
Performability Analysis of a Cloud System

Xiwei Qiu, Peng Sun, Xun Guo, and Yanping Xiang
Collaborative Autonomic Computing Laboratory, School of Computer Science and Engineering

University of Electronic Science and Technology of China, Chengdu, China

Email: qiu uestc@hotmail.com, sleisurep@163.com, guoxun@uestc.edu.cn, yanping xiang@163.com

Abstract—Cloud computing has recently emerged as an impor-
tant filed with numerous novel features, particularly, large-scale
resource integration and virtualized resource provisioning. Since
a cloud system essentially aims at service-oriented computing,
service performance becomes the primary metric that needs
analyzing in detail. However, in a realistic scenario, operation of
virtual machines (VM) may be interrupted by random resource
failures. This demonstrates that service performance is indeed
affected by resource reliability. Thus, connecting performance
and reliability is essential for making more precise evaluation.
In this paper, we present a theoretical modeling approach
for performability analysis of cloud services and the cloud
system. This flexible modeling approach first builds two tractable
submodels that consider an important correlation factor (i.e.,
available resource capacity that is not only decided by reliability
but also has a significant effect on performance) to ensure the
required fidelity. Then, a Bayesian method is applied to connect
the submodels, which can make our performability model more
scalable. In contrast to a monolithic modeling method, our
approach that combines interacting submodels can effectively
reduce computing complexity for a large-scale cloud system.
Numerical examples are illustrated.

Index Terms—Cloud computing, correlation modeling, perfor-
mance, reliability

I. INTRODUCTION

In recent years, cloud computing has emerged as a new

computing paradigm with numerous novel characteristics, such

as large-scale resource sharing, virtualized resource provision-

ing, and service-oriented computing [1]. Many industries focus

on developing cloud systems for real-world environments,

e.g., Amazon Elastic compute cloud (EC2), Google cloud

platform, and Microsoft Azure. These cloud systems have a

cloud controller (CC) designed to efficiently manage virtual

resource pools. Meanwhile, the use of virtual machines (VM)

enables numerous new service modes, including software as a

service (SaaS), infrastructure as a service (IaaS), and platform

as a service (PaaS) [2].

For providing efficient and stable cloud services, perfor-

mance becomes an important metric that must be analyzed

in detail. Many recent researches have studied cloud service

performance for various application scenarios. For example,

Zhang et al. [3] investigated the cloud network and developed

a predict model to analyze performance of web services in

advance. Khazaei et al. [4] presented an iterative performance

model to evaluate service performance of a cloud computing

center. Bruneo [5] applied stochastic reward nets to construct

an analytical performance model for IaaS clouds. Although

these studies systemically investigated cloud service perfor-

mance, it is inadequate for realistic environments since they

do not consider an important correlated factor, i.e., resource

reliability.

In practice, cloud service performance is significantly af-

fected by random resource failures. For example, hardware

failures of a physical server inevitably lead to interruption

of co-located VMs hosted on the server. Moreover, excessive

failed servers can result in inadequate resource capacity of

the resource pool, which potentially implies more waiting

time of user requests and further incurs a higher possibility

of discarding new arrival requests due to the full of the

request queue. Therefore, there exists an important correlation

between performance and reliability, and these metrics should

not be considered separately. Many studies about reliability in

the literature also demonstrate that performance is indeed a

resulting attribute of reliability [6]-[8].

For combining performance and reliability, Meyer et al. [9]

proposed the notion of performability, and corresponding theo-

retical models were subsequently studied. For example, Yang

et al. [10] evaluated expected response delay and execution

time of cloud services based on stochastic models in fault

recovery. Tokuno and Yamada [11] investigated hardware and

software failures to build a performability model for a parallel

computing system. Kim et al. [12] considered an IaaS cloud

scenario consisting of datacenters, hosts, and VMs, and used

CloudSim to measure the performability of the IaaS cloud.

Tamura and Yamada [13] used open source software (OSS)

to construct a cloud computing environment, and mainly

adopted a Gaussian jump diffusion process to analyzed the

performability of the cloud OSS. However, these models do

not consider an important cloud component, i.e., the cloud

controller, the brain of the cloud system. In fact, all requests

must be first processed by the CC and the service ability of the

CC inevitably has a significant effect on performance. Thus,

this important factor should be fully captured for achieving a

more precise evaluation of cloud performability.

In this paper, we present a theoretical modeling approach for

analyzing the performability of cloud services and the cloud

system. We assume the cloud system adopts a more flexible

and efficient three-phase failure recovery mechanism to handle

occurred server failures. Then, the corresponding reliability

submodel is proposed for analyzing the probability distribution

of available capacity of cloud resources. We also propose

a more realistic performance submodel, which fully takes

the CC service time and the VM service time into account.

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

Fig. 1. A topological structure of the cloud system with two cloud services.

Markov models are mainly used to depict the performance

and reliability submodels, and then a Bayesian approach is

applied to connect the submodels for precisely obtaining an

overall evaluation of the performability of cloud services and

the cloud system.

The remainder of the paper is organized as follows. In

Section II, we describe a topology structure of the cloud

system with multiple cloud services. Section III presents the

performability modeling approach using interacting stochastic

models. Section IV illustrates numerical examples. Finally, we

conclude the paper in Section V.

II. CLOUD TOPOLOGICAL STRUCTURE

In principle, the cloud system must have essential capabili-

ties of unified access interface, large-scale resource sharing,

and centralized job scheduling. To achieve such distinctive

capabilities, the cloud system must possess two elementary

components: the CC and the cloud resource pool. The CC

receives and parses user requests to initiate and deploy VMs

for delivering corresponding cloud services to the users. The

cloud resource pool is virtualized cloud infrastructure that

hosts VMs to support various cloud services.

In general, the cloud system needs to determine a resource

assignment strategy for a cloud service. Suppose that the CC

assigns n homogeneous physical servers to the cloud service,

and the resource capacity (i.e., CPU, memory, and disk) of

each server can support c VMs running simultaneously. Thus,

the cloud service can serve a maximal number of x = c·n users

in parallel. However, in realistic scenarios, physical servers

may be down due to random failures, which implies that the

available resource capacity for supporting the cloud service is

indeed a random variable.

Fig. 1 illustrates a topological structure of the cloud system

with two cloud services. Take cloud service 1 shown in the

figure as an example, the CC assigns five severs to the cloud

service. With each server supports four co-located VMs, the

cloud service can serve 20 users simultaneously. Once a server

is failed due to some failures, the available resource capacity of

the cloud service is correspondingly reduced, which inevitable

leads to the decrease of the service performance. To effectively

analyze this situation, we present a performability model

to combine performance metric with random failures and

recovery, which is described in the following Section III.

Fig. 2. Markov model for the recovery process of the failed server.

III. ANALYSIS OF CLOUD PERFORMABILITY

A. Resource Reliability Modeling

In this paper, we assume that physical servers assigned

to a cloud service are homogeneous. This is a reasonable

division of cloud infrastructure as it can significantly improve

the management efficiency of the CC. Meanwhile, servers

assigned to different cloud services can be heterogeneous.

Note that the CC is the most critical element that ensures the

operation of the cloud system, and thus it usually has multiple

redundant copies to guarantee its reliability. According to this

situation, we assume that the CC is fully reliable.

Many kinds of repair actions can be applied to restore a

server failure. In general, a hierarchical recovery mechanism

consisting of multiple kinds of repair actions is more flexible

and efficient than a single kind of repair actions [14]. In

this paper, the hierarchical recovery mechanism is assumed

to have three typical kinds of repair actions, which can be

expressed as a three-phase recovery process. In the first phase,

a rapid repair action with a relatively short mean repair time

1/µ1 is used according to the phenomenon of the failure and

previous experience of recovery, which has a probability of p1
to successfully remove the failure. Once it is failed to remove

the failure, the process enters the next phase that adopts a

diagnostic repair action. This kind of repair action tries to

find the cause of the failure, and then applies a more pertinent

repair action based on the diagnostic result. Similarly, this

phase also has a mean repair time 1/µ2 and a probability

p2 to remove the failure. The most serious situation is that

the failure cannot be remove in the first and second phases,

and the CC has to apply a complete repair action (with the

mean time of 1/µ3) to fully restore the failed server, which

is usually time-consuming. Without loss of the generality, the

inequalities µ1 > µ2 > µ3 and p1 < p2 are held. Thus, the

recovery process of the failed server can be modeled as a

Markov model, which is shown in Fig. 2.

In this paper, we assume that the failure time and the

repair time are both exponentially distribute [15]. The state 0

represents the initial state of the server that no failure exists.

The model translates from 0 to 1 with the failure rate λs,

which means that a server failure occurs. The states 1, 2, and

3 represent the first, second, and final phases of the recovery

process, respectively. Denote qk as the steady probability for

the Markov model stays at state k (k = 0, 1, 2, 3), which can

be obtained by solving the following Chapman-Kolmogorov

equations:

λsq0 = p1µ1q1 + p2µ2q2 + µ3q3 (1)

µ1q1 = λsq0 (2)

µ2q2 = (1− p1)µ1q1 (3)

µ3q3 = (1− p2)µ2q2 (4)

3
∑

k=0

qk = 1. (5)

Solving (1)-(5), the probability that the server is available

can be obtained as pa = q0. Then, for the cloud service with n
assigned servers, the number of available servers is a discrete

random variable denoted by Y , which takes values from 0 to

n. Since these servers are homogeneous and independent, the

probability distribution function (pdf) of Y can be derived as

pY (y) = Pr(Y = y) = Cy
n(pa)

y(1− pa)
n−y. (6)

Obviously, the available resource capacity (i.e., the maximal

number of VMs that can be hosted on all available servers

simultaneously) is also a random variable determined by Y .

Denote it as X and the equation X = c · Y is satisfied. From

(6), the pdf of X can be easily written as

pX(x) = pY (x/c) x = 0, c, 2c, . . . , nc. (7)

Although we assume n servers supporting the same cloud

service are homogeneous, our reliability submodel can also be

extended for more complicated scenarios that all servers are

heterogeneous. For the i-th server (1 ≤ i ≤ n), the maximal

number of co-located VMs can be expressed as a discrete

random variable Zi. From (1)-(5), its probability distribution

is written as

pZi
(ci) = Pr(Zi = ci) = pai

(8)

pZi
(0) = Pr(Zi = 0) = 1− pai

. (9)

Note that the availability states of these heterogeneous

servers are independent, thus the probability distribution of

X can be derived as

pX(x) =
∑

c1,c2,...,cn
c1+...+cn=x

(

n
∏

i=1

pZi
(ci)

)

. (10)

B. Service Performance Modeling

Most existing work does not consider the service time of

the CC. However, in realistic scenarios, the service capability

of the CC is indeed critical since it decides the efficiency of

parsing user requests. To remedy this lack, our performance

model focuses on capturing not only the VM service time but

also the CC service time.

As shown in Fig. 1, the CC keeps multiple separate queues

for different cloud services. These queues are assumed to be

processed by the CC in parallel. Requests in the same queue

are served on the First-Come-First-Serve (FCFS) discipline.

In this paper, the following assumptions are made for the

performance model of a cloud service.

A1) The arrival of requests for the cloud service follows

a Poisson process with an arrival rate λ. Limitation

Fig. 3. Performance model for the cloud service.

of the request queue length is L. When a new request

arrives, it is discarded if the queue is full.

A2) The service times of the CC and a VM are expo-

nentially distributed with service rates µc and µv ,

respectively.

The service process of a user request mainly includes two

operations: a parse operation and a serving operation. The

parse operation is executed by the CC, which translates the

request to a service command and tries to find a server with

adequate resources (e.g., CPU, memory, and disk) to host a

new VM. If all available resources have been occupied, this

request has to wait in the queue until some occupied resources

are released, which also makes the other requests in the queue

cannot be served by the CC (i.e., the CC becomes ‘busy’ state).

After the service command is sent to a server, the subsequent

serving operation can be operated by the server, which initiates

and deploys a new VM for delivering the cloud service to the

user. Once the VM successfully serves the user, the occupied

resources are immediately released and can be used for serving

the next request.

We present the performance model for the cloud service,

as shown in Fig. 3. States of the model in Fig. 3 are indexed

by (i, j), where i denotes the number of requests in the queue

(i = 0, 1, . . . , L, b0, b1, . . . , bL−1) and j represents the number

of running VMs (j = 0, 1, . . . , x). Note that bk represents that

one request has been parsed by the CC but cannot be served

due to inadequate resources, and there also are k requests

in the queue waiting for the process of the CC. We briefly

describe the state transitions in the model:

1) For the situation that a new request arrives, if the

queue is not full, i.e., i 6= L and i 6= bL−1, the new

request makes the model move from (i, j) to state

(i+1, j) with the arrival rate λ, where bk+1 ≡ bk+1.

2) For the situation that a request is parsed by the CC,

if j < x, which means that there still exists adequate

resources can be used for hosting a new VM, the

model moves from (i, j) to (i − 1, j + 1) with the

service rate µc. If j = x, the parsed request makes

the CC become busy state, and the model translates

from (i, x) to (bi−1, x) with the service rate µc.

3) For the situation that a request is complete, if i 6=
bk, when j (1 ≤ j ≤ x) VMs are simultaneously

running in the resource pool, the model moves from

(i, j) to (i, j − 1) with the exit rate j · µv . If i = bk,

the model move from (bk, x) to (k, x) with the exist

rate x · µv , this is because the first request waiting

in the queue has already been parsed by the CC and

thus it can be served immediately.

Denote πi,j as the steady probability for the cloud service

stay at state (i, j), which can be obtained by solving the

following Chapman-Kolmogorov equations:

λπ0,0 = µvπ0,1 (11)

µcπL,0 = λπL−1,0 + µvπL,1 (12)

(λ+ xµv)πb0,x = µcπ1,x (13)

xµvπbL−1,x = λπbL−2,x + µcπL,x (14)

(µc + xµv)πL,x = λπL−1,x (15)

(λ+ xµv)π0,x = µcπ1,x−1 + xµvπb0,x (16)

(λ+ µc)πi,0 = λπi−1,0 + µvπi,1, i = 1, . . . , L− 1 (17)

(jµv + µc)πL,j = λπL−1,j + (j + 1)µvπL,j+1,

j = 1, 2, . . . , x− 1
(18)

(λ+ jµv)π0,j = µcπ1,j−1 + (j + 1)µvπ0,j+1,

j = 1, 2, . . . , x− 1
(19)

(λ+µc + jµv)πi,j = λπi−1,j

+ µcπi+1,j−1 + (j + 1)µvπi,j+1,

i = 1, 2, . . . , L− 1, j = 1, 2, . . . , x− 1

(20)

(xµv + µc)πi,x = µcπi+1,i−1+λπi−1,x + xµvπbi,x,

i = 1, 2, . . . , L− 1
(21)

(xµv+λ)πbi,x = λπbi−1,x+µcπi+1,x, i = 1, . . . , L−1 (22)
∑

i

∑

j

πi,j = 1 (23)

Given the condition that available resources supporting x
VMs at most, the conditional probabilities that the CC remains

‘busy’ state and the resource pool is ‘saturation’ state (i.e., all

available resources have been occupied) can be respectively

obtained as

pbusy(x) =

L−1
∑

k=0

πbk,x (24)

psat(x) =
L
∑

i=0

πi,x +
L−1
∑

k=0

πbk,x. (25)

Moreover, the conditional probability that a new request is

discarded due to the full of the queue is written as

pdis(x) =
x
∑

j=0

πL,j + πbL−1,x. (26)

The first and second output indices (i.e., pbusy(x) and

psat(x)) can be used to analyze the states of the CC and

the resource pool, respectively. According to this valuable

information, the cloud provider can rationally determine the

limitation of the queue and the number of assigned servers.

The third index pdis(x) is an important measurement that

describes the performance of the cloud service.

C. Evaluation of Performability

Now, we can use Markov reward models to evaluate the

performability of the cloud service. For each state x, it has

a probability pX(x) and a reward value r(x) (it could be

pbusy(x), psat(x) or pdis(x)). From (7), use a Bayesian

approach to remove the parameter x, the expected reward value

is obtained as

r =
∑

x

r(x)pX(x). (27)

From (27), the expected indices pbusy , psat, and pdis can

be obtained. In this paper, we take the expected throughput

as the performability metric of the cloud service, which are

expressed as

ϕ = λ(1− pdis). (28)

For the cloud system with multiple cloud services, its

performability is defined as the efficient service ratio of all

requests. Suppose the cloud system runs M different cloud

services. Although VMs supporting these cloud services may

have different configuration (e.g., software, OS, and resource

requirement), the cloud isolation technology effectively guar-

antees non-interfering runs of VMs, which implies that service

processes of user requests can be treated as independent.

Thus, the overall performability of the cloud system can be

calculated by

ρ =

∑M

m=1
ϕm

∑M

m=1
λm

(29)

where ϕm and λm are the expected throughput and the arrival

rate of the m-th (m = 1, 2, . . . ,M) cloud service, respectively.

IV. NUMERICAL EXAMPLES

Consider cloud service 1 shown in Fig. 1 as an example. The

cloud service has five homogeneous servers and each server

can host four VMs simultaneously. Suppose the failure rate of

each server is λs = 0.0009 s−1. The repair rates of the first,

second and final phases are µ1 = 0.01 s−1, µ2 = 0.006 s−1,

and µ3 = 0.001 s−1, respectively. The first phase and the

second phase have probabilities of p1 = 0.75 and p2 = 0.85
to successfully remove the failure, respectively. From (1)-(5),

the probability that a server is unavailable due to random

failures and recovery can be calculated as 1 − pa = 0.1389.

Then, substitute this value into (6), the pdf of the number of

available servers can be furthermore obtained, as shown in

Fig. 4. Now, given a specific resource capacity x = c · n, the

conditional indices can be calculated by using our performance

model. Suppose the limitation of the queue for the cloud

service is L = 10 and the arrival rate of the user requests

is λ = 2.6 s−1. The CC service rate and the VM service

Fig. 4. The probability distribution of the number of available servers.

Fig. 5. Conditional reward values as functions of available resource capacity.

rate are µc = 2.8 s−1 and µv = 0.2 s−1, respectively.

From (24), (25), and (26), we can calculate the corresponding

reward values pbusy(x), psat(x), and pdis(x), as shown in

Fig. 5. Note that there also exists a special condition of

x = 0 indicating that all the resources are unavailable due

to server failures. The conditional indices for x = 0 are set as

pbusy(0) = psat(0) = pdis(0) = 1, which represents that no

requests are completed.

Finally, use a Bayesian approach to remove the parameter

x, the corresponding expected values are written as pbusy =
0.0628, psat = 0.1247, and pdis = 0.0952. According to these

valuable information, the cloud provider can comprehensively

evaluate the working state of the CC, the usage of the resource

pool, and the throughput of the cloud service. From (28), the

performability metric of the cloud service is ϕ1 = 2.3525 s−1.

To evaluate the performability of the cloud system, we assume

cloud service 2 in Fig. 1 has the parameters of λ′ = 1.8 s−1,

µ′

c = 2.2 s−1, µ′

v = 0.3 s−1, and L′ = 10. The performability

metric of cloud service 2 can also be calculated as ϕ2 =
1.3320 s−1. Then, from (29), the performability metric of the

cloud system (i.e., the request completion ratio) is written as

ρ = 83.47%.

To verify analytical results obtained by the proposed cloud

performability model, a simulation program based on the

Monte Carlo method has been developed, which is designed

to simulate the service process of 2000 requests of a cloud

service considering the random change of the performance

Fig. 6. Performability estimation of 150 runs of the simulation program.

Fig. 7. Performability vs. the number of servers at µv = 0.3 s
−1.

Fig. 8. Performability vs. the VM service rate at n = 3.

caused by random server failures and recovery. The simulation

program runs 150 times for calculating the performability of

cloud service 1 and 2, as shown in Fig. 6. One can see that the

simulation results for cloud service 1 and 2 fluctuate around

the corresponding theoretical values (i.e., ϕ1 = 2.3253 s−1

and ϕ2 = 1.3320 s−1 calculated from our analytical model),

which witnesses that the proposed performability model is

justified.

In principle, the performability of a cloud service is signifi-

cant affected by the number of assigned servers n and the VM

service rate µv . Take cloud service 2 in Fig. 1 as an example,

the changes of its performability caused by different n and

µv are depicted in Fig. 7 and Fig. 8, respectively. It can be

observed that the performability is dramatically improved at

first, but the effects on improving the performability become

gradually slight with the increase of n and µv . Note that the

performability tends to remain constants from n = 6 in Fig.

7 and µv = 0.09 s−1 in Fig. 8. These can be treated as

estimation of optimal solutions of n and µv , which implies

the maximum performability of the cloud service is almost

achieved.

V. CONCLUSION

In this paper, we systemically studies a theoretical model

for evaluating the performability of cloud services and the

cloud system. We first analyze the reliability of cloud resources

(i.e., physical servers) for the cloud system adopting a three-

phase failure recovery mechanism, which is more flexible

and efficient than a single kind of repair actions. Then, the

CC service time and the VM service time are fully taken

into account to establish a more realistic performance model.

Finally, the evaluation of the performability metric is obtained

by using a Bayesian method.

The numerical examples in this work illustrated the proce-

dures for modeling, analyzing and evaluating the performabil-

ity of cloud services and the cloud system. We quantify the

effects of variations in the number of assigned servers and

the VM service rate on the performability of cloud services,

which also show that the proposed model can effectively

help the cloud provider estimate optimal solutions of the

number of servers and the VM service rate. The analytical

results calculated by our performability model are very close

to the simulation results, which can effectively validate our

performability model.

The presented model can also be extended to a more

complicated public cloud scenario with heterogeneous servers.

According to the analysis of the theoretical model, optimal

resource scheduling strategies for multiple cloud services

can be further studied. Generally speaking, such an optimal

resource scheduling strategy in a large-scale cloud scenario

can be described as a multi-objective optimization problem,

which is usually an NP complete problem, and thus needs

heuristic algorithms to find approximately optimal solutions.

The design of resource scheduling strategies for optimizing

the performability of multiple cloud services is an important

topic that will be studied in our future work.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural

Science Foundation of China under Grant 61170042, in part by

the Fundamental Research Funds for the Central Universities

under Grant ZYGX2011Z001, and in part by the Innovational

Team Project of Sichuan Province under Grand 2015TD0002.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer

Systems, vol. 25, no. 3, pp. 599-616, Jun. 2009.
[2] M. N. Huhns, and M. P. Singh, “Service-oriented computing: Key

concepts and principles,” IEEE Internet Computing, vol. 9, no. 1, pp.
75-81, Jan. 2005.

[3] Y. Zhang, Z. Zheng, and M. R. Lyu, “An online performance prediction
framework for service-oriented systems,” IEEE Transactions on System,

Man, and Cybernetics: Systems, vol. 44, no. 9, pp. 1169-1181, Sept. 2014.
[4] H. Khazaei, J. Misic, V. B. Misic, “A fine-grained performance model of

cloud computing centers,” IEEE Transactions on Parallel and Distributed

Systems, vol. 24, no. 11, pp. 2138-2147, Nov. 2013.
[5] D. Bruneo, “A stochastic model to investigate data center performance and

QoS in IaaS cloud computing systems,” IEEE Transactions on Parallel

Distributed Systems, vol. 25, no. 3, pp. 560-560, Mar. 2014.
[6] Y. S. Dai, Y. Pan, and X. K. Zou, “A hierarchical modeling and analysis

for grid service reliability,” IEEE Transactions on Computer, vol. 56, no.
5, pp. 681-691, May. 2007.

[7] K. Vishwanath, and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proceeding of the 1st ACM Symposium on Cloud

Computing, 2010, pp.193-204.
[8] E. Bauer, and R. Adams, Reliability and availability of cloud computing,

Wiley, 2012.
[9] J. F. Meyer, “On evaluating the performability of degradable computing

systems,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 720-731,
1980.

[10] B. Yang, F. Tan and Y. S. Dai, “Performance evaluation of cloud service
considering fault recovery,” Journal of Supercomputing, vol. 65, no. 1,
pp. 426-444, 2013.

[11] K. Tokuno, and S. Yamada, “Codesign-oriented performability modeling
for hardware-software systems,” IEEE Transactions on Reliability, vol.
60, no. 1, pp. 171-179, Mar. 2011.

[12] J. H. Kim, S. M. Lee, D. S. Kim, and J. S. Park, “Performability analysis
of IaaS cloud,” 2011 Fifth International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing (IMIS), 2011, pp. 36-43.
[13] Y. Tamura and S. Yamada, “Performance evaluation and dependability

analysis for open source cloud computing,” International Transactions on

Systems Science and Applications, vol.8, pp. 1-11, Dec. 2012.
[14] Y. S. Dai, Y. Xiang, Y. Li, L. Xing and G. Zhang, “Consequence oriented

self-healing and autonomous diagnosis for highly reliable systems and
software,” IEEE Transactions on Reliability, vol. 60, no. 2, pp. 369-380,
2011.

[15] K. S. Trivedi, Probability and Statistics With Reliability, Queuing, and

Computer Science Applications, New York: Wiley, 2001.

