
How Green Are Cloud Patterns?

S. Amirhossein Abtahizadeh, Foutse Khomh, Yann-Gaël Guéhéneuc

SWAT–PTIDEJ, École Polytechnique de Montréal, Canada

{a.abtahizadeh, foutse.khomh, yann-gael.gueheneuc}@polymtl.ca

Abstract—Cloud Patterns are abstract solutions to recurrent
design problems in the cloud. Previous work has shown that
these patterns can improve the Quality of Service (QoS) of
cloud applications but their impact on energy consumption is
still unknown. Yet, energy consumption is the biggest challenge
that cloud computing systems (the backbone of today’s high-tech
economy) face today. In fact, 10% of the world’s electricity is now
being consumed by servers, laptops, tablets and smartphones.
Energy consumption has complex dependencies on the hardware
platform, and the multiple software layers. The hardware, its
firmware, the operating system, and the various software com-
ponents used by a cloud application, all contribute to determining
the energy footprint. Hence, even though increasing a data center
efficiency will eventually improve energy efficiency, the internal
design of cloud-based applications can be improved to lower
energy consumption. In this paper, we conduct an empirical
study on a RESTful multi-threaded application deployed in the
cloud, to investigate the individual and the combined impact of
three cloud patterns (e.g., Local Database proxy, Local Sharding
Based Router and Priority Queue) on the energy consumption of
cloud based applications. We measure the energy consumption
using Power-API; an application programming interface (API)
written in Java to monitor the energy consumed at the process-
level. Results show that cloud patterns can effectively reduce the
energy consumption of a cloud application, but not in all cases.
In general, there appear to be a trade-off between an improved
response time of the application and the energy consumption.
Developers and software architects can make use of these results
to guide their design decisions.

keywords—Cloud Patterns, Energy Consumption, Energy Ef-
ficiency, Sharding, Priority Message Queue

I. INTRODUCTION

Cloud computing systems are now pervasive in our society.

As a consequence, the energy consumption of data centres

and cloud based applications, has become an emerging topic

in the software engineering research communities [1], [2].

Energy consumption has complex dependencies on the hard-

ware platform, and the multiple software layers. The hardware,

its firmware, the operating system, and the various software

components used by a cloud application, all contribute to

determining the energy footprint; making energy optimisation

a very challenging problem. The role of the software compo-

nents and coding practices has been recently investigated by

works such as [3], [4] and researchers have proposed energy-

aware algorithms [5] and sensor relocation techniques [6] to

help to optimize software energy consumption. When devel-

oping an energy efficient cloud based application, developers

must seek a compromise between the application’s Quality of

Service (QoS) and energy efficiency. Manually finding such

a compromise is a daunting task, and developers should be

supported by guidelines and–or tailored recommendations in

the form of best practices. Cloud patterns, which are general

and reusable solutions to recurring design problems, have been

proposed as best practices to guide developers during the

development of cloud based applications. However, although

previous work [7] has shown that these cloud patterns can

improve the QoS of cloud based applications, their impact on

energy consumption is still unknown.

In this paper, we evaluate the impact on energy consumption

of three cloud patterns: Local Database Proxy, Local Sharding-

Based Router and Priority Queue. The study is performed

using a RESTful multi-threaded application deployed in the

cloud. The application is implemented with different combina-

tions of the aforementioned patterns. The energy consumption

is measured using Power-API; an application programming

interface (API) written in Java that can monitor the energy

consumed by an application, at the process-level [8].

The rest of the paper is structured as follows. In Section II

we provide some background information describing the stud-

ied patterns along with related works. Section III presents

the cloud-based application scenarios and the design of our

experiments and section IV discusses the obtained results.

Section V explains possible threats to the validity of our

research. Section VI wraps up our research and Section VII

suggests some future works that might extend our study.

II. BACKGROUND AND RELATED WORK

This section includes a brief presentation of the three

patterns under study in this research and outlines some of their

benefits for cloud applications. Energy measurements with the

Power-API software library is discussed.

A. Cloud Patterns

Local Database Proxy: This pattern uses data replication

between master/slave databases and a proxy to route requests

[9] and provides a read scalability on a relational database.

Write requests are handled by the master and replicated on its

slaves, while Read requests are processed by slaves. When

applying this pattern, components must use a local proxy

whenever they need to retrieve or write data. The proxy

distributes requests between master and slaves depending on

their type and workload. Slaves may be added or removed

during the execution to obtain elasticity. There could be a

risk of bottleneck on the master database when there is a

need to scale with write requests. This issue together with

the lack of strategy for write requests are listed among the

limitations of this pattern in Microsoft guidelines [10]. The

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time (seconds)

Po
w

er
 C

on
su

m
pt

io
n

(w
at

t)

Master

Power−API

Fig. 1: Power-API distortion test

impact of this pattern on the QoS of applications has been

examined by Hecht et al. [7]; however, to the best of our

knowledge, no work has empirically investigated the impact of

the Local Database Proxy pattern on the energy consumption

of applications.

Local Sharding-Based Router: This pattern is useful

when an application needs scalability both for read and write

operations [9]. Sharding is a technique that consists in splitting

data between multiple databases into functional groups called

shards. Requests are processes by a local router to determine

the suitable databases. Data are split horizontally i.e., on rows,

and each split must be independent as much as possible to

avoid joins and to benefit from the sharding. The sharding

logic is applicable through multiple strategies; a range of

value, a specific shard key or hashing can be used to distribute

data among the databases [11]. It is possible to scale the

system out by adding further shards running on redundant

storage nodes. Sharding reduces contentions and improves

the performance of applications by balancing the workload

across shards [11]. Shards can be located close to specified

clients to improve data accessibility. When combined with

other patterns, Sharding can have a positive impact on the QoS

of applications (specifically when experiencing heavy loads)

[7]. However, the impact of Sharding on energy consumption

is still unclear.

Priority Message Queue: This pattern which implements

a First In First Out (FIFO) queue is typically used to delegate

tasks to background processing or to allow asynchronous com-

munications between components. Priority Message Queue is

recommended when there are different types of messages.

Messages with high priority values are received and processed

more quickly than those with lower priority values [12]. Mes-

sage Queues enable designing loosely coupled components

and improve the scalability of applications [7].

Evaluation of Cloud Patterns: Ardagna et al. [13] em-

pirically evaluated the performance of five scalability patterns

for Platform as a service (PaaS): Single, Shared, Clustered,

Multiple Shared and Multiple Clustered Platform Patterns. To

compare the performance of these patterns they measured the

response time and the number of transactions per second. They

explored the effects of the addition and the removal of virtual

resources, but did not examine the impact of the patterns on

energy consumption. Tudorica et al. [14] and Burtica et al.

[15] performed a comprehensive comparison and evaluation

of no-SQL databases (which make use of multiple sharding

and replication strategies to increase performance), but did

not examine energy consumption aspects. Along the same line

of work, Cattel [16] examined no-SQL and SQL data stores

designed to scale by using replication and sharding. They did

not perform energy consumption evaluations. However, these

works highlighted the lack of studies and benchmarks on cloud

patterns solutions. Message oriented middlewares have been

benchmarked by Sachs et al. [17]; nevertheless, the energy

consumption aspect was ignored.

B. Power-API

PowerAPI is a system-level library that provides power

information per PID for each system component (e.g., CPU,

network card, etc.) [8]. The energy estimation is performed

using analytical models that characterize the consumption

of the components (i.e., CPU, memory, disk). The accuracy

of PowerAPI was evaluated using the bluetooth powermeter

(PowerSpy) [18], and results revealed only minor variations

between the energy estimations of Power-API, and the energy

consumption measured by PowerSpy [8].

PowerAPI was selected for this work because of its reported

high accuracy [8], and the aggregate energy consumption

data for CPU, Memory and Disk were collected by auditing

multiple corresponding VMs. Power-API measures power in

watts, which was converted to the unit of energy (Kilojoules).

However, prior to our study, we performed a pilot experiment

to examine the risk of Power-API introducing noise in its own

measurements. More specifically, we conducted a test in which

10,000 records were inserted twice with a short gap of time

into our database and both the process of Power-API and the

process of the database were measured. The result illustrated

in Figure 1 shows that Power-API does not introduce noise in

its measurements; it did not alter the energy measurements of

the master server during the period of insertion.

III. STUDY DESIGN

In this paper, we set out to empirically evaluate the impact

of three cloud patterns (i.e., Local Database Proxy, Local

Sharding-Based Router and Priority Queue) on the energy

consumption of cloud based applications. We select these

cloud patterns because they are used in previous studies [7],

[14] (allowing us to compare our results with these previous

works), and because they are described as good design prac-

tices by both academic and practitioners. In this section, we

introduce our research questions, describe the objects of our

study, as well as our experimental design and analysis method.

(RQ1) Does the implementation of Local Database Proxy,

Local Sharding-Based Router or Priority Message

Queue patterns affect the energy consumption of

cloud applications?

(RQ2) Do interactions among Local Database Proxy, Local

Sharding-Based Router and Priority Message Queue

patterns affect the energy consumption of cloud

applications?

To answer these research questions, a multi-threaded version

of the application used in [7] was implemented and a series of

experimentations were performed by using multiple versions

of the aforementioned application. The Local Database Proxy

and Local Sharding-Based router patterns are implemented

using different algorithms which are explained in section III-C.

In total, eight versions of the application were analyzed and

summarized in Table I. To collect the energy measurements

required to answer our research questions a series of sce-

narios were executed, designed specifically to simulate the

characteristics of a real-world cloud-based application. The

remainder of this section elaborates more on the details of our

experimentations.

A. Objects

A multi-threaded distributed application, which communi-

cates through REST calls was implemented and deployed

on GlassFish 4 application server. We chose MySQL as the

database management system because it is one of the most

popular databases for Cloud applications [19]. Sakila sample

database [20] provided by MySQL is used as it contains a

large number of records, making it interesting for experimen-

tations. Sakila is consistent with existing databases. The test

application was fully developed with the Java Development

Kit 1.7 and it is composed of about 3,800 lines of code and

the size is 6 MB.

The master node has the following characteristics: 2 virtual

processors (CPU: Intel Xeon X5650) with 8GB RAM and

40GB disk space. This node is a virtual machine of a server

located on a separate network. We have 8 slave database

nodes: 4 on one server, each one has a virtual processor (CPU:

Intel QuadCore i5) with 1 GB RAM and 24 GB disk space.

The other four database nodes are on a second server with

the following characteristics: each Virtual Machine has one

virtual processor (CPU: Intel Core 2 Duo), 1 GB RAM and

24 GB disk space. All the hardware is connected on a private

network behind a switch. All the virtual machines are running

on VMware ESXi and all the servers are running Ubuntu 14.04

LTS 64-bit as operating system.

B. Design

In order to evaluate the benefits and the trade-offs between

the Local Database Proxy, the Local Sharding-Based Router

and the Priority Message Queue design patterns, we imple-

mented these patterns in the application described in Sec-

tion III-A and examined them through the scenarios described

in Section III-C. In total, 8 versions of the application were

obtained and presented in Table I. The NoProxy/NoSharding

version E0 does not use any pattern. Versions E1 to E3 imple-

ment Local Database Proxy with Random Allocation, Round-

Robin and a Custom load balancing algorithm. Versions E4

to E6 correspond to Local Sharding-Based Router with three

sharding algorithms: Modulo, Lookup and Consistent Hashing.

Version E7 implements the Priority Message Queue pattern.

Since there is only one implementation of Priority Message

Queue pattern in this study, we investigate its impact on energy

consumption only in combination with the other patterns.

TABLE I: Experimental Design

Pattern Algorithm Code Version

NoProxy/NoSharding - E0

Local Database Proxy
Random Allocation E1
Round-Robin E2
Custom Load Balancing E3

Local Sharding-Based Router
Modulo Algorithm E4
Lookup Algorithm E5
Consistent Hashing E6

Priority Message Queue - E7

C. Procedure

A scenario was designed in which the client is a thread

generated on the client side of our cloud-based application.

This client establishes a connection to the server then performs

a series of actions in a certain amount of time (see Figure 2).

Each client sends 100 select requests at the peak of the

scenario workload, and we measure the response time of the

application at this point by taking the average of the response

time to all clients. This will represent the performance of the

application.

Fig. 2: Test Scenario

We repeat this scenario using different number of clients.

The requests performed by the clients are: select or write

to display or place the order respectively. The application

generates concurrent threads to simulate clients propagating

these requests. The number of clients used in our experiments

are: 100, 250, 500, 1000 and 1500. Power-API is located

on the database node and measured the amount of energy

consumed by MySQL process. Because of the variability

observed during multiple executions of an application (caused

for example by optimization mechanisms like caching), we

repeated each experiment five times and took the average. To

ensure lower variance between maximum and average values

and hence increase the precision of our energy measurements,

we eliminated the values of the first and last executions. In

total, our application was able to simulate a maximum of

150,000 concurrent requests, enabling us to establish a cloud-

based application for our experiment capable of responding to

thousands of coincidental requests from clients. This level of

load is reflective of real-world cloud applications.

In our study, each experiment is independent with regard to

others, and simulations were terminated at a fixed time. Even

large requests and heavy loads never lasted more than this

amount of time. In the following, we explain in details the

specific algorithms that were implemented in each pattern.

Local Database Proxy: Three implementations of this

pattern were considered in our research; Random allocation

strategy, Round-Robin allocation strategy [21], and Custom

Load balancing strategy. The proxy is placed between the

server and the clients. The basic approach, NoProxy REST

web service, exposes a set of methods which are hitting the

database regarding different algorithms. These methods are

used to test the local database proxy pattern. It is the baseline

to which we compare the results of our proxy implementations.

The queries are built using parameters such as the ID of a

select passed over the REST call from each client (thread)

concurrently during each scenario.

The random approach is implemented by choosing ran-

domly an instance of the pool. The round-robin chooses the

next instance that has not yet been used in the “round”, i.e.,

the first, then the second, then the third,. . . , finally the first

and so on. The custom algorithm is more reactive, and it

uses two metrics to evaluate the best slave node to pick:

the ping response time between the server and slave, and the

number of active connections on the slaves. A thread is started

every 500 ms with the purpose of monitoring such metrics.

After choosing the corresponding slave, the query is executed

and the result is sent back to the function that was called.

To simplify the tests, only IDs (number identifier) were sent

back, so there was no need to serialize any data. The query

is executed consequently whenever the result is null on the

master node in order to make sure that the replication did not

fail. Eventually, if the result is null, the response sent to the

client has the http no content status. Otherwise, the result is

sent back to the client using the http ok response status.

Local Sharding-Based Router: To test this pattern, we

used multiple shards hosted separately. Each shard had the

same database schema and structure as suggested by sharding

algorithms [22]. Two tables of a modified version of the Sakila

database [20] were used. All the relationships in both the

“rental” and “film” tables were removed since the sharding

is adapted only for independent data.

Three commonly known sharding algorithms were studied

in our research: Modulo algorithm, Look-up algorithm and the

Consistent Hashing algorithm. The modulo algorithm divides

the request primary key by the number of running shards,

the remainder is the number of the server which will handle

the request. The second sharding algorithm used is the Look-

up strategy. This algorithm implements an array with a larger

amount of elements than the number of server nodes available.

References to the server node are randomly placed in this

array such that every node receives the same share of slots.

To determine which node should be used, the key is divided

by the number of slots and the remainder is used as index in

the array. The third sharding algorithm used is the Consistent

Hashing. For each request, a value is computed for each node.

This value is composed of the hash of the key and the node.

Then, the server with the longest hash value processes the

request. The hash algorithms recommended for this sharding

algorithm are MD5 and SHA-1.

Priority Message Queue: Requests are annotated with dif-

ferent priority numbers and sent in the priority message queue

of our test application. All requests are ordered according to

their priority and processed by the database services in this

order.

D. Independent Variables

Local Database Proxy, Local Sharding-Based Router, and

Priority Message Queue patterns, as well as the algorithms

presented in Table I are the independent variables of our study.

E. Dependent Variables

The dependant variables measure the quality of service

in terms of response time to select queries dispatched by

the clients and the energy consumption measured by Power-

API during each scenario. The result is a two-dimensional

comparison between response time and the amount of energy

consumed. The response time is measured in nanoseconds and

then converted to milliseconds. We choose this metric because

it reflects the capacity of the application to scale with the

number of clients at peak with maximum number of requests.

The other metric is the power consumption provided by

Power-API in watts, which is converted to kilojoules(kJ) using

the equation E
kJ

= (Pwatt x ts)/ 1000.

F. Hypotheses

To answer our research questions, we formulate the follow-

ing null hypotheses, where E0, Ex (x ∈ {1 . . . 6}), and E7 are

the different versions of the application described in Table I:

• H1

x : There is no difference between the average amount

of energy consumed by design Ex and design E0.

• H1

x7 : The average amount of energy consumed by the

combination of designs Ex and E7 is not different from

the average amount of energy consumed by each design

taken separately.

To better understand the trade-offs between the energy

consumption and the performance of a cloud based application

measured in terms of response time, we also formulate the

following null hypotheses:

• H2

x : There is no difference between the average response

time by design Ex and design E0.

• H2

x7 : The average response time of the combination

of designs Ex and E7 is not different from the average

response time of each design taken separately.

G. Analysis Method

Since the observations of each scenario were independent of

those of the other scenarios, we perform the Mann-Whitney U

test [23] to test H1

x , H2

x , H1

x7, H2

x7. Moreover, we computed

the Cliff’s δ effect size [24] to quantify the importance of

the difference between the metric values. Cliff’s δ effect size

is reported to be more robust and reliable than the Cohen’s

0
20

00
0

40
00

0
60

00
0

80
00

0

No of Clients

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

100 250 500 1000 1500

NoProxy

Round−Robin

Random

Custom

(a) Local Database Proxy (Average Response Time)

0
50

00
0

10
00

00
20

00
00

30
00

00

No of Clients

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

100 250 500 1000 1500

NoSharding

LookUp

Modulo

Consistent

(b) Local Sharding-Based Router (Average Response Time)

0
50

10
0

15
0

No of Clients

En
er

gy
 C

on
su

m
pt

io
n

(k
J)

100 250 500 1000 1500

NoProxy

Round−Robin

Random

Custom

(c) Local Database Proxy (Energy Consumption)

0
50

10
0

15
0

20
0

No of Clients

En
er

gy
 C

on
su

m
pt

io
n

(k
J)

100 250 500 1000 1500

NoSharding

LookUp

Modulo

Consistent

(d) Local Sharding-Based Router (Energy Consumption)

Fig. 3: Results obtained for individual patterns

TABLE II: p-value of Mann–Whitney U test and Cliff’s δ
effect size for application scenarios

Average Response Time Average Energy Consumption
p-value Effect Size p-value Effect Size

E0, E1 0.87 0.04 <0.05 0.44

E0, E2 0.77 0.06 <0.05 0.49

E0, E3 0.87 0.04 <0.05 0.44

E0, E4 <0.05 -0.68 0.36 -0.2

E0, E5 <0.05 -0.6 0.74 0.07

E0, E6 <0.05 -0.6 0.05 0.42

E1, E2 0.59 0.12 0.71 0.08

E1, E3 0.59 -0.12 0.48 -0.15

E1, E4 <0.05 -0.76 <0.05 -0.52

E1, E5 <0.05 -0.6 <0.05 -0.44

E1, E6 <0.05 -0.6 0.87 0.04

E2, E3 0.46 -0.16 0.56 -0.12

E2, E4 <0.05 -0.76 <0.05 -0.52

E2, E5 <0.05 -0.6 <0.05 -0.44

E2, E6 <0.05 -0.6 0.59 -0.12

E3, E4 <0.05 -0.76 <0.05 -0.51

E3, E5 <0.05 -0.6 0.08 -0.36

E3, E6 <0.05 -0.6 0.87 0.04

E4, E5 0.18 0.28 0.36 0.2

E4, E6 0.09 0.36 <0.05 0.52

E5, E6 0.59 0.12 <0.05 0.46

E1, E1 + E7 0.38 0.19 0.53 -0.13

E2, E2 + E7 0.43 0.17 0.20 -0.28

E3, E3 + E7 0.51 0.14 0.53 -0.13

E4, E4 + E7 <0.05 0.68 0.2 -0.28

E5, E5 + E7 <0.05 0.52 0.2 -0.28

E6, E6 + E7 <0.05 0.49 <0.05 -0.6

E4, E3 + E4 <0.05 0.76 0.36 -0.2

E6, E2 + E6 <0.05 0.6 0.36 -0.2

d effect size [25]. We perform all our tests using a 95%

confidence level (i.e., p-value < 0.05). Mann-Whitney U test

is a non-parametric statistical test that examines whether two

independent distributions are the same or if one tends to

have higher values. Non-parametric statistical tests make no

assumptions about the distributions of the metrics. Cliff’s

δ is a non-parametric effect size measure which represents

the degree of overlap between two sample distributions [24].

Cliff’s δ effect size ranges from -1 (if all selected values

in the first group are larger than the second group) to +1

(if all selected values in the first group are smaller than the

second group), and it is zero when two sample distributions are

identical [26]. A Cliff’s δ effect size is considered negligible

if it is < 0.147, small if it is < 0.33, medium if it is < 0.474,

and large if it is >= 0.474.

IV. RESULTS

This section presents and discusses the results of our re-

search questions.

RQ1: Does the implementation of Local Database proxy, Local

Sharding-Based Router or Priority Message Queue patterns

affect the energy consumption of cloud applications?

Table II summarizes the results of Mann–Whitney U test

and Cliff’s δ effect sizes for the energy consumption and the

response time. We marked significant results in bold.
Average amount of consumed energy: Results presented

in Table II show that, there is a statistically significant dif-

0
20

00
0

40
00

0
60

00
0

80
00

0

No of Clients

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

100 250 500 1000 1500

Round−Robin

Random

Custom

Round−Robin+MQ

Random+MQ

Custom+MQ

(a) Database Proxy and Priority Message Queue (Average

Response Time)

0
50

00
0

10
00

00
20

00
00

30
00

00

No of Clients

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

100 250 500 1000 1500

LookUp

Modulo

Consistent

LookUp+MQ

Modulo+MQ

Consistent+MQ

(b) Local Sharding-Based Router and Priority Message

Queue (Average Response Time)

0
50

00
0

10
00

00
20

00
00

30
00

00

No of Clients

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

100 250 500 1000 1500

Modulo

Consistent

Modulo+Custom

Consistent+Round−Robin

(c) Local Sharding-Based Router and Local Database Proxy

(Average Response Time)

0
20

40
60

80
10

0
12

0

No of Clients

En
er

gy
 C

on
su

m
pt

io
n

(k
J)

100 250 500 1000 1500

Round−Robin

Random

Custom

Round−Robin+MQ

Random+MQ

Custom+MQ

(d) Local Database Proxy and Priority Message Queue

(Energy Consumption)

0
50

10
0

15
0

20
0

25
0

30
0

No of Clients

En
er

gy
 C

on
su

m
pt

io
n

(k
J)

100 250 500 1000 1500

LookUp

Modulo

Consistent

LookUp+MQ

Modulo+MQ

Consistent+MQ

(e) Local Sharding-Based Router and Priority Message

Queue (Energy Consumption)

0
50

10
0

15
0

20
0

No of Clients

En
er

gy
 C

on
su

m
pt

io
n

(k
J)

100 250 500 1000 1500

Modulo

Consistent

Modulo+Custom

Consistent+Round−Robin

(f) Local Sharding-Based Router and Local Database Proxy

(Energy Consumption)

Fig. 4: Results obtained for the combination of patterns

ference between the average amount of energy consumed by

application implementing the Local Database Proxy pattern

and application not implementing this pattern. The effect

size is almost large in all cases. Therefore, we reject H1

x

for all Ex (x ∈ {1 . . . 3}). Regarding the Local Sharding-

Based Router pattern, except for the case where the pattern

is implemented using the consistent hashing algorithm, the

difference between the amount of energy consumed by an

application implementing the pattern and another application

that did not implement the pattern is not significantly different.

In other words, only consistent hashing tends to consume (to

some extent) less energy than no sharding strategy. However,

the effect size is low. Therefore, we cannot reject H1

x for all

Ex (x ∈ {4 . . . 6}).

These results show that any implementation of the Local

Database Proxy pattern can significantly improve the energy

efficiency of an application, while the Local Sharding-Based

Router pattern has little effect on energy consumption. Fig-

ure 3 summarizes the results obtained for all the implementa-

tions of the two patterns.

Average response time: Results from Table II show that

there is a statistically significant difference between the re-

sponse time of applications implementing the Local Sharding-

Based Router pattern and application not implementing this

pattern. Hence, we reject H2

x for all Ex (x ∈ {4 . . . 6}). In

fact, as shown on Figure 3b, all the implementations of the
Local Sharding-Based pattern have a negative impact on the

response time of the applications (i.e., the average response

time is increased). Among the different implementations of the

Local Sharding-Based Router pattern, the Modulo algorithm

has most negative impact on the response time.

Regarding the Local Database Proxy pattern, there is no

statistically significant difference between the response time

of application using any version of the pattern and application

not using the pattern. However, Figure 3a, as well as effect size

values show that Local Database Proxy pattern has a (small)

positive impact on the response time of the applications. Yet,

we cannot reject H2

x for (x ∈ {1 . . . 3}).

In summary, we conclude that although the Local

Database Proxy pattern only has a small positive impact

on the ability of applications to handle large number of

requests of read queries, it can significantly improve the

energy energy efficiency of a cloud based application.

Regarding the Local Sharding-Based Router pattern, it is

only when the pattern is implemented using the consistent

hashing strategy that the energy efficiency is slightly im-

proved. Moreover, all the implementations of this pattern

increase the average response time of applications for

heavy read requests. This result is consistent with previous

works [9] that found the pattern to be more adequate for

applications handling huge write requests loads.

RQ2: Do interactions among Local Database Proxy, Local

Sharding-Based Router and Priority Message Queue patterns

affect the energy consumption of cloud applications?

Regarding the response time, Table II and Figure 4a show

that there is no statistically significant difference between

the Local Database Proxy pattern and the combination of

this pattern with Priority Message Queue. It did not have

a pronounced impact on the average response time of the

application. Consequently, we cannot reject H2

x7 for all Ex
(x ∈ {1 . . . 3}). Besides, our results have shown that Lo-

cal Sharding-Based Router pattern when combined with the

Priority Message Queue pattern can remarkably reduce an

application’s response time. Statistical tests show that there

is a significant difference, regardless of the type of algorithm,

between the individual sharding pattern and combined shard-

ing with the message queue pattern (see Figure 4b). The effect

size is large in all three cases in Table II. Consequently, we

reject H2

x7 for all Ex (x ∈ {4 . . . 6}).

On the other hand, represented values in Table II depict that

Local Database Proxy combined with Priority Message Queue

does not significantly increase the amount of energy consumed

in the application (see Figure 4d). Therefore, we cannot reject

H1

x7 for all Ex (x ∈ {1 . . . 3}).

Further results, surprisingly, indicate that when combining

Local Sharding-Based Router with the Priority Message Queue

pattern, choosing only the consistent hashing algorithm can

make a significant difference on the average amount of energy

consumed by the application. If we combine the Priority

Message Queue pattern with the Local Sharding-Based Router

pattern implemented using the consistent hashing algorithm,

it appears that there is more energy being consumed in our

application (see Figure 4e). Hence, we reject H1

x7 for E
6
,

likewise we cannot reject H1

x7 for E
4

and E
5
.

Combining Priority Message Queue pattern with Local

Database Proxy has no significant impact neither on appli-

cation response time, nor on the average amount of energy

consumed by the application. On the contrary, the combination

of Priority Message Queue pattern and Sharding-Based Router

pattern can improve the response time of an application

experiencing heavy loads of read requests. Besides, only the

implementation of consistent hashing in Local Sharding-Based

Router pattern can increase the energy consumption of such

application dramatically.

The study is extended to conduct a series of experimentation

in regard to the combination of Local Sharding-Based Router

pattern with Local Database Proxy pattern. As it can be

seen in Figure 4c, such combination considerably improves

the applications QoS by reducing the average response time.

Table II confirms our experiments results in a way that there is

a significant difference between using Local Sharding-Based

Router pattern individually and combining this pattern with

Local Database Proxy. Conversely, statistical test in Table II

shows that Local Sharding-Based Router pattern combined

with Local Database Proxy pattern has no significant impact

on the energy consumption of the application (Figure 4f).

V. THREATS TO VALIDITY

This section briefly discusses the threats to validity of our

study taking into account the guidelines provided by Wohlin

et al. [27].

Construct validity threats concern the relation between the-

ory and observations such as measurement errors in this study.

We repeated each experimentation five times and computed

average values, in order to mitigate the potential biases that

could be induced by perturbations on the network or the

hardware, and our tracing. Power-API tool was carefully

compiled and calibrated before each run of the application.

This redundant accuracy we believe increased the quality of

our measurements. The first and last values were eliminated

to obtain lower variance between the average and maximum.

Internal validity threats concern our selection of subject

systems and analysis methods. Although we have used a well

known benchmark (the Sakila sample database [20]) and well-

know patterns and algorithms, some of our findings may still

be specific to our studied application which was designed

specifically for the experiments. Future studies should consider

using different cloud based applications and different tools to

measure the energy consumption.

External validity threats concern the possibility to generalise

our findings. Further validation with different cloud patterns

can extend our understanding of the impact of cloud patterns

on the energy consumption of applications, providing devel-

opers with guideline about the usage of cloud patterns when

developing cloud based applications.

Reliability validity threats concern the possibility of repli-

cating this study. We attempt to provide all the necessary

details to replicate our study. All the data used in this study

are available online [28].

Finally, the conclusion validity threats refer to the relation

between the treatment and the outcome. We paid attention not

to violate the assumptions of the performed statistical tests. We

mainly used non-parametric tests that do not require making

assumptions about the distribution of the metrics.

VI. CONCLUSION

Energy consumption is the biggest challenge that cloud

computing systems face today. Pinto et al. [29] who analyzed

more than 300 questions and 550 answers on the popular

StackOverflow question-and-answer site for developers re-

ported that the number of questions on energy consumption

increased by 183% from 2012 to 2013. The majority of

those questions were related to software design, showing

that developers need guidance for designing green software

systems. Similarly, Pang et al. [30] found that developers lack

knowledge on how to develop energy-efficient software. In

this paper, we examine the impact on energy consumption of

three cloud patterns, with the aim to provide some guidance

to developers, about the usage of cloud patterns. More specif-

ically, we conducted a series of experiments with different

versions of a cloud based RESTful application implementing

the Local Database Proxy, the Local Sharding-Based Router

and the Priority Queue patterns. We assessed the impact of the

patterns both on the response time and the energy consumption

of the application. Results show that any implementation of

the Local Database Proxy pattern can significantly improve

the energy efficiency of cloud based application, while the

Local Sharding-Based Router pattern only has a small effect

on the energy consumption. In fact, only the consistent hashing

algorithm seems to have a positive effect on the energy

efficiency of applications using the Local Sharding-Based

Router pattern. Overall, the Local Database proxy appears to

be more adapted for applications experiencing heavy loads of

read requests, while the Local Sharding-Based Router is not

suitable for such applications, but seems more appropriate for

applications handling huge write requests loads.

Our results have shown that combining Priority Message

Queue pattern with the Local Database Proxy has no sig-

nificant impact neither on the application’s response time,

nor on the average amount of energy consumed by the

application. Local Sharding Based Router when combined

with Local Database Proxy tends to improve response time

significantly. Interestingly, the implementation of the custom

proxy algorithm in Local Database Proxy combined with the

modulo algorithm in Local Sharding-Based Router can im-

prove the response time of an application without consuming

significantly more energy.

VII. FUTURE WORK

The study presented in this paper can be extended to

different relational databases and NoSQL databases [31],

where multiple fine grained optimizations are performed to

improve service availability. NoSQL databases are not using

the relational model, and they are increasingly used in big

data applications, which are consuming more and more energy

these days, and hence would significantly benefit from energy-

aware designs.

REFERENCES

[1] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in MSR, 2014, pp. 2–11.

[2] N. Nikzad, O. Chipara, and W. G. Griswold, “Ape: An annotation
language and middleware for energy-efficient mobile application devel-
opment,” in ICSE, 2014, pp. 515–526.

[3] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-
Dowell, and R. Rajamony, Power aware computing. Kluwer Academic
Publishers, 2002, ch. The case for power management in web servers,
pp. 261–289.

[4] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings
affect energy usage?” in Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and

Measurement, ser. ESEM ’14, 2014, pp. 36:1–36:10. [Online].
Available: http://doi.acm.org/10.1145/2652524.2652538

[5] F. Prosperi, M. Bambagini, G. Buttazzo, M. Marinoni, and G. Franchino,
“Energy-aware algorithms for tasks and bandwidth co-allocation under
real-time and redundancy constraints,” in Emerging Technologies and

Factory Automation (ETFA). IEEE, 2012, pp. 1–8.
[6] I. El Korbia and S. Zeadallyb, “Energy-aware sensor node relocation

in mobile sensor networks,” Ad Hoc Networks, vol. 16, pp. 247—-265,
2014.

[7] G. Hecht, B. Jose-Scheidt, C. De Figueiredo, N. Moha, and F. Khomh,
“An empirical study of the impact of cloud patterns on quality of service
(qos),” in 6th International Conference on Cloud Computing Technology

and Science. IEEE, 2014, pp. 278–283.
[8] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A prelim-

inary study of the impact of software engineering on greenit,” in First

International Workshop on Green and Sustainable Software. IEEE,
2012, pp. 21–27.

[9] S. Strauch, V. Andrikopoulos, U. Breitenbuecher, O. Kopp, and F. Leyr-
nann, “Non-functional data layer patterns for cloud applications,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th

International Conference on. IEEE, 2012, pp. 601–605.
[10] “Data Replication and Synchronization Guidance,” http://msdn.

microsoft.com/en-us/library/dn589787.aspx/, 2014, [Online; accessed
August-2015].

[11] “Sharding Pattern,” http://msdn.microsoft.com/en-us/library/dn589797.
aspx, 2014, [Online; accessed August-2015].

[12] A. Homer, J. Sharp, L. Brader, M. N. Narumoto, and T. Swanson, Cloud

Design Patterns Prescriptive Architecture Guidance for Cloud Appli-

cations (Microsoft patterns practices). Microsoft patterns practices,
February 2014.

[13] C. A. Ardagna, E. Damiani, F. Frati, D. Rebeccani, and M. Ughetti,
“Scalability patterns for platform-as-a-service,” in Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012,
pp. 718–725.

[14] B. G. Tudorica and C. Bucur, “A comparison between several nosql
databases with comments and notes,” in Roedunet International Confer-

ence (RoEduNet), 2011 10th. IEEE, 2011, pp. 1–5.
[15] R. Burtica, E. M. Mocanu, M. I. Andreica, and N. Tapus, “Practical

application and evaluation of no-sql databases in cloud computing,” in
Systems Conference (SysCon), 2012 IEEE International. IEEE, 2012,
pp. 1–6.

[16] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, 2011.

[17] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann, “Performance eval-
uation of message-oriented middleware using the specjms2007 bench-
mark,” Performance Evaluation, vol. 66, no. 8, pp. 410–434, 2009.

[18] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. De-
meester, “Overall ict footprint and green communication technologies,”
ISCCSP, vol. 10, pp. 1–6, 2010.

[19] “MySQL in the Cloud,” http://www.mysql.com/why-mysql/cloud/,
2014, [Online; accessed August-2015].

[20] “Mysql sakila sample database,” http://dev.mysql.com/doc/sakila/en/,
2014, [Online; accessed August-2015].

[21] D. Haney and K. S. Madsen, “Load-balancing for mysql,” Kobenhavns

Universitet, 2003.
[22] “Sharding algorithms,” http://kennethxu.blogspot.fr/2012/11/

sharding-algorithm.html, [Online; accessed August-2015].
[23] D. J. Sheskin, Handbook of parametric and nonparametric statistical

procedures. crc Press, 2003.
[24] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1–33.

[25] J. Cohen, Statistical power analysis for the behavioral sciences (rev.
Lawrence Erlbaum Associates, Inc, 1977.

[26] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer, 2012.

[28] “Data for our experimental results,” https://goo.gl/Cczot4, 2015, [Online;
accessed August-2015].

[29] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in MSR, 2014, pp. 22–31.

[30] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do program-
mers know about software energy consumption?” IEEE Software, 2015,
to appear.

[31] “NoSQL Databases,” http://nosql-database.org, 2015, [Online; accessed
August-2015].

