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Abstract—In this paper, we investigate the residential load
scheduling problem within a smart energy community, which is
powered by a primary utility along with a small scale local power
supplier. As a premise, unit prices set by these two suppliers are
different and both are time-varying. Therefore, users are moti-
vated to control their household appliances’ operation time and
calculate appropriate portions of power purchased from these two
suppliers to achieve bill curtailments. The capacity constraint of
local power supplier, arising from the renewable energy source
and the limited storage capability, also should not be violated.
We formulate a residential load scheduling problem to address
this situation. Distributed scheme based on information exchange
among users is proposed, without over revealing individual user’s
load profile. Then we propose a distributed algorithm to solve this
scheduling problem. Simulation results show that the proposed
approach can reduce energy cost of the community and cut down
electricity payments of users, and the peak-to-average ratio in
load demand is also decreased.

I. INTRODUCTION

Demand response management (DRM) is one of the key

components of smart grid [1]. Electric utility companies (UCs)

adopt DRM to efficiently manage power supplies and encour-

age users to change their electricity usage patterns to reduce

peak load. It helps to cut down the cost of power generation

and reduce the electricity bills of users, and also provides

promising approaches to enhance efficiency and reliability of

the whole power system [2].

Residential load scheduling is important in DRM to manage

home users’ power consumptions and to stabilize power load

profiles. Load scheduling with single utility company (UC) has

been intensively studied in literature [3]–[8]. The presented

methods could be divided into two categories: centralized

and distributed scheduling. Centralized load scheduling was

used to achieve a trade-off between the minimization of

electricity payments and the minimization of waiting time for

operation of each appliance [3]. Users’ comfort settings and

load uncertainties were also considered in [4], [5]. Distributed

load scheduling approach was proposed to optimize electricity

consumptions across multiple users [6]. To address interactions

among users, distributed algorithms based on game theory

analyses were proposed to achieve peak load reduction as well

as bill curtailments for users [7], [8].

As renewable energy sources increase, more than one power

supplier usually coexist in the same region. Therefore, it is

necessary to study the DRM problem with multiple UCs. A

few recent works discussed multi-utility DRM problems [9]–

[11]. In [9], a Stackelberg game was proposed between the

UCs and the users for optimal price setting and optimal power

consumption respectively. To reduce both the peak load and

the variations of power demand, the authors of [10] and [11]

applied game analysis and dual decomposition approaches to

address the competition among UCs and each user’s response

to the differentiated prices. However, none of them considered

the scheduling problem at the level of power consumption of

each household appliance.

In this paper, we focus on the residential load scheduling

problem with multiple UCs and multiple users. We consider a

smart energy community made up of residential users, which is

powered by a primary utility (PU). Meanwhile, users can also

get access to the power produced by a small scale local power

supplier (LPS), such as a photovoltaic system constructed

by a third-party company [12]. Assume that the unit prices

set by the PU and the LPS are different and both are time-

varying. Users should decide when to operate their household

appliances and how much power to purchase from these two

suppliers, to save their electric bills. Moreover, the LPS relies

on the renewable energy source and has limited power storage

ability. That results in the capacity constraint of LPS, which

should be taken into account when the power consumption

scheduling strategy is implemented.

The contributions of this paper are summarized as follows:

1) We formulate a residential load scheduling problem in

a scenario that users within a community are powered

by two suppliers (i.e., PU and LPS).

2) We propose a distributed scheme based on information

exchange among users, without over revealing individual

user’s load profile.

3) We develop a distributed algorithm to minimize the total

energy cost of the community, as well as to reduce the

electricity payment of each user, in the condition of

limited power generation capability of LPS.

The remainder of this paper is organized as follows. System

model is described in Section II. In section III, we present the

residential load scheduling problem formulation and analysis.

Distributed algorithm for solving the problem is proposed in

Section IV. Simulation results are given in Section V and the

paper is concluded in Section VI.
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II. SYSTEM MODEL

A. Smart Energy Community

Consider a smart energy community composed by a number

of residential users and a neighborhood coordinator (NC). The

community is powered by a PU along with a LPS through the

power line. We assume that each user has a smart meter em-

bedded with an energy management controller (EMC) [7]. The

role of EMC is to communicate with the NC for coordination

of power consumptions in the community, and to control the

operation time of each appliance. Although the introduction of

NC makes the scheme not fully distributed, it’s imperative for

privacy preservations and reasonable dispatching of electricity

from LPS. The details of interactions between the NC and

users will be presented in section IV. Communications among

all participants (i.e., users, NC and two suppliers) rely on an

infrastructure such as a neighborhood area network (NAN)

that introduced in [13]. A schematic diagram of this system

is depicted in Fig. 1.

Notice that, in general, the buying price set by the PU

is much lower than its selling price. It’s reasonable for the

LPS to charge users at an appropriate price between that two

prices. Then, all users are motivated to trade with the LPS

to make benefits. In addition, due to high cost of investment

and inefficiency of power storage, the LPS can afford only a

limited storage capacity. In excess of electricity produced by

the LPS in certain time interval, the remaining power would

be sold to the PU. On the contrary, when the LPS is short of

supply, users need to buy electricity from the PU.

B. Energy Cost Model

We consider the cycle of a day as one period, which is

divided into a set H , {1, . . . , H} of time slots. Without loss

of generality, we set one slot as an hour, i.e., H = 24. Let

N , {1, . . . , N} denote a set of users. And for each user

n ∈ N , let ghn and rhn denote the load allocated to the PU and

to the LPS at hour h ∈ H, respectively. The daily load of user

n is divided into two portions denoted by vectors:

gn ,
[

g1n, . . . , g
H
n

]

, rn ,
[

r1n, . . . , r
H
n

]

. (1)

The aggregate load across all users at each hour h of the day

could be calculated as:

gh =
∑

n∈N

ghn, rh =
∑

n∈N

rhn, ∀h ∈ H, (2)

for PU and LPS.

From the perspective of power suppliers, there are many

practical energy cost functions to reflect the cost of power gen-

eration to serve users. We assume that the PU uses quadratic

cost function [14]. Then the cost of PU at each hour h is given

by:

fh
g (g

h) = ah(g
h)2 + bhg

h + ch, ∀h ∈ H, (3)

where ah > 0 and bh, ch ≥ 0. For the LPS, we consider two

kinds of cost functions. One is the quadratic cost function. In

this case, the cost of LPS at each hour h is:

fh
r (r

h) = a′h(r
h)2 + b′hr

h + c′h, ∀h ∈ H, (4)
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Fig. 1. Block diagram of a smart energy community with two power suppliers.

where a′h > 0 and b′h, c
′
h ≥ 0. The other is the linear cost

function. In this case, the cost of LPS at each hour h is:

fh
r (r

h) = a′′hr
h + b′′h, ∀h ∈ H, (5)

where a′′h > 0 and b′′h ≥ 0. Therefore, the energy cost of all

users at each hour h is:

Ch(·) = fh
g (g

h) + fh
r (r

h), ∀h ∈ H. (6)

Note that the previously mentioned cost functions (3)-(4)

are increasing and strictly convex, and cost function (5) is

increasing and convex [15]. Such that, cost function (6) is

increasing and strictly convex.

C. Residential Load Scheduling

For each user n, let An denote the set of household

appliances with shiftable load ability, e.g., water heaters, dish-

washers, wash machines and dress dryers. For each appliance

a ∈ An, there are two power sources (i.e., PU and LPS). We

use two power consumption scheduling vectors:

xn,a,g ,
[

x1
n,a,g, . . . , x

H
n,a,g

]

, (7)

and

xn,a,r ,
[

x1
n,a,r, . . . , x

H
n,a,r

]

(8)

to denote the daily power that scheduled to be purchased from

PU and LPS, where scalars:

xh
n,a,g ≥ 0, xh

n,a,r ≥ 0, ∀h ∈ H (9)

are power consumption schedules at each hour h. Then, the

power from PU to each user n at each hour h is:

ghn =
∑

a∈An

xh
n,a,g, ∀n ∈ N , ∀h ∈ H, (10)

and the power from LPS to each user n at each hour h is:

rhn =
∑

a∈An

xh
n,a,r, ∀n ∈ N , ∀h ∈ H. (11)

We set a pre-defined daily power demand En,a for an

appliance a ∈ An. And a time interval Hn,a = [αn,a, βn,a] is

selected, where αn,a and βn,a are the beginning and the end

of it, such that appliance a could be scheduled. That imposes

certain constraints on scheduling vectors xn,a,g and xn,a,r:

βn,a
∑

h=αn,a

(

xh
n,a,g + xh

n,a,r

)

= En,a (12)



and

xh
n,a,g = 0, xh

n,a,r = 0, ∀h ∈ H \ Hn,a. (13)

A household appliance a ∈ An has certain minimum

standby power level xn,a and maximum power level xn,a, i.e.,

xn,a ≤ xh
n,a,g + xh

n,a,r ≤ xn,a, ∀h ∈ H. (14)

The electricity produced by LPS at each hour is denoted by

Rh for all h ∈ H. Then, the load demand dispatched to the

LPS from all users should not exceed the supply of LPS at

each hour. That imposes following constraint:

rh =
∑

n∈N

rhn =
∑

n∈N

∑

a∈An

xh
n,a,r ≤ Rh, ∀h ∈ H. (15)

Generally, the electricity produced by LPS with renewable

energy source at each hour is variable. However, we assume

that Rh, ∀h ∈ H is already known through power generation

forecasting methods [16].

The power consumption schedule for each user n ∈ N in

a day is denoted by a vector:

xn , {xn,a,g,xn,a,r, ∀a ∈ An} , (16)

which indicates the operation time and power consumptions of

all its appliances. A schedule is feasible only when constraints

(9), (12)-(15) are satisfied.

Technical informations of four typical household appliances

and schedulable time intervals for the operations of these

appliances are listed as input data for simulation in Section

V.

III. PROBLEM FORMULATION AND ANALYSIS

A. Tariff Strategy

The tariff strategy of a power supplier should cover the cost

of power generation to make profits, and be fair among users

to make it practicable. We assume that both the PU and the

LPS adopt the billing system proposed in [8].

For each user n ∈ N , let Ωn denote the proportion of power

consumed by user n, which is calculated by:

Ωn ,

∑

a∈An

En,a
∑N

n=1

∑

a∈An

En,a

. (17)

Then, the daily payment of electricity for user n is:

pn = κΩnCtotal(·), (18)

where κ ≥ 1 indicate the profit ratio of the power supplier.

That means users are charged proportional to their daily

power consumptions, and also on the total energy cost of the

community. Then users are encouraged to change their load

profiles to reduce the energy cost of the community as well

as to save their electric bills.

B. Centralized Cost Minimization

Given κ and Ωn, ∀n ∈ N , our goal is to achieve minimum

energy cost of the whole community by scheduling the power

consumption of each appliance. The total energy cost of users

in a day is calculated as:

Ctotal(·)=
H
∑

h=1

Ch(·) =
H
∑

h=1

(

fh
g (g

h) + fh
r (r

h)
)

=
H
∑

h=1

(

fh
g

(

∑

n∈N

∑

a∈An

xh
n,a,g

)

+ fh
r

(

∑

n∈N

∑

a∈An

xh
n,a,r

)

)

. (19)

Therefore, the residential load scheduling problem can be

formulated as an optimization problem:

min
xn,∀n∈N

Ctotal(·) (20)

s.t. (9), (12)-(15)

Explanations of constraints in problem (20) are followed. The

first constraint (9) implies that the power consumption of each

appliance in each hour should not be negative. Constraints

(12)-(14) are operation requirements of all appliances, and they

also indicate load allocations to power suppliers. Constraint

(15) is due to the limited power generation capacity of LPS.

The optimization problem (20) is convex, for all cost

functions (3)-(6) are increasing and convex. It could be solved

in a centralized manner by the NC using convex optimization

techniques [15] or some other methods [17]. Additionally,

since (6) is strictly convex, problem (20) always has an unique

solution.

C. Decentralized Cost Minimization

Although the NC can play a role of central controller

to solve the centralized optimization problem (20) within a

small-scale community, this approach is not scalable as the

number of users increases. In addition, it requires all users

to report operation parameters of their appliances to the NC.

In this set-up, working status of each load in each hour is

on NC’s decision. Moreover, detailed running informations

of all appliances are disclosed. It will be an obstacle for

users to get involved in the demand response (DR) programs,

when privacy issues are concerned. Therefore, solving this

optimization problem in a decentralized way is desired.

Check (19) again, we can rewrite it as

C ′
total(·) =

H
∑

h=1



fh
g

(

∑

a∈An

xh
n,a,g +

∑

m∈N\{n}

ghm

)

+ fh
r

(

∑

a∈An

xh
n,a,r +

∑

m∈N\{n}

rhm

)



 .(21)



Then we can formulate a local optimization problem for each

user n ∈ N :

min
xn

C ′
total(·) (22)

s.t. (9), (12)-(15)

Although the objective function of problem (22) is exactly

the same as the one of problem (20), only a few local variables

are needed to be decided for each user herein. The size of local

problem remains a constant, while the scale of community

increases. Given aggregate daily load profiles of all other users,

i.e.,
∑

m∈N\{n} g
h
m and

∑

m∈N\{n} r
h
m, it’s easy for each user

n ∈ N to handle the local problem solution.

From (21), we note that each user’s decision of load

schedule depends on power consumptions of all other users.

That leads to form the following power consumption game

among users:

• Players: Residential users in set N .

• Strategies: Each user n ∈ N decides its power consump-

tion schedule vector xn to maximize its payoff.

• Payoffs: Pn(xn;x−n) for each user n ∈ N , where

Pn(xn;x−n) = −pn

= −κΩnC
′
total(·). (23)

In (23), x−n , [x1, . . . ,xn−1,xn+1, . . . ,xN ] denotes

the vector of power consumption schedules of all users

other than user n.

In this game, each user in the community act as a player, with

a strategy to select the daily power consumption vector xn, to

maximize the payoff function Pn(xn;x−n).

Theorem 1. The Nash equilibrium of the power consumption

game is exists and unique.

Proof. Since Ch(·) is strictly convex in each hour h ∈ H,

then C ′
total(·) is also strictly convex. Thus, given the x−n, the

payoff function Pn(xn;x−n) is strictly concave with respect

to xn. Therefore, the power consumption game is a strictly

concave n-person game. In this condition, an unique Nash

equilibrium is exists according to the theorems given in [18].

Theorem 2. The unique Nash equilibrium of the power

consumption game is the optimal solution of the energy cost

minimization problem (20).

Proof. Let {x∗
1, . . . ,x

∗
N} denote the optimal solution of prob-

lem (20), then the optimal total energy cost is calculated by:

C∗
total(·) =

H
∑

h=1

(

fh
g

(

∑

n∈N

∑

a∈An

xh∗
n,a,g

)

+ fh
r

(

∑

n∈N

∑

a∈An

xh∗
n,a,r

)

)

. (24)

For each user n ∈ N , given any arbitrary xn ≥ 0, we have:

C∗
total(·) ≤

H
∑

h=1



fh
g

(

∑

a∈An

xh
n,a,g +

∑

m∈N\{n}

gh∗m

)

+ fh
r

(

∑

a∈An

xh
n,a,r +

∑

m∈N\{n}

rh∗m

)



 ,(25)

where gh∗m =
∑

a∈Am

xh∗
m,a,g and rh∗m =

∑

a∈Am

xh∗
m,a,r,

∀m ∈ N \ {n}, ∀h ∈ H. By definition of payoff function

of the game, we get:

Pn(x
∗
n;x

∗
−n) ≥ Pn(xn;x

∗
−n), xn ≥ 0. (26)

From (26), we can see that the optimal solution {x∗
1, . . . ,x

∗
N}

forms a Nash equilibrium for the power consumption game.

According to Theorem 1, the power consumption game has

an unique Nash equilibrium. Thus, the optimal solution of

problem (20) is equivalent to the Nash equilibrium of the

power consumption game.

From Theorem 1 and 2, when the power consumption game

is at its Nash equilibrium, no user would benefit by deviating

from the optimal power consumption schedule x
∗
n, ∀n ∈ N .

Therefore, the users can solve (22) locally and cooperate

with each other to minimize the energy cost of the whole

community, and thus to cut down their own electricity bills.

Details of the corresponding algorithm will be illustrated in

Section IV.

IV. DISTRIBUTED ALGORITHM

In this section, we focus on the distributed algorithm

executed by the NC and users. Interactions between these

two parts are stated first, followed by descriptions of the

algorithm. Then, convergence and optimality of the algorithm

are discussed.

A. Interactions Between NC and Users

From the mathematical formulation of local optimization

problem (22), we note that power consumption informations of

all other users are required for an user to get a solution. It could

be realized through broadcasting in the community. But the

communication overhead is inevitable and the privacy issues

occur. Furthermore, the capacity constraint of LPS (15) is

coupled among users. When local optimization is being carried

out, each user must make sure that there is no other user

synchronized. Otherwise, constraint (15) is probably violated.

Because of these two reasons, there should be an equipment

to coordinate the information exchange and sequence the

local optimization in the community. That’s why the NC is

introduced.

The NC is regarded as a neutral and trustful agency. It could

be implemented as a dedicated device or be integrated with

the data aggregation unit in future smart grid infrastructure.

The NC gets daily load vector (1) from each user and sends

back the sum of all other users’ load vectors in turn. Such that,

each user only needs to reveal the load vector, not the detailed



operation information of each appliance, to the NC. And each

user has no way to explore the power consumption patterns of

other users from the aggregate load informations that received.

Therefore, the coordination of users and the privacy concerns

are taken into account.

B. Algorithm Descriptions

For notation simplicity to illustrate the algorithm, we denote

the vector containing daily aggregate load dispatched to the PU

from all users other than user n as:

g−n =





∑

m∈N\{n}

g1m, . . . ,
∑

m∈N\{n}

gHm



 , (27)

and the corresponding vector for the LPS as

r−n =





∑

m∈N\{n}

r1m, . . . ,
∑

m∈N\{n}

rHm



 . (28)

Then, the algorithms executed by the NC and the EMC of

each user are summarized in Algorithm 1 and 2.

Algorithm 1 is executed by the NC. As the optimization

procedure starts, a list of users that involved in the DR program

is constructed as the input, and each user’s daily load vectors

are initialized as all zeros. At each iteration from line 2 to line

9, an user in the list is selected, the NC sums up all other users’

load vectors and sends the result to this user. Then, the user

solves the local problem (22). Once a new power consumption

schedule obtained, the user responds to the NC with renewed

load vectors. Such that, all users update their load vectors

sequentially. If any user does not respond with an update or a

no-update message before the timer expired for some reasons,

e.g., communication congestions in the network, it will be

skipped in this iteration. The procedure will stop when no

user changes the load vectors, or the maximum number of

iterations reached.

Algorithm 1 : Executed by the NC.

Input: List of users.

Initialize: gn ← 0 and rn ← 0 for each user n ∈ N .

1: repeat

2: for n = 1 to N do

3: Set a timer.

4: Send g−n and r−n to user n.

5: Wait for user n to execute Algorithm 2.

6: if Update message received from user n before the

timer expired. then

7: Update gn and rn accordingly.

8: end if

9: end for

10: until No user sends update message or the maximum

number of iterations reached.

Algorithm 2 is implemented in the EMC of each user and

invoked by the NC. Hourly power generation of the LPS,

operation parameters of appliances and the aggregate load

Algorithm 2 : Executed by the EMC of each user n ∈ N .

Input: Capacity constraint Rh, ∀h ∈ H of the LPS , operation

parameters of appliances, and vectors of g−n and r−n

received from the NC.

Initialize: xn ← 0.

1: Solve local optimization problem (22).

2: if Energy consumption schedule xn changed. then

3: Update xn.

4: Send update message containing gn and rn to the NC.

5: else

6: Sent no-update message to the NC.

7: end if

vectors of all other users are required inputs. As the procedure

starts, local problem (22) is solved by convex optimization

methods. If the power consumption schedule changed, an

update message packaged with daily load vectors is fed back

to the NC. Otherwise, a no-update message is sent to the NC.

C. Convergence and Optimality

Consider the algorithm proposed in Section IV-B. Although

it is implemented in a distributed way, the whole process

is dominated by the NC. At the first iteration, users report

their load vectors to the NC one after another. As starts

from the initial condition of zero, total energy cost of the

community increased gradually with users’ costs added up.

After that, users aim to reduce the total cost by recalculating

their power consumption schedules asynchronously. Once an

user is selected to solve the local optimization problem, a

new solution is obtained to decrease the value of total cost.

Otherwise, the schedule is the same with the result of previous

iteration and the cost remains unchanged. The descending

value of total cost, combined with a lower bound of zero,

insures that the Algorithm 1 and 2 converge to a fixed point.

At the fixed point of Algorithm 1 and 2, no user can

decrease the total cost further by changing the schedule. In

other words, no user can improve its payoff by deviating from

the fixed point. That means the set of all users’ decisions

at this point is a Nash equilibrium of the n-person game

among users [19]. According to Theorems 1 and 2, this Nash

equilibrium is equivalent to the optimal solution of the energy

cost minimization problem (20). Therefore, our proposed

distributed algorithm converges to the global optimum after

a number of iterations.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed

distributed algorithm within an example smart energy commu-

nity. The simulation is implemented in MATLAB environment

with the optimization problem solving package CVX [20].

A. Simulation Setup

In the considered smart energy community, there are N =
20 residential users. Each user has 8 to 10 appliances in

two categories, i.e., shiftable and non-shiftable appliances.



TABLE I
TYPICAL OPERATION PARAMETERS OF SHIFTABLE APPLIANCES

Appliance Ea [αa, βa] x
a

xa

Water heater 2.4 [0:00 AM,12:00 PM] 0.05 1.0
Dishwasher 1.44 [8:00 PM,6:00 AM] 0.02 0.9
Wash machine 1.2 [8:00 AM,8:00 PM] 0.02 0.8
Dress dryer 1.5 [7:00 PM,7:00 AM] 0.05 1.0

Shiftable appliances can be scheduled by the EMC in predeter-

mined time intervals, while non-shiftable appliances have strict

power consumption constraints. Four shiftable appliances (i.e.,

water heater, dishwasher, wash machine and dress dryer) are

considered in the simulation.

Typical operation parameters of these appliances are listed

in Table I, where Ea, xa and xa indicate daily power usage,

minimum and maximum power level of appliance a in unit of

kWh. The operational time interval for an appliance is denoted

by [αa, βa]. Non-shiftable appliances include lighting (Ea =
0.9 kWh), refrigerators (Ea = 1.2 kWh), TVs (Ea = 0.5
kWh), microwave ovens (Ea = 0.5 kWh), air conditioners

(Ea = 4.5 kWh), etc. Although power consumptions of

non-shiftable appliances can not be changed at each hour,

their loads that dispatched to different suppliers (i.e., PU and

LPS) can be decided by the EMC. Total load of no-shiftable

appliances, which is essential in daily life, is set to be greater

than the total load of shiftable appliances in the simulation.

In addition, we set the parameters of cost functions. For the

PU, we assume that bh = ch = 0 for all h ∈ H, ah = 0.2
cents from 8:00 AM to 12:00 PM and ah = 0.15 cents from

12:00 PM to 8:00 AM the day after. For the LPS, there are

two cases: 1) when the quadratic cost function is adopted, we

set b′h = c′h = 0 for all h ∈ H, a′h = 0.15 cents from 8:00

AM to 12:00 PM and a′h = 0.1 cents from 12:00 PM to 8:00

AM the day after; 2) when the linear cost function is adopted,

we set b′′h = 0 for all h ∈ H, a′′h = 7.5 cents from 8:00 AM

to 12:00 PM and a′′h = 5 cents from 12:00 PM to 8:00 AM

the day after. Profit ratio of each supplier is set to κ = 1.

For the capacity of LPS, we suppose that 200 sets

of KD220GX-LPU photovoltaic modules are installed [21].

Therefore, the power generation of LPS at each hour from

10:00 AM to 6:00 PM is assumed to be 20 kWh, 42 kWh,

60 kWh, 80 kWh, 80 kWh, 60 kWh, 42 kWh and 20 kWh,

respectively.

B. Performance Evaluation of Distributed Algorithm

To evaluate the performance of our proposed distributed

algorithm, three different cases are simulated and compared.

For the first case, no scheduling scheme is implemented. Loads

from users are allocated to the LPS until the capacity constraint

reached, then the remaining part of loads is covered by the PU.

For the other two cases, centralized and distributed scheduling

algorithms are carried out.

To investigate the impacts of two different cost functions

that considered for the LPS, we run the simulations when the

TABLE II
SIMULATION RESULTS WITH QUADRATIC COST FUNCTION OF THE LPS

Scheduling scheme Total cost Avg. payment PAR

no 145.69$ 7.28$ 2.18
centralized 120.96$ 6.05$ 2.01
distributed 120.96$ 6.05$ 2.01
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Fig. 2. Power consumptions at each hour for three cases with quadratic cost
function of the LPS.

LPS adopts the quadratic cost function and the linear cost

function, respectively.

1) LPS Adopts the Quadratic Cost Function

In Table II, we summarize the total energy cost of com-

munity, the average daily bill payment of users and the peak-

to-average ratio (PAR) of power consumption in a day for

the three cases. As we can see, when scheduling strategies

are enabled, the total energy cost is reduced from 145.69$ to

120.96$ (i.e., 16.97% less) and the average bill payment is

reduced from 7.28$ to 6.05$ (i.e., 16.90% less). The PAR is

reduced from 2.18 to 2.01 with 7.80% less. It is noteworthy

that the distributed scheme has exactly the same performance

as the centralized one does, which verifies the convergence

and optimality of our proposed distributed algorithm.

In Fig. 2, power consumption at each hour of a day for

three cases are depicted. It shows that, when centralized and

distributed load scheduling schemes are applied, peak-hour

loads are reduced and shifted to the night when the electricity

price is lower, and also to the hours when the power supply

of LPS is available. That leads to the smoother load profiles.

Fig. 3 gives the energy cost at each hour of a day in different

cases. We can see that, for each case, most of the energy

cost is incurred when the load is high and the power from

LPS is not available. We also note that, in each hour from

12:00 AM to 11:00 PM, the energy cost is greatly reduced

when centralized/distributed algorithm is applied. That results

in significant energy cost saving in a day.

To show the utilization of the power from LPS, we compare
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Fig. 3. Energy cost at each hour for three cases with quadratic cost function
of the LPS.
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Fig. 4. Power consumption of users and power purchased from LPS in
comparison with power generation of LPS, where quadratic cost function
is adopted by the LPS.

the aggregate power consumption of users and the power

purchased from LPS with the power generation of LPS in

Fig. 4. As can be seen, the peak hours (i.e., from 1:00 PM

to 4:00 PM ) of power generation of the LPS are not just

correspond to the peak load hours (i.e., from 6:00 PM to 9:00

PM). The extra power of LPS is sold to the PU at a much

lower price. Enlargement of power storage capability will not

only help the LPS to supply more power at a higher price

but also contribute to the peak load alleviation for the PU.

While the trade-off between profit increments and additional

investment costs should be considered. Moreover, even when

the capacity of LPS exceeds the aggregate load of users, there

is still a part of loads dispatched to the PU. That is due to the

tariff strategy adopted by the LPS, which charges the users

based on a quadric function of power consumption. Although

the unit price of LPS is lower, the value of cost function

TABLE III
SIMULATION RESULTS WITH LINEAR COST FUNCTION OF THE LPS

Scheduling scheme Total cost Avg. payment PAR

no 147.79$ 7.39$ 2.18
centralized 127.66$ 6.38$ 2.00
distributed 127.66$ 6.38$ 2.00
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Fig. 5. Power consumptions at each hour for three cases with linear cost
function of the LPS.

increases drastically as more loads are allocated to the LPS.

Therefore, the scheduling program will seek to the supply of

PU to minimize the total cost.

2) LPS Adopts the Linear Cost Function

Table III summarizes the simulation results when the linear

cost function is adopted by the LPS. It shows that, when

scheduling strategies are enabled, the total energy cost is

reduced from 147.79$ to 127.66$ (i.e., 13.6% less) and the

average bill payment is reduced from 7.39$ to 6.38$. The

PAR is reduced from 2.18 to 2.00 with 8.26% less.

Fig. 5 gives the power consumptions at each hour of a day

for three different cases. It shows that, the load profiles are

smoothed by the centralized and distributed load scheduling

schemes. Fig. 6 depicts the energy costs at each hour of a day.

We can see that, the energy costs in peak hours are greatly

reduced by the scheduling algorithm. That demonstrates our

proposed algorithm can achieve significant energy cost saving

when the LPS adopts different kinds of cost functions.

Fig. 7 shows the aggregate power consumption of users

versus the power generation of the LPS at each hour of a

day. When the capacity of LPS exceeds the aggregate load

of users, there is still a part of loads dispatched to the PU.

Compared with Fig. 4, where the quadratic cost function is

adopted by the LPS, the utilization of power that generated

by the LPS is different. That implies the type of cost function

and the parameter settings of cost function have significant

impacts on the power consumptions of users. To fully utilize

the power generation of the LPS, alternative cost function of
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Fig. 6. Energy cost at each hour for three cases with linear cost function of
the LPS.
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Fig. 7. Power consumption of users and power purchased from LPS in
comparison with power generation of LPS, where linear cost function is
adopted by the LPS.

the LPS should be considered, and the pricing strategy of the

system also should be revised. That will be investigated in our

future works.

VI. CONCLUSION

In this paper, we considered the residential load schedul-

ing problem in a smart energy community that powered by

two suppliers. We proposed a distributed algorithm to solve

this problem. With the coordination scheme implemented,

each user obtained the optimal power consumption schedule

to minimize its bill payment as well as the total cost of

the community. Simulation results showed that our proposed

scheduling scheme achieved significant energy cost saving

and payment reduction compared with the situation when no

scheduling scheme was applied, and it also resulted in the

reduction of peak-to-average ratio in load demand.
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