failures 

Under Pirogue, only servers that belong to the last commit-

ted cohort set are allowed to have their vote counted. Let us see 

how Pirogue achieves this goal. 

1. Any candidate for the cluster leadership position will 

include its version of the cluster cohort set in the 

message it sends to other servers. 

2. As in the Raft election protocol, servers receiving a 

vote solicitation will withhold their vote if any of the 

three following conditions holds: 

a) They believe they still have a leader, 

b) They have already voted for another candidate, or 

c) Their own log is more “up to date” than the candi-

date’s log.  

3. Servers voting for a candidate will attach to their votes 

their version of the cluster cohort set. 

4. When a candidate tallies the votes it has received, it 

compares their versions of the cluster cohort set. In 

doing so, it ascertains the current value of that set and 

disregards the votes of all servers that are not in the 

current cluster cohort set when deciding the election 

outcome. 

Note that all servers in the current cluster cohort do not 

necessarily share the same view of that set. Consider, for 

instance a Pirogue cluster with four servers, respectively 

named A, B, C and D, and let us assume that server A is the 

current leader of the cluster. When all four servers are opera-

tional, the cluster cohort set is {A, B, C, D}: 

A B C D 

{A, B, C, D} {A, B, C, D} {A, B, C, D} {A, B, C, D} 

and all four servers are in perfect agreement about that value. 

After cluster D fails, the new cohort set of the cluster will 

be {A, B, C}: 



A B C [D] 

{A, B, C} {A, B, C} {A, B, C} {A, B, C, D} 

Assume now that server D has recovered and that server A 

has added it to its version of the cohort set but has crashed 

before having propagated its new cohort set to either of its 

followers: 

A B C D 

{A, B, C. D} {A, B, C} {A, B, C} {A, B, C, D} 

Since A failed to propagate the new value of the cohort set 

to a majority of the servers in the current cohort set, that 

current cohort set remains valid and server A remains in it. 

Ĉ. Reliability Issues 

Because Raft relies on majority consensus voting, a Raft 

cluster with five servers will protect the cluster and the data it 

holds against: 

1. The simultaneous failure of two of its five servers, and 

2. The irrecoverable failure of two servers. 

This is not true for Pirogue clusters as they will occasion-

ally run with only one or two operational servers.  As a result, 

Pirogue only needs four servers to protect the service against 

the simultaneous failure of two of them. The drawback is that 

Pirogue will not always preserve the cluster state in the pres-

ence of two irrecoverable server failures.  Depending on the 

way the cluster voting is set up, a Pirogue cluster may 

occasionally run with only one or two operational servers.  As a 

result, there will be relatively brief intervals during which the 

cluster state may either be left unprotected or only protected 

against a single irrecoverable server failure. This is to say that 

any given Pirogue cluster will be able to tolerate more 

simultaneous server failures than a Raft cluster with the same 

number of servers, but will also offer less protection against 

irrecoverable server failures. 

We do not believe it to be a major issue because most 

irrecoverable data losses result from irrecoverable disk failures 

and these failures are likely to be much less frequent than 

server crashes. Even assuming a disk failure rate of 11.8 per-

cent per year, which is typical for consumer disks at the very 

end of their useful lifetime [2], disk mean times to failure 

would remain close to eight years and a half. We can expect 

most disks to be more reliable than that and solid-state devices 

to be even more reliable. When this is insufficient, Pirogue 

offers its users the option of requiring all updates to be propa-

gated to all least two servers.   

IV. REALIZATIONS 

In this section, we evaluate three realizations of the 

Pirogue algorithm that correspond to three different tradeoffs 

between cluster availability, the risk of data loss and the 

energy footprint of the cluster. These three realizations are: 
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Fig. 2. A Pirogue cluster with four servers, that does not allow updates in 

single-server mode. 

1. A four-server Pirogue cluster that requires all updates 

to be propagated to at least two servers; 

2. A four-server Pirogue cluster that allows updates 

even when only a single server remains operational; 

and 

3. A Pirogue cluster with three servers and one witness 

replacing the fourth server. 

We will use three performance indexes to evaluate these 

three realizations: 

1. The cluster availability, that is, the fraction of time it 

will be able to process user requests; 

2. The cluster exposure to double irrecoverable server 

failures, that is, the fraction of time the cluster will 

run on two operational servers; and 

3. The cluster exposure to single irrecoverable server 

failures, that is, the fraction of time the cluster will 

run on a single server. 

To derive these values, we need to make a few working 

assumptions. We will model our cluster as a set of servers with 

independent failure modes. Whenever a server fails, a repair 

process is immediately initiated for that server. Should several 

servers fail, this repair process will be performed in parallel on 

those servers. We assume that server failures are independent 

events and are exponentially distributed with mean λ. In the 

same way, we require repair times to be exponentially 

distributed with mean μ. Both hypotheses are necessary to 

represent our system by a Markov process with a finite 

number of states.  

Even though it is not necessary, we will assume that 

cluster leaders can quickly detect server failures and repairs, 

possibly with the help of dummy queries as we sketched in 

Section III. 



Ć. A four-server cluster prohibiting single-server updates 

We will consider first a four-server Pirogue cluster that 

requires all updates to be propagated to at least two servers in 

order to protect the cluster state against single irrecoverable 

server failures. 

The behavior of our cluster can be described by its state 

transition diagram. As Fig. 2 shows, the cluster has nine 

possible states.  State <4> is the original state where all four 

servers are available. In that state the cluster quorums are three 

out of four. A failure of one of the servers will bring the 

cluster to state <3> and changes the cluster quorums to two 

out of three. A second failure would take the cluster to state 

<2> and the cluster quorums to two out of two. As a result, a 

cluster in state <2> will only have two up-to-date servers. 

A third failure will move the cluster to state <1'>, which is 

an unavailable state since no possible quorum can be formed.  

We observe three distinct transitions from state <1'>: 

1. A failure from the last server will bring the cluster to 

state <0''>. 

2. A recovery of the other up-to-date server l will bring 

the cluster back to state <2> and allow the cluster to 

process again client requests. 

3. A recovery of either of the two other servers will bring 

the cluster to state <2'> and leave the server unable to 

process client requests. 

All primed states are states where the cluster is unavailable 

even though they contain one operational server that has the 

most current version of the log. We see two possible recovery 

transitions from state <0''>. 

1. A recovery of either of the last two up-to-date servers 

will return the cluster to state <1'>. 

2.  A recovery of either of the other two servers will bring 

the cluster to state <1''>. 

All double primed states, such as state <1''> and state 

<0''> are unavailable states like all the primed states.  Primed 

and double primed states differ in the composition of their sets 

of operational servers. All transitions from a double primed 

state to a primed state correspond to the recovery of one of the 

two up-to-date servers of the cluster. Similarly, all transitions 

from a primed state to a non-primed state correspond to the 

recovery of the other up-to-date server of the cluster and allow 

it to process again user requests. There is no state <3''> as any 

grouping of three recovering servers will necessarily contain 

one of the two up-to-date servers. 

The equilibrium conditions for our system are: 

,2)3(

,24)3(

),(4

''2'2'3

'2243

'334

ppp

pppp

ppp

μμμλ
μμλμλ

μλ
+=+

++=+
+=

 

),(4

,22)3(

,22)3(

),

,)22(

(22)22(

,3)22(

''1'1''0

''0''2'2''1

''0'22'1

''1'3''2

''1'1'3'2

'132

ppp

pppp

pppp

ppp

pppp

ppp

+=
++=+
++=+

+=+
++=+

+=+

λμ
μλλμλ
μλλμλ

μλμλ
μλμλ

μλμλ

 

where pi is the probability of the cluster being in state <i>, with 

the additional condition: 

.1=∑i ip  

Solving the system of linear equations and substituting 

μλρ = , we obtain: 

1. The availability of the cluster A4R(ȡ) 
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2. The cluster exposure to double irrecoverable server 

failures )(2,4 ρRE  

.
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ρρρρρρ == pE R  

Deriving the same values for conventional Raft clusters 

with respectively three and five servers is a much easier task 

because both clusters require a majority of their servers to be 

available in order to perform both log updates and leader elec-

tions. Observing that the availability of a single server A is 
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for a Raft cluster with three servers, and 
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for a Raft cluster with five replicas. 
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Fig. 3. A Pirogue cluster with four servers, that allows updates in single-server 

mode. 

ć. A four-server cluster allowing single-server updates 

Let us now consider what would happen if we removed the 

requirement that all updates must be propagated to at least two 

servers and allowed the cluster to operate when a single server 

remains operational. 

As Fig. 3 shows, the cluster has eight possible states.  State 

<4> is the original state where all four servers are available. In 

that state the cluster quorums are three out of four. A failure of 

one of the servers will bring the cluster to state <3> and 

changes the cluster quorums to two out of three. A second 

failure would take the cluster to state <2> and the cluster 

quorums to two out of two. As a result, a cluster in state <2> 

will only have two up-to-date servers. 

A third failure will create a tie. Dynamic-linear voting will 

break it by comparing the linear ordering of the server that 

failed with that of the server that remained operational.  As a 

result, we will observe two failure transitions from state <2>, 

namely: 

1. A failure transition to state <1>, which corresponds to a 

failure of the server  that follows the surviving server in 

the linear ordering of all servers and leaves the cluster 

in state <1>,  still able to process client requests.  The 

cluster quorums are now one out of one. 

2. A failure transition to state <1'>, which corresponds to a 

failure of the server that precedes the surviving server 

in the linear ordering of all servers and leaves the 

cluster in state <1'>, unable to process client requests. 

Note that all primed states are states where the cluster is 

unavailable because they correspond to cluster configurations 

where the set of operational servers do not contain the server 

that has or could have the sole up-to-date version of the log. 

Both states <1> and <1'> have identical failure transitions 

to state <0'> but their recovery transitions are quite different.  

When the cluster is in state <1>, a recovery of any of the three 

failed servers will always bring the cluster to state <2> while 

state <1'> has two possible recovery transitions, namely: 

1. A recovery transition to state <2>, which corresponds 

to the recovery of the server that has or could have the 

sole up-to-date version of the log. 

2. A recovery transition to state <2'>, which corresponds 

to the recovery any of the three other servers. 

Once the system is in a primed state it has to wait for the 

recovery of the server that has or could have the sole up-to-

date version of the log in order to be again able to process 

client requests.  For instance, state <3'> is an unavailable 

state even though three of the four servers of the cluster are 

operational 

The equilibrium conditions for our system are: 
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where pi is the probability of the cluster being in state <i>, with 

the additional condition: 

.1=∑i ip  

Solving the system of linear equations and substituting 

μλρ = , we obtain: 

1. The availability of the cluster A4(ȡ) 

,

6)+15+17+(1)+(

6+39+113+152+102+35+6

)(

234

23456
12344

ρρρρ
ρρρρρρρ

=
+++= ppppA

 

2. The cluster exposure to double irrecoverable server 

failures )(2,4 ρE  

.
6)+15+17+(61)+(

36+42+18
)(

2

33

234

22,4 ρρρρ
ρρρρ == pE  

3. The cluster exposure to single irrecoverable server 

failures )(1,4 ρE  

.
6)+15+17+(61)+(

12+24+17+6
)(

234

3456

11,4 ρρρρ
ρρρρρ == pE  

Ĉ. A three-server cluster incorporating a witness 

Let us now return to our example and consider the server 

that is the last in the linear ordering of all four servers. That 

server will never be allowed to become the single remaining 

operational server of the cluster because it will never be 

selected by the tie-breaking rule of the dynamic-linear voting 

protocol.  As a result it could be replaced by a witness without 



affecting the availability of the cluster. Witnesses are small 

entities that contain enough metadata to participate in all 

quorums but hold no data [13]. In our context, it means that 

witnesses will keep track of the sequence number of the current 

term, cohort set contents, and the indexes of all log updates, but 

not their contents. In the same way, they will lack an associated 

state machine but will keep track of the term number and the 

index of the last known update applied by the leader to its state 

machine. Since witnesses hold no data, they can run on very 

low-power nodes such as FAWN nodes [1] or the Raspberry 

Pi [19], thus reducing the energy footprint of the whole 

cluster. 

The sole drawback of that approach is a higher exposure to 

single and double irrecoverable server failures because: 

̈ Some configurations that previously consisted of two 

operational servers will now consist of a single 

operational server and a witness, and 

̈ Some configurations that previously consisted of three 

operational servers will now consist of two opera-

tional servers and a witness. 

A good combinatorial approximation of this impact is to 

assume that 3/4 of configurations that comprised three 

operational servers will now comprise two operational servers 

and a witness while 1/2 of those that comprised two opera-

tional clusters will now comprise a single operational server 

and a witness. As a result: 

1. The cluster exposure to double irrecoverable server 

failures )(2,13 ρ+E : 

,2/4/3)( 232,13 ppE +=+ ρ  

2. The cluster exposure to single irrecoverable server 

failures )(1,13 ρ+E : 

.2/)( 121,13 ppE +=+ ρ  

where the pi’s are the same as those obtained for the configura-

tion with four servers. 

ĉ. Comparing the three realizations 

Fig. 4 compares the availabilities offered by the three 

Pirogue realizations with those offered by Raft configurations 

with three or five servers for values of the failure rate-to-repair 

rate ratio ȡ between zero and 0.20. A zero value indicates a 

server that would never crash and a 0.20 value a server that 

would be available 83.3 percent of the time. Conversely, a 

server that would be available 95 percent of the time would 

have a ȡ ratio equal to 0.0526.  

As we can see, the availabilities offered by the Pirogue 

configurations with four servers and three servers and a witness 

(PIROGUE(4)) and (PIROGUE(3+1)) provide slightly higher 

cluster availabilities than the original Raft protocol with five 

servers (RAFT(5)). Conversely, the configuration with four 

servers that disallows single-server updates (RESTRICTED 
PIROGUE(4)) performs slightly worse. 
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Fig. 4. Compared availabilities of the three Pirogue configurations. 
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Fig. 5. Compared exposures to double irrecoverable server failures of the three 

Pirogue configurations. 
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Fig. 6. Compared exposures to single irrecoverable server failures of the three 

Pirogue configurations. 



Given a typical crash rate of at most one failure per month 

and a typical repair time of 24 hours, the μλ ratio of a typical 

cluster should rarely exceed 0.033. At that rate, the availabili-

ties of all three Pirogue configurations are indistinguishable 

from that of a Raft cluster with five servers. 

The same is not true for the durability of the log updates. 

As Fig. 5 shows, the Pirogue configuration with three servers 

and one witness has the same exposure to double irrecoverable 

server failures as a conventional Raft configuration with three 

servers (RAFT(3)). Conversely this exposure remains quite 

limited for Pirogue configurations with four servers. 

These trends are confirmed when we consider exposure to 

single irrecoverable server failures.  As Fig. 6 shows, the 

Pirogue configuration with three servers and one witness has 

become significantly vulnerable to these failures when the 

failure rate to repair rate ratio ȡ exceeds 3 to 5 percent. 

Conversely the Pirogue configuration with four servers that 

allows log updates in single-server mode remains much less 

exposed as long as system crashes are not frequent. Both the 

Pirogue configuration that prohibits single-user updates and the 

original Raft configuration have a zero exposure because they 

do not allow log updates when a single server is operational. 

V. CONCLUSION 

While the Raft consensus algorithm is both easier to under-

stand and more straightforward to implement than the older 

Paxos algorithm, it requires five servers to ensure both the 

availability and the durability of its log updates. 

We have shown how this footprint could be reduced by 

replacing the static quorums that Raft currently uses by 

quorums that vary according the number of currently available 

participants. We have presented first a Pirogue configuration 

with four servers that disallows single-user updates and shown 

that this configuration would be nearly as available as a 

conventional Raft cluster with five participants and would 

always tolerate the irrecoverable failure of any single 

participant without any data loss. In addition, we have shown 

that a Pirogue cluster with three servers and a witness managed 

by an unmodified dynamic-linear voting protocol would be 

more available than a conventional Raft cluster with five 

participants and could still tolerate most irrecoverable failure of 

any single participant without any data loss. 

At typical server and crash rates, the three Pirogue 

configurations that we have presented offer availabilities that 

are indistinguishable from that of a conventional Raft cluster 

with five servers even though these Pirogue configurations 

require either four servers or three servers and a lightweight 

witness. In other words, switching from Raft to Pirogue could 

result in power savings between 20 and 40 percent. 

A potential avenue for further work is allowing failed 

witnesses to be promptly regenerated on spare sites [15]. 
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