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Abstract—In this paper, we addressed the issue of a stochastic
optimal bidding problem for a system with microgrids (MGs).
The optimal bidding problem is formulated as a two-stage
stochastic programming process, which aims to minimize the
system operation cost and to expand energy interactions among
local MGs that are geographically close. Uncertainties come from
both energy supply and demand sides (e.g., wind, solar, and load
demand) are considered in the stochastic model and random
parameters to represent those uncertainties are captured by using
the Monte Carlo method. To enable an optimal electricity trading
between local MGs, we presented two bidding schemes: (i)
Cournot equilibrium based Dynamic Backtrack Energy Trading
(DBET), and (ii) double auction based Dual Decomposition
Auction (DDA). Experimental results on an IEEE-33 bus based
system with MGs were presented to show the effectiveness of our
proposed schemes. Experimental results show that our proposed
bidding schemes can reduce the operation cost of the system,
while the DDA scheme achieves better performance in terms of
system social welfare than the DBET scheme.

Keywords—Microgrids, biding, uncertainties, stochastic pro-
gramming, double auction.

I. INTRODUCTION

MGs in the smart grid are commonly operated in an

island, connected to the utility grid, and are integrated with

distributed energy resources, loads and batteries, and other

electric components [1]. In a MG, energy resources generated

locally in the MG can be used to serve load demands and

improve the efficiency of energy delivery by reducing energy

distribution losses. Through being connected to the utility grid,

as denoted as the grid-connected mode, MGs can sell extra

power to the utility grid and buy power from it whenever

necessary. The Microgrids Center Controller (MGCC), also

acting as an aggregator, aims at minimizing the operation cost

of microgrids, while satisfying the market efficiency and the

responsibility of individual parties.

This work was supported by the Fundamental Research Funds for the
Central Universities (xkjc2015010). For correspondence, please contact Prof.
Qingyu Yang and Prof. Wei Yu.

There have been a number of research efforts devoted

to address this issue. For example, Parisio and Glielmo in

[2] formalized the energy scheduling problem as a linear

programming problem in order to minimize the operation cost

of the system with MGs. In such a system, variabilities and

uncertainties raised by renewable energy resources and load

demands make the energy resource management challenging.

To deal with this issue, stochastic energy management methods

have been developed [3] and bidding strategies for MGs have

been studied as well [4].

Nonetheless, existing research efforts on energy resources

management in the system with MGs mainly focus on in-

teractions between MGs and the utility grid. Because of the

large number of renewable energy resources in MGs, the

amount of locally generated energy can be larger than the

local demand in MGs. Due to that transmitting power from

MGs (which commonly operate in low voltages) to the utility

gird (which commonly operates in high voltages) will incur

a high transmission cost and line losses. Therefore, it will

be more efficient that MGs can trade the surplus energy to

both the utility grid and other MGs directly. How to develop

techniques to enable the efficient trading between GMs and the

utility grid, as well as the trading among local MGs directly

remain an opening issue. To address this issue, in this paper

we consider that local MGs are operated as an energy supplier

when locally generated energy is excess, or local MGs are

operated as an energy consumer when the locally generated

energy is insufficient. We proposed a secondary market to

enable the trading among MGs and proposed two novel energy

bidding schemes to provide an optimal energy trading in the

secondary market.

The main contributions of this paper can be summarized as

follows:

First, we presented a stochastic model for optimizing the

operation of MGs, which considers energy interactions not

only between MGs and the utility grid, but also among local

MGs. The proposed model aims to minimize the operation cost
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of the system. To address uncertainties from both renewable

energy resources and demands, the optimal bidding problem

is formalized as a two-stage stochastic programming process,

in which uncertainty factors are captured through the Monte-

Carlo method.

Second, we proposed to develop a secondary electricity

market, in which MGs are treated in the same manner as

other market entities. The market will be used when there

exists surplus and insufficient MGs simultaneously, and energy

trading among geographically closed MGs is allowed. The

operation of the secondary electricity market is enabled by

the coordination of local agents in MGs and the MGCC.

Third, we presented the following two bidding schemes

that enable the efficient energy trading among local MGs:

(i) Cournot equilibrium based Dynamic Backtrack Energy

Trading (DBET), and (ii) double auction based Dual De-

composition Auction (DDA) mechanisms. In the first scheme,

we consider surplus MGs as independent power suppliers so

that the schedule of power delivery from surplus MGs to

insufficient MGs is based on the distance of power trans-

mission for the sake of energy delivery cost. The clearing

price in the secondary market is determined by the Cournot

equilibrium. Nonetheless, in this first scheme, insufficient MGs

are purely price-takers so that the efficiency of the market

is limited. To overcome this limitation, we then proposed an

enhanced scheme, which is the double auction based DDA

scheme. In this scheme, we took all MGs social welfare into a

consideration and proposed a double auction DDA mechanism,

in which surplus and insufficient MGs are considered as buyers

and sellers, respectively. We formalized the double auction

problem as a winner determination problem, which is NP-hard.

We then developed an efficient algorithm to solve this problem

by decomposing it to a linear programming problem. Our

experimental results show that, when our proposed bidding

schemes are used, the operation cost of system can be reduced.

In addition, the double auction based DDA scheme achieves

better performance than the Cournot Equilibrium based DBET

scheme in terms of social welfare.

The remainder of this paper is organized as follows. In Sec-

tion II, we present system models. In Section III, we present

our approach, including the basic idea, problem formalization,

and our schemes. In Section IV, we give performance evalu-

ation and results. We conduct literature reviews in Section V.

Finally, we conclude the paper in Section VI.

II. SYSTEM MODELS

In this section, we first describe the multi-microgrids model

and then describe the electricity market model.

A. System Model

In this paper, we consider that a smart grid consists of

multiple MGs and the MGs operate in a grid-connected mode.

In this system, the capacity of selling surplus electricity or

buying them from an electricity market is allowed. Figure 1

shows the system model. As we can see, the system is

composed of a cluster of MGs, the agents of MGs, and
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Fig. 1: System Model

the MGCC. In this system, local MGs consists of several

renewable generation units, conventional energy generation

units, a number of residential consumers who demand loads,

and a battery storage facility. The MG agent is responsible for

collecting the energy usage information and interacting with

the MGCC. We assume that the electricity can be transported

among MGs, especially MGs that are geographically close to

each other.

Generally speaking, the MGCC tends to minimize the cost

of a system with MGs by collecting information such as energy

generation and demand of local MGs, and energy delivery

among local MGs, between MGs and the utility grid. The

MGCC can make decisions on purchasing the electricity from

the market or selling the electricity to the market based on

status of local units, as well as other factors (e.g., the electricity

price, states of conventional units, and the operation cost, etc.).

B. Market Model

The basic electricity market in this paper is a deregulation

market. The electricity market is divided into two parts: the

primary market and the secondary market. The primary market

is assumed to be a price-taker energy market, which consists

of energy trading between MGs and the utility grid through the

coordination of the MGCC. In this market, trading prices are

day-ahead or real-time electricity prices. In each day, agents

of local MGs need to forecast demands and the amount of

renewable energy resources generated, and then submit hourly

bids to the day-ahead market before real-time delivery. Bids

from the agent include selling and buying electricity bids,

denoted as tuples {amount, price}.

Recall that MG agents usually provide selling bids at a

relatively low price, which is usually far below than the gener-

ation cost of local units [5], while offering buying bids at high

prices in order to guarantee that bids are always admissible. In

addition, because of the low voltage characteristics of MGs, a

relatively frequent power transmission to the utility grid will

incur line losses, posing an increased operation cost. For this

purpose, to guarantee energy interactions among local MGs,

we define the secondary market as a supplement of the primary

market. We assume that there must exist some MGs that want

to purchase power which denoted as insufficient MGs, while

others want to sell power which denoted as surplus MGs in a

time duration. When are both insufficient MGs and surplus

MGs in the system, the secondary market can be used to

enable the trading between surplus and insufficient MGs. The
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trading process can be determined by the MGCC based on our

proposed bidding schemes in Section III.

III. OUR APPROACH

In this section, we first present the problem formalization,

and then present two new bidding schemes.

A. Problem Formulation

We now present the two-stage stochastic programming

problem [6] to minimize the operation cost of the system

with MGs. In our two-stage stochastic programming process,

the input and output of the problem are parameters, which

are used to capture uncertainties and decisions for both the

first and second stage. At the beginning, the initial decision

on day-ahead energy bids should be made in the first stage.

Then, the uncertainty factors are mimicked based on scenarios

constructed by the Monte-Carlo method, which affect the out-

come of the first-stage decision. Decisions will then be made

at the second stage in order to compensate for uncertainties.

The optimal decision in the first stage has an objective to

identify the amount of optimal power to be purchased or sold,

as well as the commitment of distributed energy generation

units over the next 24 hours. Decisions in the second stage

consists of the power dispatch of all local generating units,

the amount of electricity purchased or sold, and decisions for

battery charging and discharging.

We now describe the stochastic problem. The objective

function is described as follows:

min
∑

N

∑

M

∑

T

CGP k
i,t +

∑ ∑ ∑

(SUi,t + SDi,t),

+
∑

s

rs
∑∑

{

P sch
i,t rda + I (P sch

i,t < PD
i,t),

(

P
B,MGCC
i,t rrt + P

B,MG
i,t rMG

B

)

− I(P sch
i,t > PD

i,t),

(PS,MGCC
i,t rMGCC

s + P
S,MG
i,t rMG

s ),

−Cost(battery) −δi,t
∣

∣PD
i,t − P sch

i,t

∣

∣

}

. (1)

The first and second parts of the objective function 1 corre-

sponds to the startup and shutdown cost, and the generation

cost associated with local generators, respectively. The gen-

eration cost consists of the cost for both local conventional

generators and renewable energy generators. In our model,

renewable energy resources are wind and solar. Therefore,

corresponding uncertainties are wind speed and ambient tem-

perature, respectively.

The third, fourth, and fifth parts in the objective function 1

are associated with the cost of day-ahead bids, the amount

of electricity purchased and sold with the utility grid and

among local MGs. Here, P sch
i,t is referred to as the amount of

energy purchased or sold for day-ahead bids. I(.) is referred

to as an indicator function, where positive and negative parts

represent the amount of electricity purchased from the utility

grid or surplus MGs, and the amount of electricity sold to the

utility grid or insufficient MGs, respectively. Here, Cost
B,MG
t

and Rev
S,MG
t are the cost and revenue for the energy trading

associated with individual MG.

TABLE I: Notations

λ: Lagrangian vector which are price in double
auction mechanism

τ : Termination criterion of iteration

δi,t: Penalty factor of deviation between day-ahead
bids and real-time delivery

γcha, γdis: Charing/Discharging efficiency of storage bat-
tery

ωcha, ωdis: Cost for battery Charing/Discharging degrada-
tion

∆T : Duration of time slot (h)

λi: Generation cost of MG i under Cournot Equi-
librium ($/kWh)

πi: Profit of MG i under Cournot Equilibrium
(/kWh)

ζs: Probability of monte-carlo scenario s

ai, bi, ci: The coefficient of MG i’s local units generation
cost

cb,i, cs,j : Bids from buyer and seller agents in double
auction mechanism

di,j : Distance matrix of local MGs

qb,i, qs,j : Trading amount from buyer requests and seller
offers in double auction mechanism

rda, rrt: Day-ahead and real-time electricity price in
primary market ($/kWh)

rMG
B , rMG

s : Buying and selling electricity price among MGs
($/kWh)

rMGCC
s : Price of MG selling to MGCC in secondary

market ($/kWh)

u(b, i), u(s, j): Utility functions of buyer and seller

xi, yj : Binary variables 0,1 which represent winning
the bid or not

CG: Generation cost of local units ($/kWh)

CUi,t, CDi,t: Shutdown/startup offer cost of unit ($)

Ei,t: Capacity of battery i at time slot t (kWh)

Emin
i , Emax

i : Lower/Upper bound of battery capacity (kWh)

I(.): Energy status of MG, ”1” means surplus and
”0” means sufficient

I(i, t): Status of local units i at time slot t

M,N,K, T, S: Number of local units, MGs, renewable energy
resources, time slots and scenarios

Pm
i,t: Power generation of local unit m (kW)

P sch
i,t , PD

i,t: Scheduled bids and real-time power delivery
(kW)

P
B,MGCC
i,t , P

B,MG
i,t : Purchasing power from MGCC and other MG

(kW)

P
S,MGCC
i,t , P

S,MG
i,t : Selling power to MGCC and other MG (kW)

P k
i,t: Power generation of renewable energy resource

k (kW)

P cha
i,t , P dis

i,t : Charging/Discharging power of battery (kW)

Pmin
m , Pmax

m : Minimum/maximum power generation of
unit(kW)

Pmin
i , Pmax

i : Maximum power of battery i charg-
ing/discharging unit(kW)

Pmin
grid

, Pmax
grid

: Lower/Upper bound of MG interaction with
main gird (kWh)

SUm
i,t, SDm

i,t: Start-up and shutdown cost of unit m ($)

U(i, t): Status of battery i, ”1” if charging/discharging
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The last three parts in the objective function 1 are battery

charging and discharging costs, the penalty cost for the de-

viation between day-ahead schedule and real time delivery,

and the transmission cost between two local MGs. Here, δi,t
is referred to as the penalty factor for electricity transactions

deviation. Recall that due to aforementioned uncertainties in

the system, it is possible to over-commit on the day-ahead

schedule. The penalty factor is to reduce the difference be-

tween real time electricity delivery and day-ahead scheduling

through minimizing over-commitment.

In the optimization problem, we need to consider constraints

as well. The first constraint is to balance power. For each MG

in the system, the following power balance constraint needs

to be satisfied:
∑

m

Pm
i,t+

∑

k

P k
i,t+

∑

j

P dis
j,t =

∑

j

P cha
j,t +

∑

PD
i,t, (2)

∑

m

P
B,MGCC
t +

∑

m

P
B,MG
t − (

∑

m

P
S,MGCC
t +

∑

m

P
S,MG
t ),

= PD
i,t − P sch

i,t .
(3)

In any time duration, the power balance constraint should be

satisfied. This means that the sum of the amount of total power

generation from all local generation units and the discharging

power from battery units, and the amount of total power sold

to the utility grid, and other MGs, must be equal to the sum

of the amount of purchased power from the utility grid and

other MGs, and amount of battery charged. In Equation (3),

the left side is the amount of electricity that MGs trade in

the real-time market, which is equal to the difference between

day-ahead scheduling and real-time delivery in the right side.

The second constraint is related to conventional unit con-

straints. The operating cost of conventional unit can be mod-

eled approximately by,

CGPi,t = ai + biPi,t + ciP
2
i,t, (4)

where Pi,t is output power, ai, bi, and ci are generation cost

factors of local conventional generation unit i. The output

power generation should also be limited by

Pm
min ≤ Pm,t ≤ Pm

max. (5)

The third constraint is associated with the start-up cost

and shut-down cost, which are listed as follows: SUi,t ≥
CUi,t(Ii,t − Ii,t−1); SUi,t ≥ 0, and SDi,t ≥
CDi,t(Ii,t−1 − Ii,t); SDi,t ≥ 0, where I is the indictor

function with a value of 0 or 1, CU and CD are the cost for

the startup and shutdown of conventional generation unit.

The fourth constraint is related to the capacity of storage in

each MG, which should satisfy the following constraint:

0 ≤ P dis
i,t ≤ Ui,tusPi,max,

0 ≤ P cha
i,t ≤ (1− Ui,t)usPi,max,

Ei,t+1 = Ei,t + γchaP
cha
i,t ∆T −

Pdis
i,t ∆T

γdis
,

Ei,min ≤ Ei,t ≤ Ei,max.

(6)

For the battery in each MG i, the above constraint considers

charging and discharging limit, the battery state, and the upper

and lower bounds of battery capacity, respectively. Here, Ui,t

is an indicator function with a value of 0 or 1, representing

the battery is either in charging or discharging state. One

purpose of using the charging and discharging state is to ensure

that charging and discharging processes are not be performed

simultaneously. Also, γcha and γdis are referred to as the

efficiency of charging and discharging process, respectively.

In the objective function 1, the degradation cost of

battery charging and discharging is also denoted as

Cost(battery), which can be derived by Cost(battery) =

γchaωchaP
cha
i,t ∆T −

Pdis
i,t ∆Tωdis

γdis
.

At last, the maximum capacity of electricity interactions

between MGs and the utility grid cannot exceed the capacity

limit of physical transmission line. Then, we have Pmin
grid ≤

PD
i,t, P

sch
i,t ≤ Pmax

grid .

B. Curnot Equilibrium based DBET Scheme

To design an effective electricity interaction among MGs,

we introduce the Cournot Equilibrium [7] based DBET scheme

in the secondary market. In a time duration, we consider that

surplus and insufficient MGs are allowed to participate in

the secondary electricity market as second-tier suppliers. The

secondary market will be cleared by obtaining the Cournot

Equilibrium based on the generation cost of individual MGs.

The bidding process belongs to a static game with incomplete

information because MGs do not hold the complete informa-

tion of generation cost of other MGs. Notice that insufficient

MGs are only price takers, and electricity purchasing prices

are determined by surplus MGs.

We now describe the market clearing process in detail.

Assume that there are N surplus MGs in a time duration.

Agents of MGs can compute their generation costs based

Equation (4). Nonetheless, due to the electricity market com-

petition and imperfect monopoly characteristics, agents will

join scaling factor in the cost function on their own, before

the offer, to ensure the maximum benefit from the game.

Therefore, the generation cost of Equation (4) can be rewritten

as, C
′

i = (1 + λi)
[

ai(Pi(t))
2
+ biPi (t) + di

]

.

Also, the generation cost of MG j can be estimated by MG i

by Ci
′

j =
(

1 + λi
j

)

[

a
j
i

(

P i
j (t)

)2
+ b

j
iP

i
j (t) + d

j
i

]

. Then, the

profit π of MG i can be expressed by πi = ρPi (t)− Ci.

Based on the Cournot equilibrium conditions, we know that

if the surplus MGs want to maximize their own profits, the

following condition needs to be satisfied:
∂π

′

i

∂Pi(t)
=

∂π
(i)

′

j

∂P
(i)
j

(t)
=

0.

According to the prediction of power output in each MG,

we have P i
L =

n
∑

j=1

P i
Gj .

According to above equations, we can estimate the op-

timal bidding, which consists of the price and the amount

of power for MG i based on estimating the price and the

amount of power for other competitors as follows: Pi(t)opt =
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P
(i)
L

+
N−1
∑

i=1

bji

2aj
i
−

(1+λi)

(1+λi
j
)

N−1
∑

i=1

bi

2aj
i

1+
(1+λi)

(1+λi
j
)

N−1
∑

i=1

bi

2aj
i

, where Pi(t)opt is the optimal

bidding power of MGi. Correspondingly, the expected amount

of bidding power for MG j, which is estimated by MG

i, is P i
j opt = 1+λ

1+λi
j

• ρ−bji
2aj

i
, where P i

j opt is the expected

bidding power, and j = 1, · · · , N are the MGs and electricity

companies participated in the bidding process. After that,

the MGCC sorts all bidding prices and the largest one is

considered as the market clearing price.

After obtaining the clearing price for the secondary market,

the amount of energy traded among local MGs needs be

determined. To this end, we proposed a Dynamic Backtrack

Energy Trading algorithm (DBET). Recall that from the

objective function 1, the difference between optimal day-

ahead scheduling bids and real-time demand is the amount

of energy that MG should purchase or sell. The amount of

purchased or sold energy for each MG at a given time duration

needs to be derived first. Also, positive and negative values

represent energy selling and purchasing actions. Then, in each

time duration, the amount of energy traded between surplus

MGs and insufficient MGs are determined by the transmission

distance between them for the sake of power delivery cost.

This means that each surplus MG preferentially transmits the

electricity to insufficient MGs, which are geographically close

first. This process continues until the energy gap of insufficient

MGs is fulfilled or surplus energy in surplus MGs is sold

out. Finally, after finishing the trading among local MGs, the

remaining energy or the shortage of energy will be either

purchased from the utility grid or sold to it, which has a higher

voltage than the one in MGs. Algorithm 1 shows the detailed

procedure of our proposed DBET algorithm.

Algorithm 1 Dynamic Backtrack Energy Trading (DBET)

Require: P sch
i,t , PD

i,t; Distance Matrix dis(i, j), which is distance between
MGs i and j;

Ensure: Energy trading amount among each MG;
1: initializing the energy matrix Ei,t = P sch

i,t − PD
i,t;

2: if There exist a time duration t, for a given MG i, Ei,t ≥ 0||Ei,t < 0
then

3: ALL MGs sell the amount of energy Ei,t to the utility grid or buy
the same amount of energy from the utility grid; break

4: else
5: Set CBuy={Group of MGs purchasing energy

∣

∣Ei,t < 0};

6: Set CSell={Group of MGs selling energy
∣

∣Ei,t ≥ 0};
7: Set Sort(dis): descending of distance between CBuy and CSell;
8: MGs(m,n): MGs corresponds to the minimum one in Sort(dis);
9: if Em,t + En,t ≥ 0 then

10: argmin (Em,t, En,t)=0; argmax(Em,t, En,t)=Em,t + En,t;
11: trading amount between MG m and n is: |argmin(Em,t, En,t)|;
12: else
13: argmin (Em,t, En,t)=Em,t + En,t; argmax(Em,t, En,t)=0;
14: trading amount between MG m and n is: argmax(Em,t, En,t);
15: end if
16: return to 2
17: end if

C. Double Auction DDA Scheme

1) Double Auction Bidding Model: Recall that in the

Cournot Equilibrium based DBET scheme, the surplus MGs

are oligarch and only their profits are considered. Nonetheless,

sufficient MGs in the secondary market are only price-takers

and their benefits are ignored. To overcome this limitation

and provide a more efficient trading market, we proposed a

double auction based DDA scheme. This scheme makes both

surplus and insufficient MGs fully participate in the market,

where surplus and sufficient MGs are treated as sellers and

buyers, respectively. In this scheme, through the agent in each

MG, potential buyers submit their bids with amounts and

price of energy and sellers submit their requests with amounts

and price of electricity to the MGCC. Then, a price will be

determined by the MGCC to clear the market. By doing so, the

secondary market is bilateral and competitive, where utilities

(i.e., social welfare) [8] of all MGs in the system can be

maximized.

Considering that in a time duration t, there are p sur-

plus MGs in the system, which are referred to as sellers

{1, 2, . . . , p} (denoted as sellers {1, 2, · · · , p}) and q insuf-

ficient MGs (defined as buyers 1, 2, . . . , q). Electricity prices

for a buy and a seller in their bids are cb,j and cs,j per

unit, while the maximum demand and the available electricity

are di and sj , respectively. In this paper, we assume that

the amount of excess electricity of all surplus MGs is less

than the sum of all the electricity needed by insufficient

MGs, and can be sold out in the auction process. This means

that the selling amount of electricity is equal to the buying

amount of electricity in the double auction strategy. The

remaining part of insufficient electricity will be provided by

the utility grid through the primary market. Denote cko as the

clearing price of double auction mechanism. Then, the utility

of the sellers and buyer can be expressed. For a buyer, we

have ub,i =
(

cb,i − cko
)

qb,i and and for a seller, we have

us,j =
(

cko − cs,j
)

qs,j , where the amount of purchasing and

selling electricity from a buyer and to a seller are qb,i and

qs,j , respectively. Obviously, objectives of buyers and sellers

are conicting with each other due to natural selfishness. If

both buyers and sellers decide the amount of electricity to

purchase or to sell independently, it is very difcult to reach

an agreement. Therefore, there is a need for the MGCC to

intervene and ensure that the market operates efciently. To this

end, as bids and offers are processed in the double auction

process, the winner determination problem (WDP), which

represents the difference between buyers’ payment and sellers’

revenue, can be formalized as an integer linear programming

(ILP) problem to maximize the social welfare. The objective

function of the WDP is formalized as follows:

max :
∑

i

xicb,iqb,i −
∑

j

yjcs,jqs,j , (7)

s.t.
∑

yjqs,j−
∑

xiqb,i = 0, (8)

xi ∈ {0, 1}, ∀i ∈ [M ], ∀t ∈ [T ], (9)

yi ∈ {0, 1}, ∀j ∈ [M ], ∀t ∈ [T ], (10)

where xi and yj are binary variables 0, 1, showing the winning

bid of buyer i and seller j. Notice that the first constraint

imposes the balance between demand and supply in the double
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auction process.

2) Dual Decomposition Auction (DDA) Scheme: Recall that

as the ILP problem 7 formulated is NP-hard, it is hard to

obtain the optimal solution due to the high computation cost

when the number of MGs is large. To address this issue, we

proposed a multi-agent dual decomposition (DDA) scheme

to solve the problem in an efficient way. In this scheme,

we rst decompose the ILP problem to a linear programming

problem, which can then be solved in a polynomial time by

using the sub-gradient algorithm [9]. After that, we introduced

the Lagrangian Multiplier to relax the constraint of ILP. The

Lagrangian relaxation problem can be formalized as follows:

Lp(λ) = max
xi∈{0,1}
yi∈{0,1}

L(x, y, λ), (11)

where L(x, y, λ) is the Lagrangian function, and is defined by,

L(x, y, λ) =
∑

i

xicb,iqb,i −
∑

j

yjcs,jqs,j ,

+λ(
∑

xiqb,i−
∑

yjqs,j),
(12)

where λ is the Lagrangian vector, and λ = (λ1, . . . , λk)
represents transaction prices between winning MGs in the

double auction process. For a given λ, the original WDP is

decomposed into a couple of sellers (i.e., surplus MGs) and

buyers (i.e., insufficient MGs) sub-problems, which can be

solved by individual MGs’ agents independently.

The seller’s sub-problems can be presented by

Ls,j(λ) = −
∑

yjcs,jqs,j − λk

∑

yjqs,j ,

s.t. λk > 0, yj ∈ {0, 1},
(13)

and the buyer’s sub-problems can be represented by

Lb,i(λ) =
∑

xicb,iqb,i + λk

∑

xiqb,i,

s.t. λk > 0, xi ∈ {0, 1}.
(14)

In this way, dual decomposition results in each sub-problem

can be solved. For a given λk, the optimal solution to above

subproblems is

x∗
b,i = argmaxLb,i(λk),

y∗s,j = argmaxLs,j(λk).
(15)

Also, the Lagrange multipliers can be determined by solving

the following master dual problem:

Dp = minLp(λ),

s.t. λk > 0.
(16)

Notice that this problem is abbreviated as the master prob-

lem, and the solution corresponds to the trading price, which

can balance demand and supply between buyers and sellers. In

order to solve the above dual problem 16, the Lagrange mul-

tiplier λ can be updated by the sub-gradient mechanism [9].

Therefore, λk is updated based on, λ
q+1
k = (λq

k − σq ∂L(·)
∂λk

)

),

where the positive parameter σi is the learning rate of the

sub-gradient mechanism. By updating xi, yj and price λk

iteratively, the numerical solution of the dual problem can

be obtained. As the solution of the dual problem is also a

solution for the primal problem, the WDP is addressed and

social welfare of the MGs in the secondary market can be

maximized. Algorithm 2 presents the detail procedure of dual

decomposition auction (DDA) algorithm.

Algorithm 2 Dual Decomposition Auction Algorithm (DDA)

Require: P sch
i,t , PD

i,t, τ
Ensure: x∗, y∗, λk

1: q ← 0;
2: Em,t = P sch

m,t − PD
m,t, x0

i , y
0
j , λ

0
k

;
3: repeat
4: Set CBuyer={Group of MGs buying energy

∣

∣Em,t < 0};

5: Set CSeller={Group of MGs selling energy
∣

∣Em,t ≥ 0};
6: MGCC broadcasts price λ

q
k

, buyers CBuyer and sellers CSeller ;
7: q ← q + 1;
8: Each agent in CSeller obtains optimal y

q
j by solving 13;

9: Each agent in CBuyer obtains optimal x
q
i by solving 14;

10: Agents submit y
q
j and x

q
i to MGCC;

11: MGCC solves the dual problem 16;
12: MGCC updates the dual variable:

13: λ
q+1
k

=
((

λ
q
k
− σq ∂L(·)

∂λk

))+
;

14: until The termination criterion is satisfied:

15:

∣

∣

∣
L(λ

q
k
)−L(λ

q−1
k

)
∣

∣

∣

L(λ
q−1
k

)
< τ

16: return The optimal price λ
q
k

, transact x
q
i , y

q
j .

IV. PERFORMANCE EVALUATION

In our evaluation, we consider a system based on a modified

IEEE 33-bus power distribution system [10], which consists

of five residential MGs connected. For each MG, we consider

residential houses and buildings with different sizes, and local

power generators, renewable energy resources and storage bat-

teries are included. In addition, the penalty cost, the efficiency

of battery charging and discharging process, the cost of battery

charging and discharging in the objective function 1 are set to

0.01, 0.95, 0.9, and 0.03, respectively. The load demand of

individual MGs are all based on residential houses loads. All

experiments were conducted on a computer with 3.5 GHz Intel

Core i7-3770 CPU and 8G RAM.
Recall that the proposed model that considers various

uncertainties and bidding among MGs in Section III-A can

be formalized as a typical stochastic programming problem.

Notice that the generation cost of the local energy generation

unit can be formalized based on Equation (4), which is a

quadratic function, but it can be approximately as a piecewise

linear function [11]. In this way, our stochastic programming

problem can be converted to a Mixed-Integer Linear Problems

(MILP) [11] and solved by methods implemented in Matlab.

Moreover, the uncertainties parameters, including day-ahead

and real-time prices, load demand from residential houses, and

wind and PV generation capacity should be predicted. For the

prediction of electricity demands, our previous work in [12]

showed that loads of MG users in a time window follow a

Gaussian distribution, and the distribution parameters can be

estimated by using statistical methods.
In our simulations, we used the Monte Carlo method to

generate 1000 scenarios for each uncertainty parameter, Each
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Fig. 2: IEEE-33 bus based test system

scenario contains the hourly load, real-time price, and wind

and PV generated capacity. Notice that in practice, a large

number of scenarios will lead to the increase of computation

time and complexity, while a small number of scenarios

generated by the Monte Carlo method will result in the decline

of accuracy. To balance computation time and accuracy, we

used the fast-forward scenario reduction mechanism [13] to

shrink 1000 scenarios to 10 ones.

Figure 3 represents the operation cost of the system with

MGs, where the bidding is not used, and the Cournot Equilib-

rium based DBET scheme and the double auction based DDA

scheme are used. We can see that after two bidding schemes

for the energy trading among local MGs are in place, the

operation cost declines dramatically. Notice that, the operation

cost of two bidding schemes are equal. This is because the

sum of MGs buying cost and selling revenue from or to each

other are equal to zero in the objective function 1. Therefore,

to evaluate the effectiveness of two bidding schemes, we

introduced the social welfare 7 in Section III-C1 into the third

and fourth parts of the reversed objective function 1, as the

social welfare (utility) of the system. Figure 4 shows the utility

of the system when our proposed bidding schemes are used.

From the figure, we can observe that the utility is higher when

the double auction based DDA scheme is used. This is because

that optimal bids of sellers and buyers sub-problems, which

maximize the social welfare, are obtained by agents in each

iteration in the DDA scheme, while only the utility of sellers

are taken into consideration in the DBET algorithm.

Furthermore, Figure 5 and 6 illustrate the variation of

the total cost in the system versus the penalty factor δi,t
and battery degradation parameter. Figure 5 shows that a

higher penalty parameter of the deviation between day-ahead

scheduling and real-time delivery will result in a higher total

cost for the system. Recall that a higher penalty cost will lead

to a smaller deviation between day-ahead bids and real-time

delivery of electricity, which poses less agility for the MGCC

and agents to carry out energy trading among local MGs. This

leads to a higher operation cost. Figure 6 shows that the total

cost increases as the battery degradation increases. The reason

is that a higher degradation parameter that makes the use of

benefits of energy storage in local MGs will not balance out

the cost raised by its charging/discharging degradation.

In addition, to evaluate the performance of various parame-

ters in the objective function, we carried out the sensitivity

evaluation. Figure 7 illustrates the impact of the deviation

penalty parameter δi,t on the utility when two bidding schemes

are used. The results show that the utility decreases as

the penalty increases. This is because as the penalty factor

increases, the penalty cost is expected to keep at a small

level, making the deviation between day-ahead scheduling

bids closer to real-time delivery. Therefore, the energy trading

among local MGs in the secondary market will be reduced.

In addition, the impact of battery degradation factors on the

system utility was also performed. For the sake of simplicity,

we assume ωcha = ωdis. As shown in Figure 8, we observe

that the utility decreases as the degradation cost of battery

increases. This is because as the degradation parameters

increases, the battery “dare not” charging and discharging

frequently if we want to keep a low degradation cost. In this

way, the flexibility of energy trading among local MGs can be

reduced, leading to the reduction of the utility. Both figures

also confirm that the DDA scheme achieves a higher utility

than the DBET scheme.

V. RELATED WORK

Due to limited space, we only list most relevant of liter-

atures in this section. The energy management in the smart

grid system with MGs has attracted growing attention. For

example, Chaouachi et al. in [14] formalized the intelligent

energy management of MGs through artificial intelligence

techniques, jointly with the linear programming-based multi-

objective optimization. There have been some research efforts

on addressing interactions among MGs [15], [16].To address

uncertainties in the smart grid, stochastic programming models

have been used to manage energy resources in MGs [17], [18].

For example, Yang et al. in [17] proposed a stochastic frame-

work, which considers uncertainties of wind power generation

and statistical PEV driving patterns. In addition, bidding and

auction schemes for MGs in energy markets have been studied

[4], [19].

Different from existing research efforts, in this study, we

addressed the operation challenge in the system with MGs and

proposed two novel bidding schemes. Our proposed scheme

can not only tackle various uncertainties in both supply and

demand sides, but also consider local MGs as energy supplier

and allow efficient energy trading among them to minimize the

operation cost and improve the efficiency of energy delivery.

VI. CONCLUSION

In this paper, we addressed the energy management issue

in the system with MGs. Particularly, we first formalized

the optimal bidding problem as a two-stage stochastic pro-

gramming process, which aims to minimize the operation

cost and obtain the optimal delivery of electricity, while

uncertainties from both supply and demand sides need to be

considered. To enable the energy trading among local MGs,
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we proposed the secondary electricity market. To derive the

optimal energy trading in the secondary market, we proposed

two new bidding schemes: Cournot Equilibrium based DBET

scheme and double auction based DDA scheme. We used

the Monte Carlo method to generate scenarios that capture

uncertainties, and conducted experiments on a modified IEEE-

33 bus based system. Our experimental results show that, when

our proposed bidding schemes are in place, the operation cost

of the system can be reduced significantly. Also, the double

auction based DDA scheme achieves better performance than

the Cournot Equilibrium based DBET scheme in terms of

social welfare.
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