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Abstract—Wireless charging is a promising technology for provi-
sioning dynamic power supply in wireless rechargeable sensor net-
works (WRSNs). The charging equipment can be carried by some
mobile nodes to enhance the charging flexibility. With such mobile
chargers (MCs), the charging process should simultaneously address
the MC scheduling, the moving and charging time allocation, while
saving the total energy consumption of MCs. However, the efficient
solutions that jointly solve those challenges are generally lacking
in the literature. First, we investigate the multi-MC coordination
problem that minimizing the energy expenditure of MCs while
guaranteeing the perpetual operation of WRSNs, and formulate
this problem as a mixed-integer linear program (MILP). Second,
to solve this problem efficiently, we propose a novel decentralized
method which is based on Benders decomposition. The multi-MC
coordination problem is then decomposed into a master problem
(MP) and a slave problem (SP), with the MP for MC scheduling
and the SP for MC moving and charging time allocation. The
MP is being solved by the base station (BS), while the SP is
further decomposed into several sub-SPs and being solved by
the MCs in parallel. The BS and MCs coordinate themselves to
decide an optimal charging strategy. The convergence of proposed
method is analyzed theoretically. Simulation results demonstrate
the effectiveness and scalability of the proposed method.

Index Terms—Wireless rechargeable sensor networks, mobile
charger coordination, perpetual operation, mixed-integer linear
program, decentralized method

I. INTRODUCTION

Recently, due to the rapid development of wireless energy

transfer technology [1], [2], wireless rechargeable sensor net-

works (WRSNs) have become a hot research topic [3]–[7].

Unlike the traditional wireless sensor networks (WSNs), WRSNs

can avoid the limitations introduced by the energy-constrained

sensor nodes, and make the network lifetime extend to infinitely.

To achieve this goal, the charging behavior of MCs becomes a

key design issue.

The traveling salesman problem (TSP)-based [3], [8]–[10] and

orienteering problem (OP)-based [11] methods are the two most

popular methods for solving charging optimization problems.

The basic idea is to model a WRSN as a graph, where the ver-

texes and the edges represent the sensor nodes and the distances

between them, respectively. The vertex usually associates with

charging profit, e.g., the replenished energy or charging emergen-

cy, while the edge usually associates with charging cost, e.g., the

traveling time or traveling energy. Then the aim of optimization

problems is to maximize the charging profits, or minimize the

charging costs, under the constraints of visiting all the vertexes.

However, the limitations of those methods are that they can only

handle the single-MC charging problem. To enhance the system

reliability and scalability, introducing multi-MC is desirable.

For the multi-MC case, multiple traveling salesman problem

(MTSP)-based or team orienteering problem (TOP)-based meth-

ods can be used to handle the charging optimization problem [5],

[12]. However, when taking multiple requirements such as the

perpetual operation, MC charging ability, or enhance energy effi-

ciency into account, the optimization problems will become very

difficult to solve, no matter the single-MC or multi-MC cases.

To solve those complex optimization problems, there have two

common methods. The first one is to simplify the problem [4],

[5], [13], i.e., under specific conditions or assumptions, transfer

the original problem to a standard TSP/MTSP. While the second

one is to approximate/relax the original problem to a nonlinear

problem (NLP) [3], [9]–[11], or to solve the problem through the

heuristic/adaptive methods [8]. However, those methods are hard

to get an optimal solution, and their computational complexity

is relatively high. Moreover, most of the existing methods are

centralized. Basically, an BS is needed to collect the sensor

information periodically, calculate the charging strategy, and

send the control commands to the MCs. However, the centralized

architecture limits the applicability in a large scale networks. In

order to enhance the system scalability and reliability, as well as

make a better usage of network resources, decentralized method

should be introduced to coordinate multi-MC.

In this paper, we study the multi-MC coordination problem to

fulfil the sensor charging task. The primary goal is to achieve

the perpetual operation. On this basis, we aim to minimize the

total energy consumption of MCs, including their traveling and

charging costs. Hence, the scheduling, the moving and charging

time allocation of MCs are the optimization objectives. During

the design, we need to face the following questions: First, what

is the condition for each sensor node never running out of its

energy? Second, if this is possible, how about the order to charge

those sensor nodes, and which sensor node a MC should select

to charge such that the total energy consumption of MCs is

minimized? Third, is there a way to achieve optimal solution

while avoiding high computational complexity?

The available methods are hard to handle above problems

simultaneously. Although the first and the second problems men-

tioned above have been partially studied in some works, e.g., [3],

[8], [9], the joint-design studies of the multi-MC scheduling, the
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moving and charging time allocation, and the energy efficiency

are very rare, especially considering the decentralized coordina-

tion, which is important to enhance the system scalability and

reliability. To this end, in this paper, we propose a novel multi-

MC coordination method for WRSNs. We first formulate the

multi-MC coordination problem as a MILP problem, which is

NP-hard in general [14]. By employing Benders decomposition

[15] and dual decomposition [16], we propose a decentralized

method to achieve optimal solution, while balancing the system

performance and computational complexity. To the best of our

knowledge, this is the first work to address the decentralized

multi-MC scheduling and charging joint-design problem.

Our main contributions focus on how to formulate the joint-

design problem properly and how to solve this problem efficient-

ly, which can be summarized as follows:

1) We propose a novel multi-MC coordination framework

for WRSNs through optimizing the MC scheduling, the

moving and charging time allocation, and the energy

efficiency problems jointly. More importantly, we adopt a

decentralized manner to coordinate multi-MC, and hence

reducing the computational complexity and enhancing the

system scalability greatly.

2) To enhance the charging efficiency, based on the energy

consumption model of the sensor nodes and the charging

model of the MCs, we derive a lifetime-based charging

order and divide the sensor nodes into several groups. On

this basis, we provide a sufficient condition to keep system

operating perpetually. Taking this constraint into account,

as well as the practical requirements such as the moving

and charging abilities of the MCs, and with an objective

to save their energy consumptions, we then formulate the

joint optimization problem as a MILP problem.

3) Through analyzing the characteristics of MILP problem,

we propose a Benders-based decentralized method to solve

this problem. This method decomposes the MILP problem

into a MP for the MC scheduling problem, and a SP for

the MC moving and charging time problem. On this basis,

the SP is further decomposed into several sub-SPs and

can be assigned to proper MCs. Through the coordination

between BS and MCs, we can derive an optimal charging

strategy. Finally, we provide a sufficient condition to make

the solution converge.

The remainder of this paper is organized as follows. Section

II presents the system model and formulates the problem. Then

the decentralized multi-MC coordination mechanism is designed

in Section III. Finally, Section IV shows the simulation results

and Section V concludes this paper.

II. SYSTEM AND PROBLEM FORMULATION

In this section, we shall first present the system model of

WRSNs. We then formulate the multi-MC coordination problem

as a MILP problem which takes the perpetual operation, energy

efficiency, and MC charging ability into account.

A. System model

1) Overview: Considering a WRSN contains � sensor nodes

{�1, . . . , ��}, we are interested in charging those nodes using

� MCs {�1, . . . , ��}, as shown in Fig. 1. Each sensor node

Fig. 1. System framework.

has a battery with maximum capacity �max. When ��’s residual

energy �� is lower than �min, �� will stop working. Moreover, ��
reports its �� periodically to the BS through the single or multi-

hop communications. Based on the collected information, the

BS coordinates with the MCs to make the charging decisions,

and then, the MCs follow this decision to move and perform the

charging tasks. During this process, the MCs follow a periodic

scheduling: In each cycle, they start from the BS, travels at a

speed of � m/s, and returns to the BS for the battery charging

or replacement (denote this time as ��).

2) Energy consumption model: For the sensor node, since

the data communication (transmission and reception) is the

most energy consuming part, we consider the following energy

consumption model [3]:

��� = �
∑�

�=1,� ∕=�
��� +

∑�

�=1,� ∕=�
������ + ������, ∀�, (1)

where ��� is the energy consumption rate of ��, ��� and ��� are

the flow rate from �� to �� , and �� to BS, respectively. � and ���

(or ���) are the rate of energy consumption for receiving a unit

of data rate, and transmitting a unit of data rate from �� to ��
(or the BS), respectively. To simplify the problem, we assume

the energy consumption rate of a sensor node is invariant with

time.

3) Energy charging model: For the typical wireless recharge-

able tag such as Intel Research’s wireless identification and

sensing platform (WISP), the receiving power is a decreasing

function of distance from the charger, which can be described

by the following model [17]:

�� =
�����

��

[
�

4� (�+ �)

]2

�0, (2)

where � is the distance between the sensor node and MC, �0 is

the source power, �� is the source antenna gain, �� is the receive

antenna gain, �� is the polarization loss, � is the wavelength, �

is the rectifier efficiency, and � is a parameter to adjust the Friis’

free space equation for short distance transmission.

(2) shows that the charging efficiency declines exponentially

as the distance � increases. As the experiments show in [4], when

an MC is placed 10 cm away from a sensor node, the charging

efficiency reduces to 1.5 %. Therefore, we assume the MC start

charging when it arrives at a sensor node, i.e., � → 0. Hence,

(2) reduces to

�� = ��0, (3)



where � = ������
2

16���2�2 is the charging efficiency.

B. Problem formulation

1) Charging sequence determination:

Definition 2.1: The network exists perpetual operation if it

meets the following requirement: the energy level of sensor node

��, ∀� will never fall below �min.

Definition 2.2: When � (� ≤ �) sensor nodes requiring

charging, define the renewable cycle as the time to charge �

sensor nodes once, while the charging round as the time to charge

� sensor nodes once. Hence, one renewable cycle may contain

several charging rounds.

Since different sensor nodes have different residual energies

and energy consumption rates, for ��, to evaluate its charging

priority, we can use ��’s lifetime

�� =
�0� − �min

���
, ∀�, (4)

as an index, where �0� is the initial energy of �� in current

renewable cycle.

To put the sensor nodes in a proper charging order, we sort

all the nodes according to their lifetimes in an ascending order:

� = {�1, �2, . . . , ��} . (5)

Note that in (5), the subscripts of {�1, . . . , ��} have been

rearranged such that �1 ≤ �2 ≤ . . . ≤ ��.

To enhance charging efficiency, in each renewable cycle, there

is no need to charge all the nodes since some of them have

enough energy to survive until get charged in the next renewable

cycle. Through the following Proposition, we can divided �

sensor nodes into two sets: the serving sensor set � , and the

non-serving sensor set �̄ , where the nodes in � have to be

charged in the current renewable cycle, while the others, i.e., the

nodes in �̄ , can be charged in the next renewable cycle.

Proposition 2.1: For ��, if �� satisfies

�� ≥ (2� − 1)�+ ��, (6)

�� ∈ �̄ , else, �� ∈ � , where � =
⌈

�
�

⌉
, ⌈⋅⌉ is a ceiling operator,

� = �max−�min

��
+ �max

�
, �max is the maximum distance between

any two sensor nodes.

Assume that � has ℎ sensor nodes, where ℎ ≤ �, and

� =
⌈

ℎ
�

⌉
. To charge the nodes in � effectively, it is reasonable

to divide those nodes into several groups. Based on the property

of charging efficiency, we assume one MC charges one sensor

at a time. Note that the network has � MCs, then in each

round, � sensor nodes can be charged simultaneously. Hence,

we can derive a grouped list that contains ℎ shortest-lifetime

sensor nodes

�� = {�1, . . . , ��
︸ ︷︷ ︸

ℛ1

, ��+1, . . . , �2�
︸ ︷︷ ︸

ℛ2

, . . . , ��(�−1)+1, . . . , �ℎ
︸ ︷︷ ︸

ℛ�

},

(7)

and schedule the MCs following the order {ℛ1,ℛ2, . . . ,ℛ�} to

charge the sensor nodes.

Remark 2.1: The advantages of sensor node partition are two-

fold: the emergent handling ability can be enhanced while the

computational complexity can be reduced. For example, when

charging sensor nodes in ℛ�, if sensor node �� , �� ∈ �̄

requires charging abruptly, based on �� , we can put �� in the

proper place of {ℛ�+1,ℛ�+2, . . .}. Moreover, for an optimization

problem, the computational complexity increases significantly

with the number of variables and constraints, solving those

smaller problems iteratively can be more efficient than solving

a single large problem.

2) Charging optimization: Note that in the last charging round

ℛ�, the number of MCs may be larger than the sensor nodes.

Without loss of generality, we assume that in each round, �

MCs are scheduled to charge �̃ sensor nodes, where �̃ ≤ �.

Suppose that the current round is ℛ�, the traveling and charging

time in the previous � − 1 rounds is ��−1. To design the MC

scheduling scheme, we introduce a �̃×� matrix ��, where ���� =
1 represents �� is scheduled to charge ��, and ���� = 0, otherwise.

Since in each charging round: (a) every MC is responsible for

at most one sensor node, and (b) every sensor node is charged

by one MC, we can easily derive the following constraints:

∑�̃

�=1
���� ≤ 1, ∀�, (8)

∑�

�=1
���� = 1, ∀�. (9)

On the other hand, to determine the charging time of MCs, we

introduce a �̃×� matrix ��, where ���� represents the time for ��
to charge ��. To enhance the charging efficiency, we assume �� u-

tilizes its maximum power �� to perform the charging task. Based

on the previous charging decisions {�1, �1, . . . , ��−1, ��−1}, the

residual energy of �� in the �th round is

��
� = �0

� −
∑�−1

�=1

∑�̃

�=1

(
�����

�
���+ �

�
����

)
, ∀�, (10)

where �0
� is the initial energy of �� in current renewable cycle,

���� is the distance between �� in ℛ�−1 and �� in ℛ�, � is the

energy consumed by �� to move one unit distance.

It is obviously that ���� is related to ���� and ��
� . Hence, we

have

0 ≤ ���� ≤ ���
��

�
�� , ∀�, ∀�, (11)

where � is a positive constant and can be easily derived through

the simulation/experiment.

To determine the amount of energy replenished to a sensor

node, we should know how long this node can survive after

being charged. For �� ∈ ℛ�, the worst case happens when ��
is charged at the end of the next renewable cycle. Hence, the

maximum waiting time is (�− �+ �− 1)�+ ��. Since at the �th

round, �� has already consumed �0� − ��−1�
�
� energy. To achieve

perpetual operation, the replenished energy of �� should no less

than

�� = [(�− � + � − 1)�+ ��] �
�
� −

(
�0� − ��−1�

�
�

)
, ∀�. (12)

On the other hand, since the maximum battery capacity of ��
is �max. The replenished energy of �� should not exceed

�� = �max −
(
�0� − ��−1�

�
�

)
, ∀�. (13)

Through (12) and (13), we can easily derive a proper range

of energy replenished to ��:

�� ≤
∑�

�=1
���

�
��� ≤ ��, ∀�. (14)

Here, we assume �� ≤ ��.



Remark 2.2: Since the MC movement is time consuming,

when MCs arrive at their working points and start charging the

sensor nodes, the residual energies of sensor nodes may have

changed. However, the sensor nodes are usually low power, e.g.,

Mica2 node equipped with two AA batteries and can continue

working 172 hours [18]. Since the moving time of MC in

one charging round is much smaller than node’s lifetime, the

energy depletion of sensor node during the MC movement can

be omitted here.

Note that constraint (14) is not the only sufficient condition

to keep system operating perpetually. This is because during the

energy estimation, we assume the maximum waiting time of ��
is (�− � + � − 1) �+ ��, which implies there is no gap between

two adjacent charging rounds. Hence, we introduce a �̃ × �

matrix �� to bound the moving time, where ���� represents the

time for MC moving from �� (�� ∈ ℛ�−1) to �� (�� ∈ ℛ�). It is

obviously that ���� has a lower bound:

���� ≥ ����
����

�
, ∀�, ∀�. (15)

To achieve the perpetual operation, ���� should not exceed a

threshold. Denote this threshold as ��, and we introduce the

following constrain to restrict the charging and moving time in

one charging round:

0 ≤ ���� + �
�
�� ≤ ��, ∀�, ∀�, (16)

where the value of �� can be determined through the following

Proposition.

Proposition 2.2: To ensure there is no gap between two

adjacent charging rounds, we can select

�� = min
{
�,��

�+1, . . . , �
�
�

}
(17)

where

��
�+� = ��(�+�−1)+1 − ��−1 −

∑�+1

�=1
�−

�max

�
, 1 ≤ � ≤ �− �.

(18)

Note that our goal is to achieve the perpetual operation, which

can be guaranteed by the following Theorem.

Theorem 2.1: The sufficient condition to achieve the perpetual

operation is that the constraints (14), (15), and (16) must be

satisfied.

Taking the above constraints into account, the optimization

problem can be formulated as follows:

Multi-MC coordination problem

min
��,��,��

Φ =
∑�̃

�=1

∑�

�=1

(
�����

�
���+ ���

�
��

)
, (19)

s.t. (8), (9), (11), (14), (15), (16).

Problem (19) is a MILP problem since it contains three types

of constraints: the integer constraints (8) and (9); the continuous

constraints (14) and (16); and the mixed constraints (11) and

(15).

III. CHARGER COORDINATION

In this section, based on the characteristics of problem (19),

we design an novel multi-MC coordination mechanism. In order

to reduce computational complexity as well as to enhance the

system scalability and reliability, the coordination mechanism

runs in a decentralized manner.

Mobile chargers

Sensor

nodes e

s
L

q,t, g

Base station

q j

Fig. 2. Structure of decentralized implementation.

A. Benders-based decentralized coordination

To solve problem (19) efficiently, finding an optimal �� is

the most important part, since if �� is determined, problem (19)

will reduce to a linear program (LP) problem, which has a

simpler structure, and easier to solve. Benders decomposition

[19] is an effective method for solving certain classes of mixed

optimization problem such as MILP. The basic idea is decom-

posing the MILP problem into a master problem (MP) and a

slave problem (SP), where the MP only contains the integer

constraints, while the other constraints are considered in the SP.

According to the iterations between the MP and SP, we can

derive an optimal solution. The algorithm structure is shown in

Fig. 2. For simplicity and generality, we drop round index here.

Based on the structure of Benders decomposition, the MP and

SP can be formulated as follows.

MP

Φlower = min
�

Φ, (20)

s.t.

⎧

⎨

⎩

∑�̃

�=1
��� ≤ 1, ∀�,

∑�

�=1
��� = 1, ∀�,

feasibility constraints,

infeasibility constraints.

Comparing problem (20) with problem (19), we can see that

the constraints are loosened. Hence, Φlower is a lower bound of

Φ. The feasibility and infeasibility constraints are come from

the solution to the SP, which help to narrow the search region

of integer variables, and their forms will be shown in (28) and

(29), respectively.

SP

Φupper = min
�,�

Φ =
∑�̃

�=1

∑�

�=1
(��� (�) ����+ �����) , (21)

s.t.

⎧

⎨

⎩

0 ≤ ��� ≤ ������(�), ∀�, ∀�,

�� ≤
∑�

�=1
������ ≤ ��, ∀�,

��� ≥ ���(�)
���

�
, ∀�, ∀�,

0 ≤ ��� + ��� ≤ �, ∀�, ∀�,

where �(�) is given by solving problem (20) at the �th iteration.

Since (a) �(�) may be just a feasible solution (not optimal yet),

and (b) our aim is to minimize the objective function, Φupper is

an upper bound of Φ.



Denote Φ∗ as the optimal value of Φ. From problems (20) and

(21), we can see that Φ∗ lies between Φlower and Φupper. Through

the iterations between problems (20) and (21), the gap between

Φlower and Φupper will be gradually reduced and finally we can get

the optimal solution Φ∗. The iteration process of Benders-based

decentralized method can be summarized as follows:

Step 1: Initialization

Initialize the iteration counter � = 0, the solution �(0) to the

MP, the lower bound of objective function Φlower = −∞, and

its upper bound Φupper = ∞. The feasibility and infeasibility

constraints are set to null.

Step 2: SP solution

Since without the integer variable � coupling the MCs to-

gether, problem (21) can be decoupled into � sub-SPs for the

MCs, and hence each sub-SP can be solved by correspond MC

in parallel.

Sub-SP

min
�,�

Φ� =
∑�̃

�=1
(���(�)����+ �����) , (22)

s.t. (11), (14), (15), (16) for given �(�).

Introducing the Lagrangian multipliers �(�) ≥ 0, �(�) ≥ 0,

�(�) ≥ 0, �(�) ≥ 0, �(�) ≥ 0, �(�) ≥ 0, �(�) ≥ 0, the

Lagrangian to problem (22) is

ℒ� =
∑�̃

�=1

[

(���(�)����+ �����)− ������(�)

+ (��� − ������(�))���(�) + (�����(�)− ������)���(�)

+
(
������ − �����(�)

)
���(�) +

(

���(�)
���

�
− ���

)

���(�)

− (��� + ���) ���(�) + (��� + ��� − �) ���(�)

]

=
∑�̃

�=1
(ℱ����� + ������) +�� (23)

where

ℱ�� =�� − ���(�) + ���(�)− ������(�) + ������(�)− ���(�)

+ ���(�), (24)

��� =− ���(�)− ���(�) + ���(�), (25)

�� =
∑�̃

�=1

(

��� (�) ����− ������ (�)���(�) + �����(�)���(�)

− �����(�)���(�) + ���(�)
���

�
���(�)− ����(�)

)

. (26)

Based on the definition of duality [16], problem (22) has the

following dual problem:

Dual Sub-SP

max
�(�),�(�),�(�),

�(�),�(�),�(�),�(�)

�� , (27)

s.t.

⎧

⎨

⎩

ℱ�� ≥ 0,��� ≥ 0, ∀�,

�(�) ≥ 0,�(�) ≥ 0,�(�) ≥ 0,

�(�) ≥ 0,�(�) ≥ 0,�(�) ≥ 0, �(�) ≥ 0.

Note that problem (22) is a LP problem, thus the strong duality

is guaranteed [16], which means the optimal value of problem

(27) is identical to that of problem (22). Solving problem (27)

through the existing LP methods, we can derive the continuous

variables �(�), �(�), �(�), �(�), �(�), �(�), �(�).
Step 3: Convergence checking

Φlower(�) is given by submitting �(�) into problem (20), while

Φupper(�) =
∑�

�=1 max�� , and max�� is given by submitting

�(�), �(�), �(�), �(�), �(�), �(�), �(�) into problem (27). Denote

� as a small tolerance. When ∣Φupper(�) − Φlower(�)∣ < �, the

algorithm stops. Otherwise, the algorithm continues at the next

step.

Step 4: Master Problem Solution

The iteration counter � is increased, and the Benders cuts will

be added into problem (20). Note that in this step, �(�+1) are the

integer variables we want to calculate. According to the solution

to problem (27), two different types of constraints can be added

into problem (20) at the (� + 1)th iteration.

1) If problem (27) is infeasible, then problem (22) has an

unbounded solution, and problem (19) has no physical

solution.

2) If problem (27) has a bounded solution, e.g., �(�), �(�),
�(�), �(�), �(�), �(�), �(�). Through the duality, prob-

lem (22) has a feasible solution. However, ∣Φupper(�) −
Φlower(�)∣ > � since �(�) is not an optimal solution. In order

to reduce the gap between Φlower(�+ 1) and Φupper(�+ 1),
at the (� + 1)th iteration, we add a feasibility constraint

into problem (20) so as to make Φlower(�+ 1) > Φlower(�).
3) If problem (27) has an unbounded solution, problem (22)

has no feasible solution under the given �(�). At the

(� + 1)th iteration, an infeasibility constraint should be

added into problem (20) to avoid selecting those infeasible

integers again.

When problem (20) is solved, Steps 2-3 are repeated. Algo-

rithm 1 summarizes the implementation details of Benders-based

decentralized multiple MCs coordination mechanism.

Theorem 3.1: The sufficient condition to make the solution

of problem (27) converge is that the feasibility and infeasibility

constraints added into problem (20) should be

∑�̃

�=1

∑�

�=1
(���(� + 1)����+ �����(�))

≥
∑�̃

�=1

∑�

�=1

(

���(� + 1)����− ������(� + 1)���(�)

+ �����(� + 1)���(�)− �����(� + 1)���(�)

+ ���(� + 1)
���

�
���(�)− ����(�)

)

, ∀� ∈ �, (28)

and

0 ≥
∑�

�=1

[

− ������(� + 1)���(�) + �����(� + 1)���(�)

− �����(� + 1)���(�) + ���(� + 1)
���

�
���(�)− ����(�)

]

,

∀� ∈ ℬ, (29)

respectively, where � and ℬ are the sets of iterations that

problem (27) has the bounded and unbounded solutions, i.e.,

� ← �∪� if at the �th interaction problem (27) has an bounded

solution, ℬ ← �∪ℬ if at the �th interaction problem (27) has an

unbounded solution.



Algorithm 1: Benders-based decentralized multi-MC coor-

dination mechanism

Set the initial values: � = 0, Φlower(0) = −∞,

Φupper(0) = ∞, �(0), �;
The feasibility and infeasibility constraints are set to null;

for BS do

while ∣Φupper(�)− Φlower(�)∣ > � do

Solve problem (20) to derive �(�) and Φlower(�);
Transmit �(�) to each MC;

for �� , � = 1, . . . ,� do

Solve problem (27) under given �(�);
if Problem (27) is feasible then

if Solution is bounded then

� ← � ∪ �;

Feed constraint (28) and Φ�(�) back to

the BS;

else

ℬ ← � ∪ ℬ;

Feed constraint (29) and Φ�(�) back to

the BS;

end

else

Problem (19) has no physical solution;

end

end

Φupper(� + 1) = min{Φupper(�),
∑�

�=1 ��(�)};

�← � + 1;

end

end

�∗ = �(�);
Submit �∗ into problem (22) to solve �∗, �∗;

IV. SIMULATION

We consider a WRSN containing 20 sensor nodes and 4
MCs. The energy consumption rate and initial energy of each

sensor node are randomly generated between [0.3, 0.5] J/s, and

[400, 250] J, respectively. The network sampling period is 0.2 s.

For a sensor node, �max = 1000 J, �min = 200 J. The serving

time, charging power, charging efficiency, traveling speed, and

unit moving energy of MC are set to �� = 3000 s, �� = 10 W,

� = 0.5, � = 2 m/s, and � = 1 J, respectively.

Fig. 3(a) shows the energy charging error in the first renewable

cycle, where the energy charging error represents the mean

square error (MSE) between the residual energy and desired

energy, i.e., ��(�) =

√
∑4

�=1(
∑

�
�=1 ���

�
��
�−��(�))

2

4 , � = 1, . . . , 5,

��(�) is ��’s residual energy in step �. Through condition (6), all

the sensor nodes require charging in the first renewable cycle.

Hence, one cycle can be divided into five charging rounds. From

Fig. 3(a), we can see that there is no gap between two adjacent

charging rounds. Since without charging, �� will decrease with

time. The earlier the MCs start next round charging, the lesser

energies the sensor nodes should be replenished.

Fig. 3(b) shows the energy behavior of 20 sensor nodes in

five renewable cycles. The vertical coordinate represents the

MSE between the residual and minimum working energies, i.e.,
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Fig. 3. a) The energy charging error of 20 sensor nodes in the first renewable
cycle. b) The energy behavior of 20 sensor nodes in five renewable cycles.

√∑20
�=1(��(�)−�min)

2

20 . From Fig. 3(b), we can see that with the

introduction of constraints (14), (15) and (16), sensor nodes will

never run out their residual energies before being charged again.

Fig. 4(a) shows the convergence of proposed Benders-based

decentralized method. With the infeasibility constraint (29) and

feasibility constraint (28) adding into problem (20) at steps

{1, 2, 3, 4} and 5 respectively, the upper bound and lower bound

converge quickly (takes 5 steps) to the optimal value Φ∗. On the

other hand, in each charging round, the proposed method only

requires 5 times of information exchange between the BS and

MCs. Therefore, the communication burden of MC is relatively

small.
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Fig. 4. a) Convergence of Benders-based decentralized method. b) Computa-
tional complexity.

Fig. 4(b) compares the computational complexity of decentral-

ized control (DC) and centralized control (CC). From Fig. 4(b),

we can see that DC has much lower computational complexity

than CC: as the number of MC increases, the computation

time of both algorithms grows; however, DC always uses much

lesser computation time than CC. Although DC requires more

communications than CC, DC has much lower computational

complexity.

V. CONCLUSION

In this paper, we proposed a decentralized method to co-

ordinate multi-MC to fulfil the sensor charging task, with a

focus on the optimal MC scheduling and charging problem to

prolong the network lifetime. The goal was to keep the network

operating perpetually, while enhancing the energy efficiency of

MCs. This problem has been formulated as a MILP problem,

which jointly optimized the MCs scheduling, the moving and

charging time allocation. Furthermore, to efficiently solve this



problem, we proposed a Benders-based decentralized method.

This method decomposed the multi-MC coordination problem

into several subproblems and assigned proper tasks to the BS

and MCs. Through coordinating BS and MCs, as well as the

parallel processing ability of MCs, we have get an optimal

solution with small computing resource. The simulation results

showed the convergence of proposed optimization algorithm, and

the scalability due to the decentralized architecture.
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APPENDIX A

PROOF OF PROPOSITION 2.1

Proof: One renewable cycle will take at most �� time, the

reasons are two-fold: First, there are at most � sensor nodes get

charged in one renewable cycle (i.e., � charging rounds). Second,

each charging round will take at most � = �max−�min

��
+ �max

�

time, where �max−�min

��
and �max

�
are the maximum charging time

and traveling time, respectively. For ��, the worst case happens

when �� is placed at the end of the next renewable cycle, i.e., in

current renewable cycle, all the sensor nodes get charged except

��, while �� will be charged in the �th round of the next renewable

cycle. Hence, �� has to wait 2� − 1 charging rounds. If �� ≥
(2�−1)�+��, �� has enough energy to work until being charged

in the next renewable cycle.

APPENDIX B

PROOF OF PROPOSITION 3.1

Proof: To determine ��, we need to know how long the

sensor nodes in {ℛ�+1, . . . ,ℛ�} can survive after finishing the

charging task in ℛ�. Since in ℛ�+1, ���+1 has the shortest

lifetime ���+1, to ensure the sensor nodes in ℛ�+1 can be

charged timely, the maximum waiting time of sensor nodes in

ℛ�+1 should not exceed

��
�+1 = ���+1 − �� −

�max

�
. (30)

Note that in ℛ�, {���� , �
�
�� , �

�
��} are the variables, exact �� is

unknown. Since the moving and charging time of ℛ� will not

exceed �, we can set �� = ��−1 + �. Similarly, to ensure the

sensor nodes in ℛ�+� , 1 ≤ � ≤ �− � can be charged before they

run out their residual energies, the maximum waiting time of

sensor nodes in ℛ�+� is

��
�+� = ��(�+�−1)+1 − ��+�−1 −

�max

�

= ��(�+�−1)+1 − ��−1 −
∑�+1

�=1
�−

�max

�
. (31)

Note that � is a candidate threshold for ��. To ensure sensor

nodes in {ℛ�+1, . . . ,ℛ�} will never fall below �min, we can

select �� = min
{
�,��

�+1, . . . , �
�
�

}
.

APPENDIX C

PROOF OF THEOREM 2.1

Proof: The proof of the Theorem 2.1 was already proved

in the earlier discussion. Constraint (14) guarantees that all the

sensor nodes will not run out their residual energies before they

get charged again, under the condition that there is no gap

between two adjacent charging rounds, which is guaranteed by

the constraints (15) and (16), since �� ≤ �.

APPENDIX D

PROOF OF THEOREM 3.1

Proof: If problem (27) has a bounded solution, in order to

reduce the gap between Φlower and Φupper, comparing with the

previous Φlower, Φlower(� + 1) should be more close to Φupper.

Based on this idea, the feasible constraints added into problem

(20) should satisfy:

Φlower(� + 1) ≥ Φlower(�), ∀� ∈ �. (32)

Since the strong duality exists between problems (22) and

(27), we have

min
�,�

Φ� = max
�(�),�(�),�(�),

�(�),�(�),�(�),�(�)

�� . (33)

Submitting (26) into (33) and recalling (32), we get

Φlower(� + 1)

=
∑�̃

�=1

∑�

�=1
(���(� + 1)����+ �����(�))

≥Φlower(�)

=
∑�̃

�=1

∑�

�=1
(���(� + 1)����+ �����(�))

=
∑�

�=1
min
�,�

Φ�

=
∑�

�=1
max

�(�),�(�),�(�),
�(�),�(�),�(�),�(�)

��

=
∑�̃

�=1

∑�

�=1

(

���(� + 1)����− ������(� + 1)���(�)

+ �����(� + 1)���(�)− �����(� + 1)���(�)

+ ���(� + 1)
���

�
���(�)− ����(�)

)

. (34)

If problem (27) has an unbounded solution, that implies the

given �(�) is conflict with problem (22). Note that the feasibility

of problem (22) is related to its constraints rather than its

objective function, problem (22) may be feasible when positive

variables �1, �2, �3, �4, �5, �6, �7 are introduced to relax its

constraints. Hence, we construct a feasibility check problem [15]

to problem (22) to validate the effectiveness of constraints:

Feasibility check problem

min
�(�),�(�),�

�� =
∑�̃

�=1

∑7

�=1
���� , (35)

s.t.

⎧

⎨

⎩

0− �1�� ≤ ���(�) ≤ ������(�) + �
2
�� ,

(
�� − �

3
��

)
���(�) ≤ �����(�)� ≤

(
�� + �

4
��

)
���(�),

���(�) ≥ ���(�)
���

�
− �5�� ,

0− �6�� ≤ ���(�) + ���(�) ≤ � + �7�� ,

�1�� ≥ 0, �2�� ≥ 0, �3�� ≥ 0, �4�� ≥ 0,

�5�� ≥ 0, �6�� ≥ 0, �7�� ≥ 0, ∀�, ∀� ∈ ℬ.



From problem (35), we can see if there exist the infeasible

constraints, the correspond relax variables are non-zero, while

the others are zeros. Hence, min�(�),�(�),� �� ≥ 0. In order to

exclude those infeasible constraints, at the (�+1)th iteration, we

can set:

0 ≥ min
�(�),�(�),�

�� . (36)

Through constructing the Lagrangian to problem (35)

�� =
∑�̃

�=1

{
∑7

�=1
���� −

(
�1�� + ���(�)

)
���(�)

+
(
���(�)− ������(�)− �

2
��

)
���(�)

+
[(
�� − �

3
��

)
���(�)− �����(�)�

]
���(�)

+
[
�����(�)� −

(
�� + �

4
��

)
���(�)

]
���(�)

+

(

���(�)
���

�
− �5�� − ���(�)

)

���(�)

−
(
�6�� + ���(�) + ���(�)

)
���(�)

+
(
���(�) + ���(�)− � − �

7
��

)
���(�)

}

=
∑�̃

�=1

[

ℋ�����(�) + ������(�) + (1− ���(�)) �
1
��

+ (1− ���(�)) �
2
�� + (1− ���(�)���(�)) �

3
��

+ (1− ���(�)���(�)) �
4
�� + (1− ���(�)) �

5
��

+ (1− ���(�)) �
6
�� + (1− ���(�)) �

7
�� + ���

]

, (37)

where

ℋ�� =− ���(�) + ���(�)− ������(�) + ������(�)− ���(�)

+ ���(�), (38)

��� =− ���(�)− ���(�) + ���(�), (39)

��� =− ������(�)���(�) + �����(�)���(�)− �����(�)���(�)

+ ���(�)
���

�
���(�)− ����(�), (40)

we can easily derive the dual problem to problem (36):

Dual feasible check problem

max
�(�),�(�),�(�),

�(�),�(�),�(�),�(�)

∑�̃

�=1
��� , (41)

s.t.

⎧

⎨

⎩

ℋ�� ≥ 0, ��� ≥ 0,

1− ���(�) ≥ 0, 1− ���(�) ≥ 0,

1− ���(�)���(�) ≥ 0, 1− ���(�)���(�) ≥ 0,

1− ���(�) ≥ 0, 1− ���(�) ≥ 0, 1− ���(�) ≥ 0, ∀�,

�(�) ≥ 0,�(�) ≥ 0,�(�) ≥ 0,�(�) ≥ 0,

�(�) ≥ 0,�(�) ≥ 0, �(�) ≥ 0.

Since the strong duality between problems (35) and (41), we

have

min
�(�),�(�),�

�� = max
�(�),�(�),�(�),

�(�),�(�),�(�),�(�)

∑�̃

�=1
��� . (42)

Submitting (40) into (42) and recalling (36), we can get (29).
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