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Abstract—This paper studies the sensor placement problem for
ensuring complete coverage in an area with obstacles. Instead of
using the simplistic disk coverage model, we adopt our recently
proposed confident information coverage model for field attribute
monitoring applications. We propose a node placement algorithm
based on iterative Delaunay triangulation, which is to first
obtain Delaunay triangles for some initial seed nodes. Among
all Delaunay triangles, we propose algorithms to find a valid
one yet with the largest coverage hole for placing a new node.
The Delaunay triangulation process is then repeated, until all
the Delaunday triangles can be completely covered. Simulation
results show that our algorithm has comparable performance
in terms of the number of placed nodes, compared with a peer
algorithm based on a grid approach to discretize the continuous
field. However, our algorithm can truly achieve complete coverage
yet with significantly smaller computation time.

I. INTRODUCTION

A wireless sensor network (WSN) consisting of a large

number of low cost sensor nodes has many practical appli-

cations [1]. The basic functionality of a sensor node is to

sense the environment by converting physical stimulus into

recordable signals. For example, in precision agriculture, a

sensor network can be deployed in a farm to monitor and

collect its spatial data, like the soil temperature, humidity and

fertility [2] [3]. With such spatial data, we can improve the

efficiency of soil irrigation and fertilization so as to increase

the crop production.
How to efficiently deploy a sensor network is one of the

most important design issues in WSNs. Generally, existing de-

ployment strategies can be classified into the random deploy-

ment and deterministic placement [4]. In random deployments,

sensor nodes are randomly scattered into the field of interests;

While in deterministic placements, nodes can be deployed

at desired locations. Many node deployment strategies have

been proposed in the literature [5] [6]. Although they have

different assumptions and constraints, almost all of these

deployment techniques have adopted the network coverage as

a key performance metric for measuring deployment quality.
Network coverage is closely dependent on the adopted

coverage model, which is used to characterize the individual

sensor’s sensing capability and quality. Many coverage models

have been proposed for different types of sensors and applica-

tions [4]. For example, the widely used disk coverage model

assumes that a sensor can cover a disk centered at itself with

radius of its sensing range. However, the disk model is too

simplistic, which does not consider the spatial correlation of

physical phenomenon and the information processing via sen-

sor collaboration. Motivated from the applications of precision

agriculture, we have proposed a new sensor coverage model,

called confident information coverage (CIC, or Φ-coverage),

based on the theory of field reconstruction [7].

In this paper, we study the problem of sensor placement

for complete Φ-coverage in an area with obstacles. We note

that a sensor field containing obstacles is not uncommon. For

example, consider a large farm containing an irregular pond.

In such scenarios, it is not possible to place nodes within an

obstacle, and it is also not necessary to provide coverage for

an obstacle. We propose a node placement algorithm to ensure

complete Φ-coverage for the valid region of a sensor field with

obstacles. The algorithm is called greedy placement based on

iterative Delaunay triangulation (GPIDT), which first places

some initial nodes on the boundary of the sensor field and

obstacle vertices. It then performs a Delaunay triangulation

for the initial placement. Among all Delaunday triangles, we

propose algorithms to find a valid Delaunay triangle yet with

the largest coverage hole. A new sensor node is then placed

on this triangle, and we redo the Delaunay triangulation again.

The iterative placement is terminated if all the Delaunay trian-

gles can be completely Φ-covered. We compare our algorithm

with a peer algorithm [8], which applies a grid approach to

discretize the continuous field. Simulation results show that

our algorithm is comparable to the grid-based placement [8]

in terms of the number of placed nodes. Furthermore, it can

truly achieve 100% complete coverage and its computation

time is much smaller than this peer algorithm.

The paper is organized as follows. Section II briefly reviews

the related work, and Section III introduces some preliminaries

on CIC model and Delaunay triangulation. Our GPIDT algo-

rithm is presented in Section IV and examined via simulations

in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

In this section, we briefly review the most related work on

sensor deployment. We refer the reader to the comprehensive
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survey papers for more detailed discussions [4]–[6].

Grid-based placement strategies: In a continuous field, the

candidate locations for placing sensors actually are infinite.

The grid-based placements first divide the continuous field

into consecutive yet countable grid cells, such that a sensor

can only be placed at a cell center and complete coverage

is achieved for all grid vertices being covered [8]–[13]. For

example, Ke et al. prove that the problem of deploying sensors

on grid vertices to fully covers critical grid centers using

minimum sensors is NP-Complete in [10] and propose an

approximation algorithm to solve this problem in [11]. In [8],

[13], greedy heuristic algorithms are proposed for achieving

confident information coverage based on the grid division.

Although the grid-based approach can tackle different areas

with or without obstacles, it introduces very high computation

complexity, since the number of grid vertices has to be set

large enough so as to represent the continuous field.

Pattern-based placement strategies: Based on the disk cov-

erage model, Kershner [14] has proven the optimal placement

pattern in an infinite plane; While recently Wang et al. [15]

prove the optimal placement pattern in long belt scenarios.

Sensors can be placed on the vertices of an optimal pattern so

as to minimize the number of sensors to be deployed. For con-

strained areas with obstacles, a common approach is to divide

the areas into different parts. For some large parts, sensors are

placed according to the placement pattern; While for some

small parts that contain the boundaries of obstacles, sensors

can be placed one-by-one to eliminate coverage holes [16]–

[18]. The pattern-based placements greatly reduce the compu-

tation complexity, since the pattern vertices are much fewer

than the grid vertices. However, these strategies are all based

on the properties of the disk coverage model, which may not

be directly applicable to the confident information coverage.

Computational geometry-based strategies: Computational

geometry as a mathematical tool mainly deals with various

computational problems of geometric nature, such as the well-

known Art Gallery Problem. For sensor placement problems,

the most related technique is the Delaunay triangulation [19]–

[23]. For example, For the disk coverage model, Qiu and

Shen [19] provide a method to determine the complete cover-

age of a triangle. Wu et al. [20] propose a two-phase sensor

deployment via iterative Delaunay Triangulation. It first evenly

places sensors along the contour lines of the boundaries and

obstacles. Based on the deployed sensors, it then applies the

Delaunay triangulation to identify the largest coverage hole to

place a new sensor. Derr and Manic [22], [23] apply a similar

procedure, yet including a more sophisticated node removal

and triangulation smoothing process. Compared with the grid-

based approaches, its computation complexity can be much

reduced, and compared with the pattern-based approaches, it

can well handle various area and obstacle shapes.

In this paper, we also adopt the computational geometry

strategy and the Delaunay Triangulation technique, but based

on the new confident information coverage model. To the best

of our knowledge, we are the first one studying this topic.

III. PRELIMINARIES

A. Confident Information Coverage

The CIC model is based on the theory of field reconstruc-

tion. Sensors are deployed within the sensor field to sample the

attribute of some physical phenomena, and field reconstruction

is to use their sampling values to interpolate or estimate the

physical attribute for those unsampled locations.

For each space point x, we only use the samplings of those

sensors located within its correlation range denoted by D for

its reconstruction. Furthermore, we use its time-average root

mean square error (RMSE), denoted by Φ(x), to evaluate its

reconstruction quality. The space point x is Φ-covered, if Φ(x)
is not larger than the application requirement ǫ, i.e., Φ(x) ≤ ǫ.

A sensor field is said being completely Φ-covered, if all the

space points within the field are Φ-covered.

In most applications, the physical phenomenon can be

assumed as a second-order stationary Gaussian process [24],

and its spatial statistics of the degree of spatial dependence

can be described by a variogram function γ(h):

γ(h) = 1− e−
h2

α2 , (1)

where h is the Euclidean distance between two points, and the

constant α is related to the correlation range D =
√
3α.

One of the widely used spatial reconstruction technique

is the ordinary Kriging technique [25], [26]. Let S(x) ≡
{s1, ..., sn} denote the set of sensors located within the

correlation range of the point x. Then based on the ordinary

Kridging and after some algebra, we can compute Φ(x) by

Φ(x) =
√
ΥTK−1Υ, (2)

where

K =















γ(s1, s1) γ(s1, s2) . . . γ(s1, sn) 1
γ(s2, s1) γ(s2, s2) . . . γ(s2, sn) 1

...
...

. . .
...

...

γ(sn, s1) γ(sn, s2) . . . γ(sn, sn) 1
1 1 . . . 1 0















, (3)

and

Υ = (γ(s1, x), γ(s2, x), ..., γ(sn, x), 1)
T
. (4)

Eq. (2) indicates that Φ(x) depends on not only the spatial

correlations between x and the sensors within S(x), but also

the spatial correlations in between the sensors within S(x).

B. Delaunay Triangulation

Given a point set S on a plane, the triangulation of S
is defined as the planar subdivision whose bounded faces

are triangles and whose vertices are the points in S . A

triangulation for S in a plane is a Delaunay triangulation, if

no point in S is inside the circumcircle of any triangle [27].

This is also called the empty circle property. Note that all

these Delaunay triangles formed by three points in S do not

overlap with each other. If each Delaunay triangle can be

completely covered by three sensors at the triangle vertices,

the polygon consisting of these Delaunay triangles can be



completely covered. If the field of interests is a bounded

polygon, a simple approach for its complete coverage is to

place some sensors on the polygon vertices and edges. In this

paper, we provide the computation method for the complete

Φ-coverage of a triangle.

C. Problem Description

We study the sensor placement problem in a sensor field

with obstacles. Within the sensor field, there may exist one

or more obstacles, each modeled by either a convex polygon

or a concave polygon. For each obstacle polygon, it is not

possible to place a sensor within the polygon, but we can place

sensors on its boundary (i.e., the polygon sides and vertices).

Furthermore, for each polygon, it is not necessary to cover

its inner area and its boundary. For ease of presentation, we

assume that the boundary of an obstacle polygon belongs to

its inner area too. Therefore, we call the valid region of the

sensor field as the region within the sensor field containing no

inner area and no boundary of any obstacle polygon.

Our sensor placement problem is to place the least number

of sensors to completely Φ-cover the valid region of such a

sensor field. Due to the existence of irregular obstacles, the

pattern-based placement strategies are not directly applicable.

Although the grid-based placement strategies, such as the

algorithms proposed in our previous work [8], can be used,

they are still a kind of approximation approaches. As to be

shown in our simulation in Section V, they cannot provide

the truly 100% complete coverage, and their computation

complexity is very high. In the rest of this paper, we propose a

computational geometry-based placement algorithm to provide

truly 100% complete coverage, yet with significantly small

computation time.

IV. GREEDY PLACEMENT BASED ON ITERATIVE

DELAUNAY TRIANGULATION

In this section, we propose a greedy placement based on

iterative Delaunay triangulation (GPIDT) to iteratively place

one sensor at each step, until the complete Φ-coverage of the

sensor field can be satisfied. Algorithm 1 presents the psudo-

codes of the proposed GPIDT algorithm. The input of the

algorithm includes the vertex set of the field boundary polygon

Vf and the vertex set of the obstacle boundary polygon Vo.

The output of the algorithm is the coordinate set of the placed

sensors S.

The GPIDT algorithm initially places some seed nodes

(line 1), and performs a Delaunay triangulation to obtain the

set of Delaunay triangles (line 2). Note that each Delaunay

triangle (DT) is formed by three deployed nodes. The function

placeSeedNode ensures that the boundary part of the field

polygon can be completely Φ-covered. The while loop is to

ensure that all the valid DTs by the deployed nodes S are

completely Φ-covered, by which all the valid area within the

polygon formed by the boundary seed nodes can be completely

Φ-covered. A valid DT is defined as such a DT that is not

completely located within an obstacle.

Algorithm 1 The GPIDT Algorithm

Input: Vf -the vertex set of the field boundary polygon;

Vo-the vertex set of the obstacle boundary polygon;

Output: S - the coordinate set of placed sensor nodes;

1: S = placeSeedNode(Vf , Vo);
2: ∆ = delaunayTriangulation(S);
3: while ∆ 6= ∅ do

4: R∗ = 0; t∗ = NULL;

5: for each t ∈ ∆ do

6: if isValidTriangle(t)=TRUE then

7: if isCICCovered(t)=FALSE then

8: R = computeCircumcircleRadius(t);
9: if R > R∗ then

10: R∗ = R; t∗ = t;

11: end if

12: end if

13: end if

14: end for

15: if t∗ 6= NULL then

16: s = placeOneNode(t∗);
17: S = S ∪ {s};

18: ∆ = delaunayTriangulation(S);
19: else

20: ∆ = ∅; break;

21: end if

22: end while

23: return S;

In each iteration of the while loop, we decide, if necessary,

where to place one new node as follows: For each DT, we first

examine whether it is a valid DT. Then for each valid DT, we

next examine whether it can be completely Φ-covered. If a

valid DT cannot be completely Φ-covered, we compute its

circumcircle radius (line 8), which is used to approximately

measure the size of its coverage hole. After the for loop, an

uncovered DT with the largest circumcircle radius is found,

recorded by t∗. If there exists an t∗, we then place a new node

on t∗ (line 16), redo the Dalaunay triangulation (line 18), and

move to the next iteration of the while loop. If t∗ does not

exist, which means all the valid DTs can be completely Φ-

covered, then the while loop is terminated (line 20).

Fig. 1 illustrates the initial seed node placement and the first

and second Delaunay triangulation. Note that the Φ-coverage

allows one or more sensors to cover a space point. In Fig. 1,

a dashed circle represents the sensing disk coverage only

by using one sensor. We provide complete coverage for the

boundary area (colored by the light grey) by using one-sensor

or two-sensor Φ-coverage. And we use the three-sensor Φ-

coverage to completely cover a valid Delaunay triangle. More

details will be explained in the following subsections.

In the proposed GPIDT algorithm, we use Matlab function

delaunary to implement the delaundayTriangulation func-

tion. Let a, b, c denote the side length of a triangle. The



(a) Initial seed node placement and the first Delaunday
triangulation. The valid DT with the largest coverage hole
is △S1S2S3, and a new node s is placed on the midpoint
of its longest side S1S3.

(b) The second Delaunday triangulation. The valid DT
with the largest coverage hole is △S1S2S3, and a new
node s is placed on the midpoint of its longest side S1S2.

Fig. 1. Illustration of the initial seed node placement and the first and second
iteration of Delaunday triangulation.

circumcircle radius R of this triangle is computed by

R =
abc

√

(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)
. (5)

We next introduce our implementation of the other four

customized functions.

A. The isCICCovered function

The function isCICCovered examines whether a triangle

can be completely Φ-covered by the three sensors located

at its vertices. At first, we examine whether a triangle is

illegal for such examination. Recall that only those sensors

within the correlation range of a space point are considered

for its Φ-coverage computation. Therefore, the length of an

Fig. 2. (a) An illegal triangle with circumcircle radius R >
D

2
. (b) A legal

triangle with circumcircle radius R ≤ D

2
, and its polar coordinate system.

arbitrary line segment in a triangle should be no larger than

the correlation range D. The longest line segment in a triangle

is its longest side. Furthermore, all the triangle sides are

chords of its circumcircle, and the longest chord of a circle

is the circle diameter. To ensure Φ-coverage computation for

a triangle, the circumcircle diameter should be no larger than

the correlation range. That is, R ≤ D
2

, and we call such a DT

a legal triangle in this paper. Note that if a DT is an illegal

triangle, it will not pass the complete Φ-coverage test.

For a legal triangle △s1s2s3, we use its circumcircle

center to build a polar coordinate system, and set the polar

coordinate for the three vertices as: s1(R, 0), s2(R, θ1) and

s3(R, θ2). Note that in the corresponding cartesian coordi-

nate system, we have s1(R, 0), s2(R cos θ1, R sin θ1) and

s3(R cos θ2, R sin θ2). Let p(x, y) denote an arbitrary point

within the triangle or on the sides of the triangle. Then it

should meet the following constraint:






−−→s1s2 ×−→s1p ≥ 0−−→s2s3 ×−→s2p ≥ 0−−→s3s1 ×−→s3p ≥ 0
(6)

Then the constraints about (x, y) can be calculated by




cos θ1
2

sin θ1
2

− cos θ2
2

− sin θ2
2

sin θ2 − sin θ1 cos θ1 − cos θ2





(

x

y

)

≤





R cos θ1
2

−R cos θ2
2

R sin(θ2 − θ1)



 (7)

The distances in between sensors can be computed by:

d(s1, s2) = 2R

∣

∣

∣

∣

sin
θ1

2

∣

∣

∣

∣

, d(s1, s3) = 2R

∣

∣

∣

∣

sin
θ2

2

∣

∣

∣

∣

,

d(s2, s3) = 2R

∣

∣

∣

∣

sin
θ2 − θ1

2

∣

∣

∣

∣

,

and the distances between the point p and the sensors can be

computed by

d(p, s1) =
√

x2 + y2 − 2Rx+R2,

d(p, s2) =
√

x2 + y2 − 2R(x cos θ1 + y sin θ1) +R2,

d(p, s3) =
√

x2 + y2 − 2R(x cos θ2 + y sin θ2) +R2.



Fig. 3. Illustration of determine a valid DT, where △KIF and △DEF are
valid DTs and △ABC is not a valid DT.

Let A,B,C,E,F,G denote the variogram functions of the above

distances, we have

A = γ(s1, s2) = 1− e
−4R2 sin2

θ1
2

α2 ,

B = γ(s1, s3) = 1− e
−4R2 sin2

θ2
2

α2 ,

C = γ(s2, s3) = 1− e
−4R2 sin2

θ2−θ1
2

α2 ,

E = γ(p, s1) = 1− e−
x2+y2

−2Rx+R2

α2 ,

F = γ(p, s2) = 1− e−
x2+y2

−2R(x cos θ1+y sin θ1)+R2

α2 ,

G = γ(p, s3) = 1− e−
x2+y2

−2R(x cos θ2+y sin θ2)+R2

α2 .

So the RMSE of the point p(x, y) can be computed by

Φ(p) =

√

2× (−ABC + L(p))

(A+B + C)2 − 2(A2 +B2 + C2)
, (8)

where L(p) = −AG2 −BF 2 −CE2 +(−A+B+C)(AG+
EF )+ (A−B+C)(BF +EG)+ (A+B−C)(CE+FG).

With the help of the Matlab fmincon function, the max-

imum of L(p), as well as that of Φ(p), can be computed.

The triangle is said being completely confident information

covered, if the maximum of Φ(p) is not larger than the

application requirement ǫ, i.e., Φ(p) ≤ ǫ.

B. The isValidTriangle function

The isValidTriangle function determines whether a DT is

a valid one. The valid region of the sensor field is defined as

a part of the sensor field not within any obstacle. A valid DT

contains at least some valid region. Therefore, if any of the

vertex of a triangle is within the valid region, then this triangle

is a valid one. Furthermore, as we do not place any sensor

within an obstacle, we only need to consider those triangles

with all vertices on the sides or vertices of an obstacle. A

triangle with all vertices on the obstacle boundary is called a

testing triangle.

The basic idea of the isValidTriangle function is to examine

whether each side of a testing triangle is completely located

within an obstacle. If any side of a testing triangle is not

completely within an obstacle, then it is a valid triangle.

Otherwise, it is not a valid one [27]. As shown in Fig. 3,

the testing triangle △FIK and △DEF are valid DTs; While

△ABC is not a valid DT, and all of its sides are within the

obstacle.

We next present how to determine whether a line segment

uv is completely within an obstacle polygon. Note that uv is

also the side of a Delaunay triangle and its endpoints u and v

are each placed with one sensor. So u and v can only be either

the polygon vertices or located on some side of the polygon.

If the line segment uv coincides with one polygon side, we

simply determine that it is within the obstacle. For example,

in Fig. 3 the DT side IK is considered as within the polygon.

At first, for each polygon side pq, we compute the intersec-

tion point between uv and pq. Note that due to its endpoint

property, uv must intersect with at least one polygon side, or a

part of uv coincides with one polygon side. In the latter case,

we only include the polygon vertices on the line segment as

its intersection points. For example, the line segment AC has

a part of AL coincides with the polygon side, and we only

include the polygon vertex A and L as its intersection point.

Let z denote one of such intersection points between a line

segment uv and a polygon side pq. If z does not superpose

with any of the endpoint of u, v and z is not any other vertex

of the polygon, then there must exist some part of the line

segment uv is within the valid region. This is because that

a polygon side is a division of the valid region and invalid

region. For example, in Fig. 3 the intersection point H between

the triangle side DF and the polygon side ER is not any

endpoint nor polygon vertex. The line segment FH is within

the valid region, so FD is not completely within the obstacle.

Now we consider the case that an intersection point z either

is one of the endpoint u and v, or is one of the polygon vertex.

For example, in Fig. 3 the intersection point L and I such

intersection points as they are also the polygon vertices. We

then form a point set P containing the two endpoints of the

line segment as well as the such intersection points. And the

points in P are ordered according to the x-coordinate in an

increasing order. Let P = {z1, ..., zn} denote such a point

set. For example, in Fig. 3, P = {I, F} for FI, P = {K,F}
for FK, P = {B,A} for AB, P = {A,L,C} for AC, and

P = {B, I, C} for BC.

For each line segment zizi+1 (i = 1, ..., n − 1) in the

point set P , we check whether or not its midpoint zmi is

within the polygon. If all such n− 1 midpoints are within the

polygon, then we conclude that the line segment uv is within

the polygon; On the contrary, if any of such midpoint is not

within the polygon, then we conclude that the line segment

uv is not within the polygon.

For example, the only one midpoint of P = {I, F} for IF
is within the boundary of the polygon (which we also consider

to be within the polygon), then IF is within the polygon. And

so is for AB. The only one midpoint of P = {K,F} is within



Fig. 4. Illustration of one-sensor Φ-coverage by the blue circled disk area
and two-sensor Φ-coverage by the green dumbbell area.

the valid area, so the KF is not completely within the polygon.

Since the midpoint of BI and the midpoint of IC are within

the polygon, the line segment BC is completely within the

polygon. For the line segment AC, since AL coincides with

the polygon side, it is considered to be within the polygon.

And the midpoint of LC is within the polygon, so the line

segment AC is within the polygon.

If zizi+1 coincides with the a polygon side, such as the line

segment AL, we simply regard that it is within the polygon.

In what follows, we do not consider such a superposition case.

We use the contradiction method to prove that if the midpoint

of zizi+1 is within the polygon, then zizi+1 is also within the

polygon. Recall that by the definition of P , there does not exist

any intersection point between the zizi+1 and any of polygon

side. We take the line segment AB as an example of zizi+1,

which should not contain any other intersection point between

the line segment AB and the polygon. If the midpoint of G

is within the polygon and AB is not completely within the

polygon, then there must exist a point M on AB outside the

polygon. Let us connect the two points G and M . Since a

part of the line segment MG is not within the polygon, this

segment must have an intersection with one of the polygon

side. Let N denote such an intersection point. However, the

existence of N is contradict with our definition that the point

set P is a complete set containing all intersection points of

a line segment uv with the polygon. That is, N should be

included into the point set P of AB, and divide AB into two

segments. But this is not true, so AB is within the the polygon.

C. The placeSeedNode function

The placeSeedNode function is initially place two types

of seed nodes. One type is to provide complete Φ-coverage

for the sensor field boundary region; The other type is to put

some seed nodes at each vertex of the inner obstacle polygon,

so as to help generating an initial Delaunay triangulation for

the whole sensor field.

We next present our implementation of placing the first type

of seed nodes. Notice that the Φ-coverage of a single sensor

is actually the same as the disk model [7]. Furthermore, the

radius of the disk can be computed by

r = α

√

− ln(1− ǫ2

2
). (9)

The Φ-coverage of two sensors is also dependent on their

distance. In [28], it has been proven that the Φ-coverage of

two sensors is a dumbbell shape, if the distance between them

is less than a some threshold. Fig. 4 illustrates the Φ-coverage

of one sensor by the two blue disks and the Φ-coverage of

two sensors by the green dumbbell.

Instead of placing seed nodes on the field boundary, we

propose to place seed nodes on its contour to completely

Φ-cover some offset area along with the boundary. For a

boundary vertex, we use the Φ-coverage of one sensor. That

is, a sensor is placed on its angle bisector, with the distance to

the vertex equal to the disk radius r. Then we can compute the

height of this sensor to the boundary side, denoted by h. For

a boundary side, we use the Φ-coverage of two sensors. As

shown in Fig. 4, to provide complete Φ-coverage, we need to

ensure that the saddle-point p is on the boundary, by which we

can compute the distance between the two sensors as follows.

Let Φ(p) = ǫ, and for the example coordinate system in Fig. 4,

we have

h = α

√

ln(4)− d2

4α2
− ln(3− 2ǫ2 + e−

d2

α2 ). (10)

Fig. 1 illustrates the initial seed node placement on a contour

line. We cover a boundary vertex by using the one-sensor Φ-

coverage. By setting the distance to a boundary vertex equal

to r, we can compute the parameter h, and then the inter-node

distance d as well.

D. The placeOneNode function

The placeOneNode function is to place one new node on

the largest uncovered DT so as to reduce some uncovered area

and to prepare the next Delaunay triangulation. The function

is implemented as follows. We first consider the midpoint of

the largest side. If this midpoint is within the valid region,

we then place a new sensor on it. If this midpoint is within

the obstacle, we next consider the midpoint of the second-

largest side. If all the three sides’ midpoints are within the

obstacle, we turn to the intersection point between a triangle

side and obstacle polygon side. Take the triangle △DEF in

Fig. 3 for example. The midpoint of the largest side DF and

the midpoint of second largest side DE are both within the

obstacle. We then put the new sensor on the midpoint of EF.

V. SIMULATION RESULTS

We consider a sensor field of 5 × 5 and set ǫ = 0.6 and

D =
√
3 for Φ-coverage. We compare our algorithm with

the another node placement algorithm, the candidate location

based greedy algorithm (CLBGA), for Φ-coverage [8]. The

CLBGA approximates the continuous field coverage with the

discrete grid coverage. It first discretizes the continuous sensor

field into many equal grid cells. A sensor can only be placed at

some grid cell center, which is called a candidate location; and

the complete field Φ-coverage is converted into Φ-covering all



(a) GPIDT: N = 32 and CR = 100%; CLBGA
(12× 12): N = 34 and CR = 97.95%

(b) GPIDT: N = 33 and CR = 100%; CLBGA
(12× 12): N = 33 and CR = 99.59%

(c) GPIDT: N = 33 and CR = 100%; CLBGA
(12× 12): N = 34 and CR = 98.63%

(d) GPIDT: N = 35 and CR = 100%; CLBGA
(12× 12): N = 35 and CR = 98.88%

(e) GPIDT: N = 35 and CR = 100%; CLBGA
(12× 12): N = 32 and CR = 98.55%

(f) GPIDT: N = 36 and CR = 100%; CLBGA
(12× 12): N = 32 and CR = 98.43%

Fig. 5. Realization of the node placement by GPIDT (green dots and corresponding Delaunay triangulation), and by CLBGA algorithm (red squares).

TABLE I
COMPARISON OF THE GPIDT AND CLBGA ALGORITHM.

Field (a) Field (b) Field (c)
N σN CR (%) T(s) N σN CR (%) T(s) N σN CR (%) T

GPIDT 32 0 100% 3.5 33 0 100% 3.4 33 0 100% 2.6

CLBGA

9× 9 29.6 1.34 98.97% 443.6 31.0 1.41 99.17% 541.4 29.4 1.14 97.46% 485.0
10× 10 37.2 1.64 99.86% 1002.0 38.0 1.22 99.50% 1115.8 37.2 1.64 98.63% 973.0
11× 11 29.6 1.14 97.63% 1899.4 31.4 1.14 97.56% 1960.8 32.4 1.52 97.77% 2261.7
12× 12 33.6 0.55 98.54% 2090.6 34.2 1.10 99.19% 2598.0 34.2 0.45 98.78% 3055.0
13× 13 32.2 1.30 98.15% 3822.4 32.4 0.89 97.66% 5334.5 31.6 2.41 98.73% 4090.2

Field (d) Field (e) Field (f)
N σN CR (%) T(s) N σN CR (%) T(s) N σN CR (%) T

GPIDT 35 0 100% 4.0 35 0 100% 3.7 36 0 100% 4.5

CLBGA

9× 9 31.4 1.52 99.25% 717.4 28.6 0.89 95.49% 636.2 28.0 1.22 96.27% 708.2
10× 10 37.0 1.41 98.76% 1587.0 36.4 0.55 99.59% 1534.5 37.4 1.52 99.39% 1654.3
11× 11 31.0 1.41 96.74% 3044.8 31.4 0.89 96.65% 3337.3 31.4 2.41 97.09% 3021.5
12× 12 34.2 1.30 99.06% 4770.2 34.0 1.22 99.00% 4714.5 33.4 3.36 98.59% 3943.5
13× 13 32.4 2.19 98.09% 6730.8 31.4 2.61 99.10% 9811.0 33.4 0.89 97.98% 5951.2

the grid vertices. The basic idea of CLBGA is to greedily place

one sensor each time to minimize the number of uncovered

grid vertices. In our CLBGA implementation, for grid vertices

and grid centers located within an obstacle, we do not consider

the Φ-coverage of such grid vertices and do not place nodes

on such grid centers.

Fig. 5 plots the realization of the sensor placement by the

GPIDT and CLBGA algorithm for six areas with different

types and shapes of obstacles. TABLE I compares the GPIDT

with the CLBGA algorithm on the number of deployed nodes

N , the standard deviation of N , σN , the coverage ratio CR

and the computation time T . Note that the execution of GPIDT

leads to only one sensor placement. Yet the execution of

CLBGA may generate different placements if we set differ-

ent initial random seed. This is because in CLBGA several

candidate locations may have the same weight to place a new

node and ties are broken randomly. So in the table, the average

value of CLBGA is obtained over five different initial seeds.

Furthermore, for the CLBGA algorithm implementation, we

can use different grid granularity, like 9 × 9, 10 × 10,..., and

13× 13, for a same field. However, we use a much finer grid

granularity, 0.05× 0.05, to obtain testing points and examine

the field coverage ratio for an obtained placement. That is,

after obtaining a node placement, we examine the percentage



of such testing grid vertices being Φ-covered.

From the table, we first observe that in terms of the number

of deployed nodes, our GPIDT is comparable to the CLBGA

algorithm. On the other hand, we can observe that our GPIDT

always achieves 100% Φ-coverage; While the CLBGA cannot.

This is because that our GPIDT algorithm is designed for the

continuous sensor field, where each Delaunay triangle should

be completely Φ-covered. Due to the grid approximation, the

CLBGA places nodes only at a few candidate locations to

cover selected grid vertices. Notice that although the CLBGA

can achieve very high coverage ratio, it still can only be

regarded as an approximation solution, as it cannot achieve

100% Φ-coverage. In contrast, our GPIDT algorithm is more

theoretically sound for achieving 100% Φ-coverage.

When comparing the computation complexity, our GPIDT

is greatly superior than the CLBGA in terms of much smaller

computation time. For the CLBGA algorithm, the finer the

grid granularity, the higher of its computation complexity. We

also note that for the given field, the computation complexity

becomes prohibitive high for a higher grid size. When applied

in large sensor fields, the high computation time would become

a great hurdle for using the CLBGA, since many more grid

points should be created. So in large sensor fields, it is

expected that our GPIDT algorithm can find more applications.

VI. CONCLUSIONS

In this paper, we have studied the sensor placement problem

for achieving 100% confident information coverage and have

proposed a new algorithm based on the iterative Delaunay

triangulation. In the proposed algorithm, we have solved

several problems, including how to determine a Delaunay

triangle is a valid one and how to determine its complete Φ-

coverage. Simulation results have shown that our algorithm

achieves comparable performance with a grid-based placement

algorithm, in terms of the number of placed nodes. But our

algorithm can ensure 100% coverage and its computation

time is much smaller. In our future work, we will take into

consideration of the network connectivity when designing new

sensor placement algorithms.
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