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Abstract—Cloud service providers can offer users virtual
machines (VMs) on-demand as a service over the Internet. VMs
running on top of a physical machine (PM) share physical
resources (CPU, memory, and/or bandwidth), and there may be
a great resource contention among them, which results in VMs
performance degradation. To prevent this, cloud providers need
to study how to place VMs on PMs efficiently. However, the
existing virtual machine placement (VMP) methods mainly tried
to optimize the cloud resources instead of the VM performance.
In this paper, we propose a VMP method based on the VM
performance models in cloud. Firstly, with a real OpenStack
cloud platform, we study the virtualization resource scheduling
principle, analyze the interaction among VMs with shared hard-
ware, consider the relationship between VMs and the host PM,
and then we introduce the VM performance models to present
the VM performance degradation problem. Secondly, to choose
an appropriate PM for placing VM, we take into consideration
the application-aware resource consumption characteristic, the
VM resource requirement and the VM performance models, so
as to minimize the PM performance degradation and guarantee
the VM performance. Finally, we take the streaming media
services for examples, and conduct some experiments to evaluate
our method. The results show it works better than others and
guarantees the VM performance significantly.

Keywords—cloud; virtual machine placement; performance
degradation; VM performance models.

I. INTRODUCTION

The public cloud service providers can utilize virtualization
technology to offer various different server instances (storage,
processors, bandwidth, and virtual machine) as a service like
electricity, water, and gas to customers over the Internet. Each
of these instances provides a certain amount of dedicated
resources and charges per instance-hour. Using public cloud,
customers can eliminate their purchasing and maintaining cost,
and scale up and down resources dynamically based on their
needs, which can help them to focus on their business.

To increase the resource utilization in cloud, the cloud
service providers use virtualization technology to execute
several VMs concurrently on top of a PM. Each VM employs a
partition of resource capacity of PM. To host a VM, a PM must
have enough available resources, including CPU, memory,
storage, and bandwidth. Though VMs in a PM run individually
with their proprietary resources, they share the same physical
resources, which may result in VMs performance degradation.
If two VMs with intense CPU requirements are placed on the
same PM, the resource utilization in PM may be imbalance, e.
g., there is little CPU left but a lot of memory and bandwidth

remaining. This CPU scarcity may block the placement of a
new VM on this PM and degrade the VM performance.

To prevent this, cloud service providers should study how
to place multiple VMs with different requirements on PMs ef-
ficiently, known as virtual machine placement (VMP) method.
VMP is the process of mapping VMs on to appropriate PMs by
resolving constraints of customers and cloud service provider.
Generally, VMP can be divided into two different types, that is,
static (initial) placement and runtime (dynamic) placement. In
static placement, VMs are created for applications and placed
at appropriate PMs, while in dynamic placement, VMs can be
migrated online among PMs when VMs are already is running.
In this paper, we focus on the initial placement of VMs. There
are also some existing works about initial VMP methods, but
they mainly focus on optimizing the cloud resources, such
as cost [1]–[3], energy [4]–[10], traffic [11]–[13], network
performance [14], [15] or multi-objectives [16]–[18]. However,
they did not take the VM performance into account, while the
VM performance is a very important factor to impact user’s
experience.

In this paper, we propose a VMP method based on the
VM performance models. It aims to offer the VMs with best
performance to users. Firstly, we studied how to formulate the
VM performance models. We establish a real cloud platform
with OpenStack. With the methods of theoretical analysis and
experimental evaluation, we study the nature of virtualization
resources scheduling principle on OpenStack cloud platform,
investigate the interaction among VMs with shared hardware,
and consider the relationship between VM performance and the
host PM resource utilization, we then introduce our models to
formulate the VM performance under various resource con-
sumptions of PM. It can present the performance degradation
problem caused by resource sharing and contention among
VMs in the same host PM. Specifically, the performance is
actually the relative performance as the ratio between the
VM performance with and without resource contention. Based
on the VM performance models we can calculate how the
performance will be changed when a new VM placed on a PM,
which is a fundamental base for the following VMP method.
Of course, there are many resources which affect VMs greatly,
but we mainly focus on three resources, that is, CPU, memory,
and networks in this paper.

Secondly, we apperceive the service features of VMs with
different applications, that is, we analyze and obtain the
resource consumption characteristic of different applications.
For example, the VMs running video live streaming media
applications should require lots of bandwidth, while VMs
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running video transcoding need powerful CPU resources. We
can know that different applications have different demands.
To choose an appropriate PM as the placed machine, we
should take into consideration the application-aware resource
consumption characteristic, the VM resource requirement and
the VM performance models.

Finally, we conduct experiments in our OpenStack cloud
platform to evaluate our method and other VMP methods. In
our OpenStack cloud platform, we provide some streaming me-
dia services, including live streaming, video-on-demand, and
video transcoding, so we take these applications as examples to
evaluate the VM performance. The results show that our VMP
method can work better than other methods and can provide
VMs with the better performance.

Our main contribution lays particular emphasis on the VMP
method. To summarize, the contributions of this paper are as
follows:

1) We propose VM performance models to present the
performance degradation caused by resource sharing and con-
tention among VMs on the same host PM. With the models,
we can predict the future VM performance, which is a funda-
mental base for the following placement.

2) Based on VM performance models, we propose a VMP
method, which takes the application-aware resource consump-
tion characteristic, the VM resource requirement and the VM
performance models into account to place VMs on appropriate
PMs.

3) We establish a real cloud platform with OpenStack, and
conduct experiments to evaluate our VMP method. The results
show it works better than other methods and can significantly
ensure the VM performance.

The remainder of this paper is organized as follows. Section
II summarizes related works. Section III describes our VM
performance models. Section IV gives the VMP method based
on VM performance models in detail. We then evaluate our
VMP method in Section V. Section VI concludes the paper
and gives the future works.

II. RELATED WORKS

There have been some researches about VMP, but they
mainly focus on how to optimize the cloud resources in
different aspects, such as cost, energy, traffic, and network
performance.

Saving cost [1]–[3] in cloud is one of the hottest researches
in VM placement. Simarro et al. [1] proposed a cost-efficient
scheduling model for optimizing VMs placement across avail-
able cloud offers. They used some variables such as average
prices or cloud prices trends for an optimal deployment. Chen
et al. [2] proposed an optimal VM placement model to capture
the intrinsic trade-off between the electricity cost and wide-
area-network cost. They then introduced a cost-aware two-
phase metaheuristic algorithm, Cut-and-Search, that approx-
imated the best trade-off between the two costs. Le et al. [3]
studied the impact of load placement policies on cooling and
maximum data center temperatures in cloud service providers,
and they proposed dynamic load distribution policies that
considered all electricity-related costs as well as transient

cooling effects through VMP in high performance computing
clouds.

Besides cost, many approaches aimed to reduce energy
consumptions in cloud [4]–[10]. Dong et al. [4] proposed a
VM placement scheme meeting multiple resource constraints,
such as the physical server size (CPU, memory, storage,
bandwidth, etc.) and network link capacity to improve resource
utilization and reduce both the number of active physical
servers and network elements so as to finally reduce energy
consumption. Wang et al. [5] proposed a heuristic greedy
algorithm, called as CMBFD, to implement VM deployment
and live migration to maximize total resource utilization and
minimize energy consumption, which is based on energy-aware
and quadratic exponential smoothing method to predict the
workloads. Some other works save energy by reducing the
quantity of PMs in cloud [6]–[8]. Huang et al. [6] explored
the balance between server energy consumption and network
energy consumption to present an energy-aware joint virtual
machine placement, which can efficiently reduce the number
of used physical machines. Li et al. [7] proposed a VMP
algorithm, EAGLE, which can balance the utilization of multi-
dimensional resources, reduce the number of running PMs, and
thus lower the energy consumption. Zhang et al. [8] formulated
VMP problem as a multi-objective nonlinear programming,
and proposed an offline and an online algorithms to minimize
the PMs resource used in cloud.

Traffic [11]–[13] and network performance [14], [15] are
also two main problems in consolidation of VMs on phys-
ical servers in cloud. Meng et al. [11] proposed a traffic-
aware VMP algorithm, which reduced traffic among VMs
by optimizing the placement of VMs on host machines, e.g.
VMs with large mutual bandwidth usage were assigned to
the same PM or to PMs in close proximity. Vu and Hwang
[12] presented an algorithm that improves communication
performance by reducing overall traffic cost of VMs. Li et al.
[13] focused on the optimized placement of VMs to minimize
the network traffics cost (N-cost) and PMs cost (PM-cost).
They also presented an effective binary-search-based algorithm
to make a trade-off between N-cost and PM-cost. Dong et
al. [14] proposed a multi-resource constraints VMP scheme
to improve network performance in cloud. They minimized
network maximum link utilization to balance network traffic
distribution and reduce network congestion. Wen et al. [15]
presented VirtualKnotter, including an online VM placement
algorithm and an efficient VM migration scheduling algorithm,
to reduce network congestion.

There are also some works studied how to optimize multi-
objectives in cloud [16]–[18]. Zheng et al. [16], [17] tried
to minimize power consumption, resource waste, server un-
evenness, inter-VM traffic, storage traffic and migration time
at the same time. Liu et al. [18] proposed a multi-objective
VMP model to minimize the number of active PMs, minimize
communication traffic, and balance multi-dimensional resource
in data center simultaneously.

In brief, all these studies focused on VMP based on
optimizing the cloud resources utilization. However, they were
not based on performance optimization, and they did not take
the VM performance into account, while the VM performance
is the really one of the main issues what users will pay close
attention to.



TABLE I. HARDWARE OF FIVE SERVERS

Quantity Hardware

1

CPU: Xeon E5620 2.0G 4*1
Memory: 8G
Hard Disk: 250GB
Network Cards: 100Mbps*4

Controller
Node

4

CPU: Xeon E5620 2.4G 4*2
Memory: 24G
Hard Disk: 2TB
Network Cards: 100Mbps*4

Compute
Node

III. VM PERFORMANCE MODELS

In the Section I, we showed that the VM performance
can be significantly affected with other VMs running on the
same PM because of the resource contention among VMs.
It is important to accurately model the VM performance
to characterize the resource contention in PM. There have
been some studies about performance modeling in virtual-
ized environment [19]–[23]. For example, Watson et al. [19]
examined the probabilistic relationships between virtualized
CPU allocation, CPU contention, and application response
time in virtualized environments. Ramakrishnan et al. [20]
examined the performance of various interconnect technologies
and characterized the virtualization overhead and its impact
on performance. In this paper, we share the same idea on
exploiting examining evaluation, and study the nature of virtu-
alization resource scheduling on cloud platform to model the
VM performance. The performance modeling has two main
procedures as follows.

A. Constructing the performance models

In this paper, we construct the VM performance models
based on a real cloud platform built by OpenStack, which
is an open source software that can be used to deploy and
manage cloud infrastructure in both large-scale and small-
scale environment. OpenStack was initiated by Rackspace and
NASA under the Apache 2.0 License in July 2010, and it is
completely written in Python. Our OpenStack cloud testbed
is deployed on five high performance servers with Icehouse
software version and KVM hypervisor. The information of the
five servers is shown in Table I. One computer is used as
“Controller Node”, and other four computers are treated as
“Compute Node” to provide computing service and VMs. The
controller node consists of mainly six different components:
Nova (compute service), Neutron (network service), Hori-
zon (dashboard service), Glance (image management service),
Keystone (identity service), and Cinder (block storage). The
controller node has four network interfaces. Two interfaces are
used for communicating with two public ISPs. The third one
is used for internal communication of different components of
cloud, and the last one is used for internal communication a-
mong the VMs. The compute node has Nova-Compute service,
which manages the lifecycles of VMs. There are two network
interfaces too, which are the same as controller node except
the public ISPs communication.

As we mainly focus on CPU, memory, and networks,
we study the virtualization resource (CPU, memory, network)
scheduling principle in OpenStack cloud platform, and con-
struct our performance models for CPU, memory, and network.
Table II summarizes some important symbols in the general-
ized system model. Given a PM, let Mj denotes its workload

TABLE II. SYMBOLS USED TO DESCRIBE THE MODELS

Symbols Meaning

Vi The virtual machine i, 1 ≤ i ≤ N

vP i The VM performance vector of Vi

Mj The physical machine j, 1 ≤ j ≤ M

Mj
c The total CPU resource of Mj

Mj
m The total memory resource of Mj

Mj
n The total network resource of Mj

pj
c The current VM CPU relative performance in Mj

pj
m The current VM memory relative performance in Mj

pj
n The current VM network relative performance in Mj

mP j The VM performance vector in Mj

pi
c(v) The CPU relative performance of Vi in Mj

pi
m(n) The memory relative performance of Vi in Mj

pi
n(b) The network relative performance of Vi in Mj

capacity vector, Mj = (M j
c ,M

j
m,M j

n, p
j
c, p

j
m, pjn). Here, M j

c ,
M j

m, and M j
n are total physical CPUs, memory, and network

bandwidth of Mj . pjc, pjm, and pjn are current VM relative
performance (RP) in Mj . If VM Vi in running on PM Mj ,
then pi = pj . The VM relative performance can be calculated
by pi = P i

vm/P i
d. Here, P i

vm is the current VM performance of
Vi in Mj , and P i

d is the desired performance if there is only one
VM in Mj . In other words, P i

d is the VM performance without
hardware contention. The performance can be measured as the
runtime (e.g., video transcoding time), throughput (e.g., video
streaming), latency (e.g., retrieval time in database), etc.

When the VM Vi running on Mj , its CPU relative perfor-
mance can be denoted as:

pic ∝

⎧

⎨

⎩

1 if(
∑

k V
k
c ≤ M j

c −M j
c,r)

Mj
c−Mj

c,r

α
∑

i
V i
c

else

where V k
c is the number of vCPU kernel of VM Vk in PM

Mj , M j
c,r is the reserved CPUs for running itself, α ≥ 1 is

the CPU performance degradation parameter.

The memory relative performance can be denoted as:

pim ∝
Mj

m−Mj
m,r

β
∑

k
V k
m

where, M j
m,r is the reserved memory for running itself, β ≥ 1

is the memory performance degradation parameter.

The network relative performance is:

pin ∝
Mj

n

γ
∑

k
V k
n

where,
∑

k V
k
n < M j

n, γ ≥ 1 is the network performance
degradation parameter.

B. Generating the performance parameters

To test and verify our performance models, we choose
and run some typical benchmarks to test different physical
resources (CPU, memory, network) in our real OpenStack
cloud platform, so as to collect test results and then train the
VM performance models.

CPU: Super PI [24] is a computer program that calculates
π to a specified number of digits after the decimal point. It is
a popular benchmark to test the CPU performance. However,
Super PI is single threaded, so its relevance as a performance
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Fig. 1. The test results of CPU performance.

measure of the multi-core machines is diminishing quickly. To
test stability on multi-core CPU, Hyper PI [25] is developed
to support multiple threads of Super PI to be run at the same
time. The test steps are as follows.

Step1: Choose a compute node (e.g., Compute Node 3) in
cloud, and place one VM (e.g., 1 vCPU, 2G memory). Run
Hyper PI benchmark on the VM, and get the runtime as the
desired performance (P i

d);

Step2: Continue to place 2, 3, ..., n VMs, then run Hyper
PI benchmark on the VMs several times, and calculate the
average runtime P i

vm.

Step3: Calculate the VM CPU relative performance by pi =
P i
vm/P i

d.

In this experiment, we get the relative performance of
calculating π to 2000, 4000, 6000 digits after the decimal
point respectively, and then we calculate their average value.
The results are shown in Fig. 1. From the results, with
the increasing of number of vCPUs, the VM CPU relative
performance decreases slowly at first. And then, the VM CPU
relative performance decreased rapidly after a certain value of
the threshold. In the figure, the dividing point is at 8, which is
the number of CPU cores of PM. When the number of vCPUs
of all VMs is over 8, there is a great resource contention among
these VMs, which results in a great performance degradation.
For example, when the number of vCPUs of all VMs is 20,
the VM CPU relative performance is just around 0.5.

We also fit our CPU performance model using the results to
get the parameters, and then we get the theoretical value (line
“Fitted value” shown in Fig. 1 too) using the fitted model.
We can see the fitting result is proper, and the fitting error is
about 0.27%, which shows that the CPU model can describe
the CPU performance degradation trend very well. The fitted
model is:

pic(v) =

{

−0.0155v + 1.03 if(v =
∑

k V
k
c ≤ M j

c −M j
cr)

5.96/v + 0.1435 else

Memory: We use memtester [26], [27] to test memory
performance. When there are multiple VMs running on the
PM, they need to read and write the same memory at the same
time frequently. As the memory is shared and competed, this
leads to performance degradation in reading and writing speed.
We run memtester benchmark and get the runtime to test the
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Fig. 2. The test results of memory performance.

memory performance. The test steps are similar to those of
testing CPU, and they are as follows.

Step1: Choose a compute node (e.g., Compute Node 3) in
cloud, and place one VM (e.g., 1 vCPU, 2G memory). Run
memtester benchmark on the VM, and get the runtime as the
desired performance (P i

d);

Step2: Continue to place 2, 3, ..., n VMs, then run
memtester benchmark on the VMs several times, and calculate
the average runtime P i

vm.

Step3: Calculate the VM memory relative performance by
pi = P i

vm/P i
d.

We test memtester to read and write different memory sizes
(e.g., 50M, 500M, 1G) under different memory utilizations of
PM, and the results are shown in Fig. 2. We can see that the
memory performance decreases with the increasing of memory
used in PM, which shows that the memory consumption (the
sum of all VMs memory) greatly affects the VM memory per-
formance. Meantime, we fit the memory performance model
using the results with a fitting error 0.277%. The fitting model
is:

pim(n) =
Mj

m−Mj
m,r

9.718+n
(n =

∑

k V
k
m)

Network: We use Netperf [28], [29] to test the maximum
bandwidth of virtual network interface of a single VM. Netperf
is a software application that provides network bandwidth
testing between two hosts on a network. It contains two com-
ponents, netServer for receiving data and netperf for sending
data. The test steps are as follows.

Step1: Choose a compute node (e.g., Compute Node 3) in
cloud, and place one VM (e.g., 1 vCPU, 2G memory). Deploy
netServer. Run netperf deployed on a computer to send data
to netServer, and get the maximum throughput as the desired
performance (P i

d);

Step2: Continue to place 2, 4, ..., 2*n VMs, and deploy
netServer on them. Then send data to these VMs at the same
time, and get the maximum throughput P i

vm.

Step3: Calculate the VM network relative performance by
pi = P i

vm/P i
d.

The results are shown in Fig. 3. We can see that the network
performance decreases with the increasing of VMs. We fit the
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Fig. 3. The test results of network performance.

network performance model using the results with a fitting
error 0.029%, and then we get the following formula.

pin(b) = 0.9816/b− 0.0094 (b =
∑

k V
k
n )

C. The sum

The above describes our performance models for CPU,
memory, and network of VMs. They can describe the per-
formance degradation caused by resource contention among
VMs placed on the same PM. The proposed modeling method
can be generalizable to a generic application, because the only
knowledges needed for the models are some performance pa-
rameters for cloud platform, all of which can be retrieved from
previously “learning”. Note that, the performance parameters
are some dependence on the hardware. As long as the hardware
of cloud platforms is kept the same, those parameters can be
applied directly. For other cloud platforms, those parameters
should be trained again.

IV. VM PLACEMENT METHOD

In this section, we present our VMP method based on VM
performance models. We consider the resource consumption
characteristics of applications, the resource requirement of
VMs, and the server capacity of PMs in the process. The
application-aware resource consumption characteristic is intro-
duced firstly. The VMP algorithm will be presented in detail
in the following subsection.

A. Application-aware resource consumption characteristic

The applications running on VMs are different, so the VM
resource requirements are different. For example, for video
live streaming applications, they need to support large-scale
users watching videos simultaneously, so they are bandwidth-
intensive and require lots of bandwidth to transmit data to user-
s. Another example is video process, such as video transcoding.
It is a computation intensive and time-consuming task, which
requires lots of computation (CPU) resources. So we need
to study the resource consumption characteristics of different
applications.

Define Wi = (wi
c, w

i
m, wi

n) as the resource consumption
characteristic vector of application running in VM Vi. Here,
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wi
c, wi

m, and wi
n are the CPU, memory, and network uti-

lizations, and they can be obtained by monitoring the VM
performance. For example, Fig. 4 shows the resource (CPU,
memory, bandwidth) utilizations of live streaming service,
which proves that it is a bandwidth-intensive application.
With the increase of users, the bandwidth has been drained,
while the memory and CPU usages are around 20% and
30%, respectively. So we can use Wi = (0.3, 0.2, 1) for live
streaming applications. Of course, we can also get the resource
consumption characteristics of other applications using the
similar way.

B. Problem formulation

Generally, we assume that there are N VMs and M PMs
(N ≥ M ). No VM requests more resource than a single
PM can offer. For each VM Vi(i = 1, 2, ..., N), its resource
requirement vector is denoted as Yi = (vic, v

i
m, vin). Here, vic,

vim, and vin are vCPU, memory, and bandwidth requirements.
Meantime, the resource consumption vector of application
running on Vi is Wi = (wi

c, w
i
m, wi

n). According to the
resource requirement vector Yi and the resource consumption
vector Wi of Vi, we can calculate its real resources requirement
vector Ri = Yi · Wi = (vic · wi

c, v
i
m · wi

m, vin · wi
n). For

each PM Mj(j = 1, 2, ...,M), its workload capacity vector
Mj = (M j

c ,M
j
m,M j

n, p
j
c, p

j
m, pjn), mP j

curr = (pjc, p
j
m, pjn) is

its current VM relative performance vector before placement,
and its current resource consumed by all VMs Cj

before =

(v, n, b) can calculated by v =
∑

k V
k
c , n =

∑

k V
k
m, and

b =
∑

k V
k
n . Let matrix XNM = {xij |xij = 0, 1} indicates

the VMP solution, where xij = 1 means VM Vi is placed on
Mj , and xij = 0 implies Vi is not placed on Mj .

After VMs placement, all VMs resource consumed of Mj

will be Cj
after = (v′, n′, b′), here v′ = v +

∑

xij=1 v
i
c · w

i
c,

n′ = n+
∑

xij=1 v
i
m ·wi

m, and b′ = b+
∑

xij=1 v
i
n ·w

i
n. Then

we calculate the new relative performance vector mP j
after

with Cj
after using our VM performance models in last sec-

tion. Let vP i
after denotes the VM performance of Vi after

placement. If xij = 1, then vP i
after = mP j

after. On the one
hand, to offer the best VMs, we should maximize the total
performance of all VMs, e.g., max(

∑N
i=1 ||vP

i
after||). On the

other hand, to maximize the cloud resource utilization, we
should minimize the performance degradation of all PMs, e.g.,



min(
∑M

j=1 ||mP j
curr −mP j

after||).

Therefore, we can define our optimization problem as
follows (denoted as Π):

Π : max(
N
∑

i=1

||vP i
after||)

and min(
M
∑

j=1

||mP j
curr −mP j

after||)

s.t. xij = {0, 1}, 0 ≤ vP i,mP j ≤ 1
M
∑

j=1

xij = 1, 0 ≤

N
∑

i=1

xij ≤ N

C. Problem solving

The proposed VM placement attempts to obtain two ob-
jectives. Many methods convert the original problem with
multiple objectives into a single-objective optimization prob-
lem, which is called a scalarized problem. In this paper, we
use a linear scalarization to formulate it as a single-objective

optimization problem. Let R = max(
∑N

i=1 ||vP
i
after||) and

Q = min(
∑M

j=1 ||mP j
curr − mP j

after||), then we convert

problem Π as max(ωR−(1−ω)Q), here ω is the scalarization
parameter. If ω = 1, then the VM performance is the main
objective. ω = 0 means the cloud resource utilization is the
main objective. When 0 < ω < 1, there is a trade-off between
the two objectives.

To obtain the optimal solution, we have to test every pos-
sible solutions. If there are N VMs and M PMs, then getting
the optimal result demands a time-complexity of O(MN ).
We can see that it is impractical in real-life situations. In
this paper, we use a greedy algorithm to get an approxi-
mate optimal solution with O(M · N). The problem can be
divided into N sub-problems. For each VM placement, we
choose a PM Mj , which can get the maximum value, that is,

max(ω||vP i
after|| − (1 − ω)||mP j

curr − mP j
after||), to place

the VM. At last, we can get the global approximate optimal
solution for all VMs. Algorithm 1 presents the algorithm in
the pseudo code form.

V. EXPERIMENTS

A. Experimental setting

We use our OpenStack cloud platform as the testbed, and
we set the parameter ω to 1, 0.5, and 0 respectively. To
evaluate our VMP method based on performance models, the
existing scheduling methods in scheduling module of Nova
(Nova-VMPs), such as ChanceScheduler, SimpleScheduler,
ZoneScheduler, and AbsractScheduler, are considered in our
experiments, respectively. The main task of scheduling module
of Nova is to choose a PM for placing a VM instance.
ChanceScheduler (Random) is a random scheduling algo-
rithm, and SimpleScheduler (Simple) realizes the minimum
load scheduling algorithm. ZoneScheduler (Zone) is used to
select a random PM in an available zone. Different from
the ChanceScheduler, ZoneScheduler first selects an available
zone, then gets the PMs in the available zone, then randomly
selects a PM. AbsractScheduler (Weighted) gives different

Algorithm 1 Our VMP algorithm

Input: VMs V = {Vi}, PMs M = {Mj}, ω
Output: The VMP solution XNM

1: Set XNM with zeros;
2: for each VM Vi in V do
3: Get its resource requirement Yi = (vic, v

i
m, vin);

4: Get its resource consumption characteristic Wi =
(wi

c, w
i
m, wi

n);
5: Calculate the real resources requirement vector Ri =

Yi ·Wi = (vic · w
i
c, v

i
m · wi

m, vin · wi
n);

6: max = 0; pm = −1;
7: for each PM Mj in M do
8: Get relative performance vector mP j

curr;
9: Get resource consumed by all VMs Cj

curr = (v, n, b);
10: Calculate the new resource consumed Cj

after =

Cj
curr +Ri = (v′, n′, b′); // if place Vi on Mj

11: Calculate the new relative performance vector
mP j

after with Cj
after using our performance models;

12: Calculate ∆ = (ω||vP i
after|| − (1 − ω)||mP j

curr −

mP j
after||);

13: if ∆ > max then
14: max = ∆;
15: pm = j;
16: end if
17: end for
18: if pm �= −1 then
19: Xi,pm = 1; // Place Vi on Mpm;
20: end if
21: end for
22: return XNM

weights for different PMs, and chooses a PM with suitable
weight for placing VMs. Besides the VMP methods in Nova of
OpenStack, we also compare our VMP method with CMBFD
[5]. There may be a little unfair if competing our method
with CMBFD, because the latter tried to maximize total
resource utilization and minimize energy consumption, instead
of improving VM performance.

We take two applications, live streaming and video
transcoding, as our test applications. We randomly generate
two VMs request sequences (TestCase1 and TestCase2), both
of which have 32 random VMs requirements with different
configurations and applications respectively. Once a VM re-
quest is coming, we place it using our VMP and other VMPs
respectively. If the new VM is for live streaming, we add
it into live streaming server cluster, and count the maximum
concurrency for live streaming of the cluster. If the new VM
is for video transcoding, we run the same transcoding task
on all transcoding VMs simultaneously, and then calculate the
average transcoding time of all transcoding VMs. We repeat
the above processes until all 32 VMs are place on PMs. We
use the maximum concurrency and the average transcoding
time as the VM performance metrics for live streaming and
transcoding services.

B. Experimental results

The detailed results are shown in Fig. 5. From the Fig. 5(a)
and 5(b), we can see that our VMP methods (ω = 1, 0.5, 0)
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Fig. 5. The results comparison with various methods. (a) and (b) are the maximum concurrency results for live streaming in TestCase1 and TestCase2; (c) and
(d) are the transcoding results for video transcoding in TestCase1 and TestCase2.

perform better than others in live streaming tests. For exam-
ple, our VMP methods only needs 4 VMs that can achieve
the maximum concurrency (1200) for live streaming, while
CMBFD needs 5 VMs and Nova-VMPs need more than 6
VMs to reach the same result. Although CMBFD is better
than Nova-VMPs, it is a little worse than our VMPs. CMBFD
aims to optimize energy consumption in cloud, so it can’t
guarantee VM performance. Our VMP methods take the VM
performance models into account, which can reflect the VM
performance loss caused by resource sharing and contention on
a PM, so as to provide VMs with best performance to users.
Of course, all methods stop increasing when the maximum
concurrency for live streaming is over 1200, which is limited
by the resource constraint of our cloud platform, so the
maximum number of users supported by the streaming media
servers will not increase with the increase of VMs.

Meanwhile, from the video transcoding test results shown
in Fig. 5(c) and 5(d), we can see that the performance
difference among all VMP methods is not clear with the small
scale of VMs scheduling. However, with the increase of the
number of transcoding servers, especially when there are more
than 10 transcoding servers, our VMP methods work much

better than others. At first, when there are several VMs on
the cloud platform, there is no resource competition problem
among VMs, so the transcoding times of all VMP methods
are almost the same. When the number of VMs increases, the
more VMs there are, the more resource competition there will
be, so the VM performance degrades clearly. However, our
VMP methods can place VMs with the best performance, so
they outperform the others in average transcoding time.

VI. CONCLUSION

This paper addresses the issue of VM performance degra-
dation when placing VMs on PMs. After analyzing the short-
comings of existing VMP method, our application-aware VMP
method based on the VM performance models is proposed.
It introduces VM performance models, which are the fun-
damental bases for the following placement. Then it takes
the application-aware resource consumption characteristic into
consideration to place VMs on appropriate PMs, which can
guarantee the VM performances and ensure customers’ QoE.
Lastly, we take the streaming media services for examples and
conduct some experiments to evaluate our VMP method in our



real OpenStack cloud platform. The results show that it works
better than other methods.

As for future work, we will study performance models of
other resources, such as disk I/O, which also affects the VM
performance greatly. Besides, our method is a static placement.
Once the VMs are placed in a PM, it can’t place the VMs again
in another PM. Next, we intend to study how to dynamically
place VMs.
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