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Abstract—Many attempts have been made to detect and ana-
lyze anomalous Internet events through dissecting BGP updates
and tables, and substantial progress has been made in detecting
and quantifying the impact of major Internet disruptions. How-
ever, we notice that most works in this realm either deploy/use
a limited quantity of monitors or analyze aggregated statistics,
and such practice may result in overestimating the impact of
monitor-local events, which can be viewed only by a rather small
portion of the Internet. To eliminate the impact of such local
events on the detection of Internet-level anomalies, we raise the
concept of Large-scale BGP Event (LBE), which affects a large
amount of IP prefixes (high impact) and is widely observable
(non-local). To detect LBE, we record update data in the Update
Visibility Matrix (UVM) according to the prefix and monitor
related to each update. At first, we formulate the problem of
identifying LBE in UVM as a bi-clustering problem; after proving
it is NP-hard, we describe our heuristic algorithm. Next, we
apply our scheme to more than 2 TB of historical data. We find
that LBE is highly correlated with many well-known disruptive
incidents. Furthermore, we also identify some abnormal events
that have never been investigated. We believe our work can assist
in network operation tasks such as problem prevention, diagnosis,
and recovery.

I. INTRODUCTION

The de facto inter-domain routing protocol, Border Gateway

Protocol (BGP), connects tens of thousands of Autonomous

Systems (AS) that constitute the Internet. Route updating

information is propagated by the means of BGP updates,

and the content/statistics of updates imply rich information

about the stability and healthiness of networks. Therefore,

a wealth of measurement works on BGP dynamics have

been proposed, many of which are dedicated to identifying

abnormal Internet events, such as severe attacks, bad oper-

ations, and mis-configurations (e.g., [1]–[6]). These works

play significant roles in network operation/management and

problem diagnosis/recovery/dissection.
However, most prior efforts are prone to events local to

specific route monitors (a route monitor is a BGP-speaking

router that is configured to cooperate), mainly because they

focus on the aggregated data from multiple monitors instead of

investigating the data from each monitor separately. Examples

of aggregated data are total update quantity [6], overall update

patterns [1], and the feature traces extracted from all updates

[5]. As a result, events local to only one/few monitors have

the potential to strongly affect the analysis results, e.g., local

events with limited impact being incorrectly interpreted as

high-impact events.

Primarily due to the incremental characteristic of BGP, local

events are prevalent in the Internet. Specifically, after the initial

exchange of complete routing information, a pair of BGP

routers exchange only the changes to that information; this

characteristic largely restricts the propagation scale of updating

information: it does not propagate far unless it changes the best

routes at most of the BGP routers it traverses. In addition,

route export policy also plays an important role in restraining

this propagation scale. For example, a transit Internet Service

Provider (ISP) usually does not export routes learnt from peers

and providers to other peers and providers, hence it does not

send the updates for these routes in these directions.

On the other hand, widely observable events do not neces-

sarily mean high impact. For instance, individual new prefix

announcement, or individual prefix withdrawal by its origin

ASes. Note that these events affect a small number of prefixes.

In this paper, we define a Large-scale BGP Event (LBE)

as follows: within a given time period, an LBE is a BGP

event that a) impacts a large quantity of prefixes and b) can

be observed by a large portion of (many) route monitors.

Intuitively, an LBE indicates extraordinarily active changes in

either the origin ASes of these prefixes or some critical transit

ASes. Actually, we believe that an LBE implies anomalous

even disruptive event(s) in the Internet. The reasons are a) The

widely-observable characteristic suggests Internet-level inter-

domain instability. b) The large numbers of monitors and

prefixes imply an extremely high quantity of updates being

propagated in the Internet, which is a potential threat to the

processing capability of the routing facilities in the Internet.

c) Due to the inter-domain instability, the performance and

connectivity for the prefixes being updated may deteriorate,

affecting world-wide attempts of trying to access these prefix-

es.

In this papar, we first raise the concept of Update Visibility

Matrix (UVM), a binary matrix in which data from every
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monitor and for every prefix are recorded separately; using

UVM, we can effectively eliminate monitor-local events. Next,

we formulate the problem of identifying LBE as a bi-clustering

problem; after proving it is NP-hard, we propose an efficient

heuristic algorithm to solve it.

Next, we apply the method to two sets of data: a) updates

around nine famous disruptive incidents, and b) updates from

Jan. to Oct., 2013. The total monitors exceed 400 and the

total data add up to about 2.06 TB. The major observations

are concluded as follows.

1) We notice a strong correlation between the well-known

incidents and the identified LBEs: the quantity and sizes

of the identified LBEs increase soon after the occurrence

of the corresponding incidents.

2) LBEs do exist even during ‘innocent period’: we detect

101 LBEs in the ten months in 2013; that is one LBE per

two to three days in average. we find that these LBEs

are quite unevenly distributed.

3) The (prefix, monitor) pairs within an LBE involves

averagely more updates than those outside the LBE,

indicate higher instability.

4) Through clustering, we find that a single underlying

event could cause multiple LBEs (as many as 18) widely

scattered in time.

5) Through the case study of a large cluster, we reveal a

persistent high-impact incident and attribute it to some

configuration error in a national ISP.

II. UVM-BASED LBE IDENTIFICATION

In this paper, we denote scalars by lower-case letters (a),

sets by upper-case letters (I), vectors by lower-case bold-face

letters (v), and matrices by upper-case bold-face letters (X).

A. Problem Formulation

Definition 1. (Update Visibility Matrix) Let P be the prefix

set and M be the monitor set. Let xij be the element of the

UVM X; xij = 1 if the jth monitor observes any BGP update

for the ith prefix; otherwise xij = 0. Let I ⊆ P and J ⊆ M

be subsets of prefixes and monitors. The pair (I, J) specifies

a submatrix XIJ with the following attributes.

The size of XIJ is

Size(XIJ) = |I| × |J | (1)

The height and width of XIJ are

Hei(XIJ) = |I| (2)

Wid(XIJ) = |J | (3)

The weight of XIJ is the quantity of element ‘1’:

Wei(XIJ) =
∑

i,j
xij (4)

The density of XIJ is the proportion of element ‘1’:

Den(XIJ) =
Wei(XIJ)

Size(XIJ)
(5)

For simplicity, we assume an UVM does not contain any

empty (i.e., all ‘0’) row or column. Note that the rows

(and columns) of a submatrix are not sequenced hence are

interchangeable. Also note that the attributes also apply to a

single row (i.e., |I| = 1) or a single column (i.e., |J | = 1).

Definition 2. ((θs, θw, θh, θd)-Event) Given non-negative in-

tegers θs, θw, θh and a real θd (0 ≤ θd ≤ 1), A

(θs, θw, θh, θd)-Event XIJ is a submatrix in the UVM X such

that Size(XIJ) ≥ θs, Wid(XIJ) ≥ θw, Hei(XIJ) ≥ θh,

and Den(XIJ) ≥ θd.

For brevity, we denote (θs, θw, θh, θd)-Event as θ-Event.

Given proper values of the thresholds θs, θw, θh, and θd, a

θ-Event is considered as an LBE. In this paper we use the two

terms interchangeably. The four thresholds restrict four aspects

of an LBE. θs decides the minimum size an LBE should have.

θw and θh prevent the detection of local or low-impact events.

θd determines how much noise can be tolerated.

Definition 3. (The Large-scale BGP Event Identification

Problem) Given an UVM X, and non-negative integers θs,

θh, θw, and a real θd (0 ≤ θd ≤ 1), find the submatrix XIJ

such that:

i) XIJ is a (θs, θd, θw, θh)-Event; and

ii) size(XIJ) is maximized.

Note that although it is possible that multiple

(θs, θd, θw, θh)-Events are contained in X, we identify

only the largest one. This is because we do not assume a

one-to-one mapping from an identified LBE to one underlying

incidents. In other words, an LBE is the superposition of

multiple underlying incidents, so we care more about the

existence (and the properties) rather than the quantity of LBE

within a period.

Theorem 1. The Large-scale BGP Event Identification Prob-

lem is NP-hard.

Proof: After setting the thresholds θs, θw, θh to 0, and

θd to 1, we get a more-specific problem. Then, we expand X

into a square matrix by adding 0s. Because θd = 1 means a θ-

Event contains only element ‘1’, the identified θ-Events before

and after the expansion are identical (even though X has

become larger). Now the more-specific problem is equivalent

to a more-general problem of the Maximum Clique Problem

[7] (the original MCP requires a square identified submatrix).

Since the MCP is NP-hard, our original problem is also NP-

hard.

Actually, because of high complexity, it is difficult even

to approximate the Maximum Clique Problem. But we want

a quite efficient algorithm to solve our problem, considering

that timely alarm of anomaly is critical for operation purposes.

To this end, we devise the following heuristic algorithm.

B. The Heuristic Algorithm

The heuristic algorithm is shown in Algorithm 1; its basic

idea is as follows. Given an UVM X with prefix set P (so

Hei(X) = |P |) and monitor set M (so Wid(X) = |M |), and



Algorithm 1 The heuristic algorithm

Input: An UVM X; the thresholds θh, θw , θs, and θd
1: M ← X, den ← GET-DENSITY(M)
2: repeat

3: ra ← GET-CANDI-RA(X,M), ca ← GET-CANDI-CA(X,M)
4: if not ADDITION(M,ra,ca) then

5: rd ← GET-CANDI-RD(M,θh), cd ← GET-CANDI-CD(M,θw)
6: if rd �= NULL and cd == NULL then

7: M ← M − rd

8: else if cd �= NULL and rd == NULL then

9: M ← M − cd

10: else if rd �= NULL and cd �= NULL then

11: M ← M− LARGER-INCDEN-PER-DELSIZE(rd, cd)
12: else

13: Return NULL

14: den ← GET-DENSITY(M)
15: until den ≥ θd
16:
17: ra ← GET-CANDI-RA(X,M), ca ← GET-CANDI-CA(X,M)
18: while ra �= NULL and ca �= NULL do

19: ADDITION(M,ra,ca)
20: ra ← GET-CANDI-RA(X,M), ca ← GET-CANDI-CA(X,M)

21:
22: den ← GET-DENSITY(M)
23: while den ≥ θd do

24: ra ← GET-CANDI-RA(X,M), ca ← GET-CANDI-CA(X,M)
25: M ← M+ LARGER-INCSIZE-PER-DECDEN(ra, ca)
26: den ← GET-DENSITY(M)

27:
28: if Size(M) ≥ θs then

29: Return Size(M)
30: else

31: Return NULL

Algorithm 2 Function: ADDITION(M,ra,ca)

Input: Current submatrix M; Candidate row ra and column ca for addition
1: if ra �= NULL and ca == NULL then

2: M ← M + ra

3: else if ca �= NULL and ra == NULL then

4: M ← M + ca

5: else if ra �= NULL and ca �= NULL then

6: M ← M+ LARGER-WEIGHT(ra, ca)
7: else

8: Return False � No addition is conducted
9: Return True

the parameters θh, θw, θs, and θd, we conduct multiple rounds

of row/column deletion/addition actions to get a submatrix

XIJ with a density greater than θd. If Size(XIJ) ≥ θs, we

record the LBE and its size; otherwise no detection is recorded.

1) Main iteration: the main iteration is from line 2 to 15.

In each iteration, the action is either row/column addition or

row/column deletion. Since our major target is to increase the

density of the remaining submatrix, deletion is usually much

more frequent than addition. However, whenever addition does

not decrease density, we prefer addition to deletion because the

optimization objective of the original problem is maximized

size. The details of the addition/deletion actions are described

below.

2) Addition: among all the rows xkJ (k ∈ K,K = P \ I)

outside the submatrix XIJ , Den(xμJ) is the maximum; if

Den(xμJ) ≥ Den(XIJ), xμJ is the candidate addition row

ra. Using similar method, we can get the candidate addition

column ca if it exits. These tasks are accomplished by func-

tions GET-CANDI-RA() and GET-CANDI-CA() (line 3). They

return NULL if no candidate is found. If both ra and ca exist,

we add to XIJ whichever has greater weight, accomplished

by function LARGER-WEIGHT() in ADDITION() (The pseudo-

code is in Algorithm 2). We use the metric weight here

because we want a) the size of the submatrix after addition is

maximized, and b) the density of the submatrix after addition

is maximized (so that less deletion is conducted in future).

Weight is the product of the two metrics.

3) Deletion: if no addition is conducted (ADDITION()

returns False), we conduct deletion. We first identify the

candidate deletion row and column (rd and cd) by functions

GET-CANDI-RD() and GET-CANDI-CD() respectively (line 5).

The scheme is simple: among all the rows xiJ (i ∈ I) in the

submatrix XIJ , Den(xγJ) is the minimum; if Den(xγJ) <
Den(XIJ), xγJ is the rd. Using the same method, we can

get cd if it exits. If both rd and cd exist, we delete whichever

makes the increased density per deleted size maximized; this is

accomplished by function LARGER-INCDEN-PER-DELSIZE()

(line 11).

4) Addition in the end: the main iteration ends when

Den(XIJ) ≥ θd. Straight after that, we conduct two rounds

of additions by different methods to maximize Size(XIJ). a)

Round one (line 17 to 20): if further addition does not decrease

Den(XIJ), we apply the same addition scheme as that within

the main iteration. b) Round two (line 22 to 26): from now on

we allow Den(XIJ) to decrease, as long as Den(XIJ) ≥ θd.

The major difference with round one is that if both candidates

exist, we select the candidate that maximize the increased size

per decreased density, accomplished by function LARGER-

INCSIZE-PER-DECDEN() (line 25).

5) No-action conditions: note that an action cannot be

conducted if either of the conditions occur: a) no candidate

can be found; b) further deletion violates the width or height

threshold (note the arguments of GET-CANDI-RD() and GET-

CANDI-CD()). If both addition and deletion are prohibited, the

algorithm terminates (line 13).

6) Complexity: the quantity of row and column manipula-

tions are O(|P |) and O(|M |) respectively. We assume that the

number of prefix is much larger than that of monitor. Within

each iteration, it takes O(|M |) time (i.e., simply scanning the

columns) to get the candidate addition and deletion columns.

By deploying a ‘value to index mapping’ data structure, it

also takes O(|M |) time to get the row candidates because the

rows in and out of the current submatrix have O(|M |) different

weight values. So the total time complexity of the algorithm

is O(|M |(|P |+ |M |)).

III. MEASUREMENT SETUP

A. Data Collection and Preprocessing

We obtain BGP updates from RouteViews [8] and RIPE RIS

[9], both of which operate multiple route collectors that have

BGP sessions with BGP speaking routers (work as monitors)

in the Internet. We use 17 collectors that provide data from

452 monitors as of January 2013. The number of available

monitors is not constant at different time points because firstly,

collectors/monitors start working at different time points, and

secondly, sometimes collectors/monitors may stop working

temporarily or permanently.



1) Monitor winnowing: some of the 452 monitors are

unsuitable for our experiment: a) If a monitor has only a partial

view of the Internet, it may miss some Internet-level BGP

events; so we select only the monitors with global view. To

this end, we set a benchmark as the quantity of prefixes in the

routing table of a core router [10], and a global-view monitor

should see at least 90% of the benchmark. This operation

removes 269 monitors. b) Some BGP routers have BGP

sessions with more than one collectors, hence are interpreted

as multiple monitors. As a result, the impact observed by such

a router may be incorrectly amplified. To deal with it, we select

only one among the sessions with the same router. This step

removes 52 monitors. c) Some ASes own multiple monitors,

which may lead to events local to these ASes being overstated.

So we select only one monitor in each AS. This step further

removes 8 monitors. In summary, among the 452 monitors,

123 are suitable for our measurement.

2) Distribution of the monitor ASes: we get the tiers of

the monitors’ ASes according to [11], which uses the size

of customer cone as the metric. An AS’s customer cone is

the ASes that can be reached through AS-level provider-to-

customer links, and the size of customer cone indicates the

influence of the AS. The method is: the ASes with less than

5 downstream customers are stubs; the ASes with between

5 and 50 downstream customers are small ISPs (tier-3); the

remaining non-tier-1 ASes are large ISPs (tier-2); the list

of tier-1 ISPs are directly obtained from the website [12].

We get customer cone data from a public repository [13],

maintained by RIPE RIS. The result for the 123 monitors

is: tier-1: 8, tier-2: 37, tier-3: 43, stub: 35. Next, we map

the ASes to countries/regions by using the geographic data

from the site [14]. For tier-1 ASes, we record their region as

‘Global’. We find that the 123 monitors are spread across 25

countries/regions in the world. To summary, the monitors are

widely spread in the Internet; so we believe they are capable

of detecting Internet-scale events.

3) Eliminating the effect of BGP session resets: due to

connection outage by either intended manipulations or unin-

tended faults, occasionally route collectors need to re-build

BGP sessions with some route monitors. In the process, the

complete BGP tables of these monitors are sent to the collector

in the form of updates, which occupy notable computing and

storage resources but provide little information about global

Internet status. Therefore, we delete these updates by applying

the method in [15].

B. Parameter Settings

Since the quantities of monitors and total routable prefixes

change with time, we set θw and θs according to the quantity

of monitors |M | and that of total prefix at the time of

measurement, i.e., |Pt| (not |P |, which is just the number of

prefixes in UVM). Specifically, we set θw to a ratio of |M |,
and θs to a ratio of |M |×|Pt|. For brevity, we directly use the

ratio values to represent width and size, and call them relative

width and relative size respectively.
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Fig. 1: Cumulative Distribution of LBE size for the 10 months when
setting θs to 0.

In order to set θs, we plot the cumulative distribution of

the sizes of identified LBEs when setting θs to 0, shown in

Fig. 1. We assume the Internet is stable and healthy most of

the time, so θs should be large enough in order that all the

months contain small quantities of LBEs. That is to say, we

are interested in capturing LBEs in the tails of the curves, and

θs accommodates all the distribution curves. Fig. 1 illustrates

that setting θs to 0.007 can catch about the top 0.5% ‘LBE’s

in a month: the vertical line at size 0.007 intersects the curves

at ratios between 99.2% to 99.8%. We set θs to 0.007 in this

paper.

We set θw to 40% (i.e., θw = 40% × |M |). This value

effectively avoids that all the monitors in an LBE are of the

same tier or in the same country/region. Our further analysis

shows that the LBE identification result is not sensitive to

this threshold, i.e., the vast majority of LBEs have quite large

width.

In terms of θh, since the quantity of prefixes is much larger

than that of monitors in our experiment, we omit the height

threshold; the height of LBE XIJ is at least θs
Wid(XIJ )

.

As for the density threshold θd, it should not be 100% or

very close to that. On the other hand, it cannot be too small

otherwise the correlation between updates inside an LBE is

too weak. We set θd to 0.8 and show the effect of varying this

threshold in Section V-C.

We set the length of time slot to 20 minutes basing on

the following considerations. First, we seek to decrease the

possibility that the impact of one underlying incident is divided

into separate slots; this requires wide slot. Second, we seek to

decrease the number of concurrent underlying incidents within

a single slot; this requires short slot. Previous research has

established that it usually takes several minutes or less time

for a re-routing event to converge [16], and quite rarely could

the convergence time be longer than 10 minutes [16], or one

hour [17]. So we believe 20 minutes is a reasonable choice.

We analyze the impact of this parameter in Section V-C.

IV. RESULTS FOR FAMOUS INTERNET INCIDENTS

The identified LBEs for nine famous disruptive Internet

incidents are demonstrated in Fig. 2 (a to i), including worm

(Fig. 2a), blackouts (Fig. 2b, 2d), natural disasters (Fig. 2c, 2e,
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(a) 2003 Slammer worm.
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(b) 2003 east coast US blackout.
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(c) 2005 hurricane Katrina.
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(d) 2005 LA blackout.
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(e) 2006 Taiwan earthquake.
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(f) 08 Mediterranean cable cut I.
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(g) 08 Mediterranean cable cut II.
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(h) 2010 SEA-ME cable cut.
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(i) 2011 Japan Tsunami.
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(j) Ten months in 2013. The dash lines mark the start and end of the Spamhaus DDoS attack.

Fig. 2: Identified LBEs when θd = 0.8, θw = 40%, and θs = 0.7%. The dash lines mark the occurrence of the famous incidents. It is
visible that both the quantity and sizes of the LBEs increase shortly after the disruptive incidents occur.

2i), and cable cuts (Fig. 2f, 2g, 2h). The x-axis denotes date

and the y-axis denotes relative size. The vertical dash lines in

the figures mark the occurrence of the underlying incidents.

Note that although θs is obtained by analyzing the 2013 data,

for simplicity, we directly apply it here instead of obtaining a

θs for every year. We elaborate on its impact later.

Among these incidents, seven (excluding Fig. 2i and 2h)

were investigated in [1], where the visible impact of these

incidents on the inter-domain routing system is demonstrated.

Note that we do not analyze the incidents earlier than 2003,

because the number of available monitors is too small. As

regard to the other two events, the impact of the 2011 Japan

Tsunami is illustrated in [18], and the 2010 SEA-ME cable

cut is investigated in [19].

As is evident from the figures, the quantity and sizes of

the LBEs increase immediately after the occurrence of the

incidents, indicating high correlation. Note that the delay of

the LBEs in Fig. 2e and 2h is longer than that of the other

figures. For the former, there were multiple earthquakes within

several hours and we speculate the first strike was relatively

weak and did not heavily impair the Internet. For the latter,

the marked occurrence time is not accurate because we know

only that the incident happened on April 14; but the exact

time was never declared. So the exceptions do not violate our

basic observation, i.e., a strong correlation between the number

and sizes of LBEs and the famous disruptive incidents. These

results highlight the effectiveness of our method and basic

idea.

Except for Fig. 2a and 2b, no LBE exists before the

occurrence of the incident. We believe the exceptions are due

to the use of the θs learnt from the data in 2013, which is

probably too small for early years thus lead to more LBEs

being detected in 2013. Note that the sizes of these too-

early LBEs are just slightly larger than θs, indicating that

a slightly larger θs can easily eliminate them. On the other

hand, compared with the too-early LBEs, the size increase of

the other LBEs is significant, which validates the power of our

method.

V. RESULTS FOR THE TEN MONTHS IN 2013

The results are shown in Fig. 2j: we detect 101 LBEs in

the 10 months, i.e., 2.33 LBEs for each week in average.

So generally speaking, LBEs are rare in the Internet, which

complies with the common belief that the Internet is stable

most of the time. Note that the distribution of the LBEs is

quite uneven; for example, while the LBEs in late-March, mid-

April, mid-May, and late-September are large in quantity, there

are few LBEs in February and July.

We believe the LBEs in late-March can be explained by

a well-known incident, i.e., a large-scale DDoS (Distributed

Denial of Service) attack targeting the Spamhaus site, which

lasted for more than 10 days and reached record-breaking flow
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Fig. 5: The average number of up-
dates captured by each ‘1’ in and out
of an LBE.

rate. The incident is marked by the two dash lines. We cannot

map the other LBEs to well-known incidents.

A. Features of the LBEs

The widths of the LBEs as a function of their sizes are

plotted in Fig. 3. The vast majority of LBEs have relative sizes

between 0.007 and 0.015; among the three LBEs larger than

0.015, two are during the DDoS attack, implying the severity

of the incident. On the other hand, most of the LBEs have

rather large widths, significantly larger than θw. The result

suggests that while LBE identification is not sensitive to the

width threshold, it is quite sensitive to the size threshold.

Fig. 4 demonstrates the ratio of updates contained in an LBE

as a function of the size of the LBE. We observe that all but

one of the LBEs capture > 50% of the updates existed in the

corresponding slot, and 72.3% of the LBEs capture > 70% of

updates. The result indicates that an LBE is largely responsible

for the high dynamics in the corresponding ‘active period’.

In Fig. 5, we present the average number of updates each

‘1’ in an LBE contains as a function of that number out of

the LBE. It shows the ratio can be as small as 0.314, and as

large as 7.962. Although the range of the ratio is wide, most

LBEs lie in the ‘large side’, i.e., 83 LBEs are to the left of

the line that crosses the figure. This observation indicates that

instable (prefix, monitor) pairs, which involve more updates

than other pairs, tend to be captured by LBE.

B. Clustering the LBEs

In this part, we cluster the LBEs that are probably caused by

the same reason, and the clustering is mainly according to the

prefix sets of the LBEs. We do not consider the monitor sets

because a) for an LBE, its monitor set is magnitudes smaller

than its prefix set; b) prefix set provides more information

about the cause of the LBE, which we describe in detail in

Section VI.

We adopt the DBSCAN (Density-Based Spatial Clustering

of Applications with Noise) technique [20], and we use the

Jaccard distance as the distance metric. For two LBEs AI1J1
,

BI2J2
, the distance between them is the Jaccard distance

between their prefix sets:

Dist(AI1J1
,BI2J2

) = 1−
|I1 ∩ I2|

|I1 ∪ I2|
(6)

For example, the Jaccard distance between two LBEs with

identical prefix sets is zero, and two LBEs with completely

different prefix sets have a Jaccard distance of one.

The DBSCAN technique requires two parameters, a) ε: the

maximum distance to find directly reachable point, b) minPts:

the minimum number of points to form a dense region. To best

decrease the possibility of false positive, we set the parameters

to strict values, i.e., ε = 0.65 and minPts = 4. The settings

make the LBEs in a cluster highly related, the size of a

cluster is at least four. As shown in Fig. 2j, LBEs belonging

to different clusters are marked with different colors; note

that black marks unclustered LBEs. There are four clusters,

containing 18 (red), 7 (blue), 4 (green), and 5 (yellow) LBEs

respectively. While some clusters persist for a short time, some

span months. To understand the reason for the clusters, we

conduct a case study of the largest cluster in Section VI.

C. The Impact of the Parameters
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Fig. 6: Impact of parameters on the analysis of the Slammer worm
incident. Unless otherwise specified, θd = 0.8, θw = 40%, θs =

0.7%, and length of time slot is 20 minutes. It is visible that the trend
persists with moderate varieties.

To demonstrate how varying the value of the parameters

affects LBE identification, we conduct a case study of the

Slammer worm incident, because it generates a large amount



of LBEs and it is easy to observe the change in trend. The

impact of θd and the length of time slot is shown in Fig.

6, where we demonstrate the trend of the identified LBEs in

accordance to different parameter settings. It is evident in the

figures that minor changes to θd and the length of time slot

do not affect the size trend of identified LBEs. In other words,

generally speaking, despite changes in the parameter values,

large LBEs remain large, small LBEs remain small or become

undetected. To summarize, we believe that while moderate

modification to the parameters affect the quantity and sizes

of identified LBEs, it does not impair the correctness of our

scheme.

VI. CASE STUDY: THE LARGEST CLUSTER

In this section, we analyze the largest cluster in the previous

section, as the first step towards a systematic method to infer

the major cause of LBE. The cluster contains 18 LBEs, among

which 13 are in April and 5 are in June.

A. Analyze Common Prefix Set

We believe the prefix set of an LBE is the key to inferring

the topological location of the major cause. Intuitively, if the

prefixes in the set are largely uniformly owned by quite a

lot of ASes, the major cause is likely in or near the core of

the Internet. Other the other hand, if most of these prefixes

belong to only one or few ASes, the major cause is likely in

the periphery of the Internet, close to the AS(es). Based on

this consideration, we obtain the common prefix set of the 18

LBEs; this set contains 1328 prefixes and they are our main

clue to the topological location of the major cause.

For each one of the 18 LBEs, we extract the origin ASes of

the 1328 prefixes from the corresponding updates. The top 3

most popular origin ASes for the LBEs are listed in TABLE

1. The result is abnormal: the origin ASes are inconsistent;

instead, they change with time. Actually, the change frequency

demonstrated in the table is underestimated, because a prefix

can be attributed to different ASes within a single LBE; for

simplicity, we record only the latest attribution. Moreover,

some changes may not be captured and recorded in the LBEs.

ID Top 3 origin ASes ID Top 3 origin ASes
1 4847:833,6629:414,6174:60 10 4847:664,47331:632,9304:24

2 6629:1304,47331:16,6174:3 11 1273:880,6629:441,6174:3
3 1273:1302,47331:19,6174:2 12 9304:523,6629:409,12654:390

4 4847:1251,9304:43,19406:26 13 47331:1024,4847:297,6174:2
5 4847:1180,6629:137,9304:4 14 47331:1290,9121:26,1273:2
6 1273:731,4847:377,6629:214 15 6629:1316,47331:3,4847:2
7 4847:1310,9304:6,1273:5 16 4847:1150,6629:165,47331:3
8 47331:1289,9121:26,9304:2 17 9304:772,6629:498,47331:29

9 1273:997,9304:236,47331:56 18 19406:1202,6174:72,6629:28

TABLE 1: Top 3 most popular origin ASes and the number (bold)
of their originated prefixes.

To identify the true origin AS of the 1328 prefixes, we turn

to the routing tables before and after the LBEs to avoid the

impact of the underlying event. For the BGP table in March,

through longest prefix matching, we attribute 1309 (98.6%) of

the prefixes to 141 less-specific prefixes, all of which belong

to AS 9121 (a national ISP). The 1309 prefixes themselves do

not exist in the routing table. The result for July is similar, the

numbers are 1305 (98.3%) and 140 respectively.

Note that by now we cannot ensure that AS 9121 originated

the prefixes; the major cause could also be an AS along the

paths from AS 9121 to the monitors. However, other than AS

9121, we cannot identify such an AS, which is supposed to

exist in most AS paths from the monitors to these prefixes.

In fact, AS 9121 is the only one that exists in almost all the

AS paths in the updates for the 1328 prefixes, with less than

30 exceptions. The analysis suggests that AS 9121 initialized

more than 98% of the 1328 prefixes, so AS 9121 is the ‘major

player’ of the 18 LBEs. We speculate the frequent changes of

origin ASes are due to some abnormal configurations by AS

9121. To validate our speculation, we investigate the type of

the updates, described as follows.

B. Analyze Update Pattern

We categorize update pattern into 6 types according to [21],

listed in TABLE 2, and the results for the 18 LBEs are shown

in Fig. 7 and Fig. 8. While the former compares the ratio of

raw number, the latter records the ratio of ‘1’s (in LBE) that

contain certain pattern types.

Pattern Description

WW Two successive withdrawals.
WADup Withdrawal followed by a duplicated announcement.
WADiff Withdrawal followed by a different announcement.
AADiff Two announcements with different AS paths or next hops.

AADup1 Two announcements with exactly the same attibutes.
AADup2 Different announcements with identical AS path and next hop.

TABLE 2: Update pattern terms and description.

As shown in Fig. 7, AADiff is the most (53.99%˜70.19%),

followed by AADup2 (22.86%˜42.90%); other types take quite

small ratios. Compared with the ratio of AADup2 (15%) in

[21], the ratio in our measurement is much higher. Since this

pattern indicates policy change (more detailed analysis shows

they are mostly changes to BGP communities), we believe AS

9121 made frequent policy changes. AADiff are mainly due

to two factors: a) frequent changes in the AS paths (mostly

changes to origin AS); b) the BGP convergence process.
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Fig. 8 illustrates a notable decrease of AADiff and AADup2

patterns for the LBEs in June, implying that the activity of AS

9121 becomes weaker in June. For the ‘1’s where no AADiff

or AADup2 exists, the patterns are mostly individual updates,
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so no pattern is recorded. This small number of updates also

indicates weaker activity.

To summary, we speculate the LBEs in the cluster are

caused by some kind of configuration errors in AS 9121. We

believe the anomalous behaviour is not intended, primarily

because the resulting instability mainly affects the connectivity

and performance from other part of the Internet to the networks

owned by AS 9121; in other words, AS 9121 itself is the major

victim of the anomaly.

VII. RELATED WORK

Many attempts have been made to detect Internet anomalies

through analyzing BGP updates/tables; we just name a few.

Comarela and Crovella focused on large-scale coordinated

rerouting events reflected in daily routing table changes [4];

by comparison, we adopt much finer granularity and investi-

gate updates instead of tables. I-Seismograph is dedicated to

measuring the ‘impact magnitude’ of famous disruptive events

by analyzing the statistics of various attributes of BGP updates

[1]; but the data from all used monitors are aggregated. Liu

et al. applied the metric ‘Betweenness Centrality’ to measure

the extent of rerouting after disruptive events [3]; while they

were concerned with ASes, our focus is on IP prefixes. The

framework proposed by Mai et al relies on a simple count of

BGP update messages to detect anomalies [6]. In contrast, we

apply more sophisticated metrics like density, size, and height

to quantify the impact of events. Deshpande et al applied

statistical pattern recognition to the feature traces extracted

from BGP update messages to detect anomalies [5]; however,

like many other works, the impact of monitor-local events is

not eliminated.

VIII. CONCLUSION

Traditional metrics for detecting Internet disruptions are

prone to monitor-local events. To cope with the issue, we

propose the concept of Update Visibility Matrix (UVM) and

Large-scale BGP Event (LBE). First, we formulate the prob-

lem of identifying LBE into a bi-clustering problem, then we

propose a heuristic algorithm to solve it. We apply the method

to the updates related to nine famous incidents; the results

suggest a strong correlation between the incidents and the

identified LBEs. Next, we analyze ten months’ data in 2013

and find that LBEs do exist. By analyzing the properties of

these LBEs, we illustrate their anomaly and strong impact.

Finally, we conduct a case study of a high-impact incident

that generated 18 LBEs. Our future work is two-fold. First,

considering the difference between prefixes and monitors, we

will weight each prefix and monitor according to their activity,

importance, etc. Second, we try to come up with a systematic

way to infer the cause of an LBE.
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