
Minimizing Response Latency via Efficient Virtual

Machine Placement in Cloud Systems

Hou Deng∗, Liusheng Huang†, Chenkai Yang∗, Hongli Xu†, Bing Leng∗

School of CS & Tech., Univ. of Science & Technology of China, Hefei, Anhui 230027, P.R. China

Suzhou Institute for Advanced Study, Univ. of Science & Technology of China, Suzhou, Jiangsu 215123, P.R. China

Email: ∗{dengh, ckyang, lengb}@mail.ustc.edu.cn, †{lshuang, xuhongli}@ustc.edu.cn

Abstract—As more and more applications migrate into clouds,
the placement of virtual machines for these applications has
much impact on the performance of cloud systems. A number of
virtual machine (VM) placement techniques have been proposed
over recent years. However, most of the existing works on VM
placement ignore the response latency of the requests from
tenants. In this paper, we investigate the techniques of VM place-
ment with stochastic requests from the tenants to minimize the
total (average) response latency. We first model the requests for
each application from the corresponding tenant as independent
Poisson stream. Moreover, the VMs are modeled as simple M/M/1
queueing systems. Then, we define the problem of VM placement
for minimizing the total response delay (VMMD) and show
it is NP-hard. We propose three heuristic algorithms, namely,
Greedy, Local Adjustment (LA) and Simulated Annealing (SA).
We conduct abundant simulation experiments to evaluate the
performance of our proposed algorithms. The simulation results
show that the proposed algorithms are efficient in decreasing the
total response latency of the requests from tenants. Especially,
the SA heuristic, which decreases the total response latency about
68% at most, shows the best performance on minimizing the total
response latency in cloud systems.

Keywords—Cloud Systems, Virtual Machine Placement, Stochas-
tic Requests, M/M/1 Queueing System

I. INTRODUCTION

Cloud computing has emerged in recent years as one of the

most interesting developments in technology. The adoption

and deployment of cloud computing platforms have many

attractive benefits, such as reliability and robustness [10]. As a

result, more and more applications are migrating into clouds,

and it becomes important for the cloud provider to solve the

problem of how to distribute cloud resources efficiently. In

modern cloud data centers, e.g. Amazon EC2 [4] and Cisco

data center [5], virtual machine (VM) placement is the primary

issue facing the effective scheduling of cloud resources [6]. A

good placement will lead to better power efficiency and less

cost (i.e. bandwidth, latency etc). A number of VM placement

techniques have been proposed in the last several years. Xin

et al. [11] have introduced a new model, which can be used

to guide the design of the resource-balanced VM placement

algorithm, and proposed an energy efficient VM placement

algorithm EAGLE, which can save about 15% more energy.

O. Biran et al. [12] have dealt with the problem of VM

placement in the context of bandwidth usage and network

constraints. Among all these works, VM placement has played

an important role in the resource distribution of cloud system.

As the number of cloud applications increases, there are

many popular cloud applications, such as data-intensive ap-

plications [1], which are service for dealing with the requests

from tenants by data access in cloud systems. Actually, the

number of request from tenant will be large. For example,

in Amazon EC2 [4], the amount of requests is tremendous

and growing every day. What’s more, the service rate of

VM is restricted in data-intensive applications. However, all

these works talked above ignore the amount of requests and

assume the requests will be processed once they arrive at

VMs. Imposing these assumptions leads to vast waiting time of

requests in the queue. On the other hand, the packet drop rate

will be high when the queue is full. These disadvantages will

result in inefficient, unreliability and poor user experiences. In

our research, we take the requests from tenants into account

and model it as stochastic quantities. The request is typically

an aggregation of many independent traffic sources, and by the

central limit theorem, it can be approximated using a Poisson

random variable [13]. on the other hand, the service rate of

VM is restricted. A request goes to the VM who holds the

corresponding application and will be waiting for service in a

queue. Therefore, the VMs could be modeled as simple M/M/1

queueing systems.

Moreover, the service rate of each VM is decided by two

parts: the rate of processing and the rate of data transmission

between VM and data node when computation and data are

spread over a large number of nodes in cloud systems [1].

Since data-intensive applications are mainly accessing data

between VMs and data nodes, we ignore the rate of processing.

Thus, the service rate of VM is measured by the delay of

data transmission between VM and data node. In this case,

the service rate is relevant with the placement of VMs and

nodes that store the corresponding data. For instance, if the

computation VMs and corresponding data nodes are placed

on different racks then the delay of data transmission will be

larger than that placed on the same rack, and the corresponding

service rate will be slower. Ideally, it would be preferable

to keep all data access local and systems such as Hadoop

[7] try to accomplish this by reducing the amount of remote

data access. In general, it will not be possible to keep most

data accesses local. So it is important to carefully place

computation nodes (VMs) so that the service rate is larger and

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

the response latency will be minimized. Note that the response

delay for the request should include the link delay and waiting

time at a VM.

In this paper, we investigate the techniques of VM place-

ment with stochastic requests from tenants to minimize the

total response latency. We first model the requests for each

application as independent Poisson stream, and the VMs

are modeled as simple M/M/1 queueing systems. Then, we

define the problem of VM placement for minimizing the

total (average) response delay (VMMD) and propose three

heuristic algorithms. Our contributions in this paper are listed

as follows:

1. We define the problem of VM placement with stochastic

requests to minimize the total (average) response delay

(VMMD). It is proved that the VMMD problem is NP-

hard. To our best knowledge, this is the first work that

deals with the problem of VM placement in cloud systems

with stochastic requests.

2. As NP-hardness, we propose three heuristic algorithms

including Greedy, Local Adjustment (LA) and Simulated

Annealing (SA) to solve this problem. The Greedy heuristic

finds VM placement one by one with the minimum delay

objective. In order to investigate a better solution, LA

heuristic and SA heuristic are proposed based on Greedy

heuristic.

3. The simulation results show that the proposed algorithms

are efficient in decreasing the total response delay of

the requests. Especially, the SA heuristic decreases the

total response latency about 68% compared with Random

algorithm.

The rest of the paper is organized as follows: In Section II,

we discuss the related works. Section III describes the system

model and problem formulation. The detailed algorithm de-

scriptions of Greedy, Local Adjustment (LA) and Simulated

Annealing (SA) are given in Section IV. The simulation results

are illustrated in Section V. We conclude the paper in Section

VI.

II. RELATED WORK

In this section, we briefly review the related works about

VM placement in cloud systems with two kinds of optimiza-

tion goal: better power efficiency and less cost.

As energy consumption increasing in cloud data centers,

many research efforts focus on making the cloud systems more

energy efficient in recently years. One of the technologies is

VM placement [11], [15], [16], [17], [18], [20]. For example,

Gao et al. [15] proposed a multi-objective ant colony system

algorithm for the virtual machine placement problem. Their

goal is to efficiently obtain a set of non-dominated solutions

(the Pareto set) that simultaneously minimize total resource

wastage and power consumption. In [16], the authors proposed

VMPlanner, a network-wide power manager that optimizes

virtual machine (VM) placement and traffic flow routing to

reduce data center power costs by sleep scheduling of network

elements. Dong et al. [17] proposed a VM placement scheme

meeting multiple resource constraints, such as the physical

server size and network link capacity to improve resource

utilization and reduce both the number of active physical

servers and network elements so as to finally reduce energy

consumption.

For the optimization goal of less cost, there also exists

many studies [1], [8], [9], [14], [18], [19]. Our work is also

belong to less cost (latency). Xin et al. [8] have formulated the

VM placement problem for cost minimization, in which both

physical machines (PM-cost) and network traffics (N-cost) are

taken into account. In [14], the authors proposed a policy

to place the VM with consideration of network conditions

to minimize the data transfer time consumption and maintain

application performance. To achieve better performance, live

migration is adopted in their work. Vu et al. [18] proposed a

virtual machine placement mechanism that considers traffic as

well as power among VMs within a cloud data center. The goal

of this paper is to minimize the communication cost and also

save energy. In [19], the authors first modeled a VM place-

ment problem for the total completion time minimization by

adopting VM migration, and proposed a migration algorithm

that is a heuristic approach.

However, the number of requests from tenants will be large

and the service rate of VM is restricted in practice. This

leads to a lot of waiting time of requests in queue. All these

works above ignore the requests from tenants. These results

are unrealistic in many practical placement.

III. PROBLEM DESCRIPTION

In this section, we present the system model and problem

formulation. We first introduce the system model. Then, we

formally define the VMMD problem, based on which, the NP-

hardness will be proved at last.

A. System Model

There is a set of tenants denoted by {A1, A2, · · · , Al}. Each

of them need to migrate one data-intensive application into

cloud system. In order to provide services to tenants, it is

necessary for cloud provider to deploy all applications on the

available VMs in the cloud. We assume there are two types

of resources: available compute nodes (VMs) and data nodes

(DNs) in a cloud data center [1]. Let {C1, C2, · · · , Cm},m ≥
l be the set of available VMs and {D1, D2, · · · , Dn}, n ≥ l
be the set of available DNs. In addition, we assume one

VM accesses data from one DN. For example, in Amazon

EC2 environment the compute node mounts the data node

as a volume and accesses the volume [1]. We assume one

application is processed by one VM. Moreover, our algorithms

can also handle one application processed by multiple VMs

by decomposing multiple instance of application.

For the sake of readability, we define two key terminologies

of our proposed work.

Definition 1: A Resource Pair is denoted by a two tuple

< j, k >, where j represents the VM Cj , and k is the DN

Dk.

l
A

A

A

C

C

m
C

D

D

n
D

Fig. 1: The M/M/1 Queueing System for the Requests from Tenants

TABLE I: Primary Notations

Symbols Descriptions

A Set of the tenants (A = {A1, A2, · · · , Al})
C Set of the VMs (C = {C1, C2, · · · , Cm})
D Set of the DNs (D = {D1, D2, · · · , Dn})
dij The delay from Ai to Cj

tjk The delay between Cj and Dk

λi Request rate from Ai

µijk Service rate for the tenant assignment < i, j, k >

W Upper bound for the expected waiting time of requests

αi The average data transfer volume corresponding to Ai

Based on the system model above, we could assign one

resource pair to one tenant.

Definition 2: A Tenant Assignment is denoted by a three

tuple < i, j, k >, where i represents the tenant Ai, and <
j, k > is a resource pair.

The link delay of the unit of data transmission between VM

Cj and DN Dk is denoted by tjk, and the link delay from

tenant Ai to VM Cj is denoted by dij . Our algorithms can

also handle it in geo-distributed clouds by setting the matrix

of dij . According to the statements in [13], requests could be

approximated using a Poisson random variable. We assume

that requests from Ai form an independent Poisson stream

with parameter λi. Moreover, the service rate of each VM is

limited and decided by data access between VM and DN. The

VMs are modeled as simple M/M/1 queueing systems, that is,

for each tenant assignment < i, j, k >, the service time, which

is the time of data access between Cj and Dk, at VM Cj obeys

the exponential distribution with service rate µijk. We should

notice that the service rate µijk is inversely proportional to

the latency tjk and the average data transfer volume αi. For

simplicity, we assume µijk = 1

αitjk
. To guarantee that each

request is served in time, there is an upper bound W for the

expected waiting time of requests. The primary notations used

in this paper are summarized in Table I.

The M/M/1 queueing system for the requests from tenants

is illustrated in Fig.1. We assume C2 and D1 are assigned to

A1. The request from A1 is transmitted to C2 via the relay

nodes. Because of the limitation of processing capability of

C2, the request may not be processed immediately, but pushed

into the waiting queue. When processing it, the VM C2 will

access data with D1. Thus, the response delay for a request

consists of the link delay and the waiting time in cloud system.

According to the above model, the problem of VM place-

ment for minimizing the total response delay (VMMD) can be

stated as follows: given a tenant set with request rates denoted

by λi and the average data transfer volumes αi, an available

VM set and an available DN set with the link delay of unit

data transmission between VMs to DNs denoted by tij , and an

upper bound for the expected waiting time of requests W , find

a solution of VM placement that minimizes the total (average)

delay in the cloud system.

B. Problem Formulation

In this part, we will formulate the VMMD problem. A

binary three-dimensional matrix x = [xijk] is introduced for

it, which is assumed as:

xijk =

{

1, if the resource Cj and Dk is assigned to Ai,

0, otherwise,

where ∀Ai ∈ A, ∀Cj ∈ C, ∀Dk ∈ D.

In order to get the optimization objective, the response

delay, which is the period of time from the beginning of a

request to the end of its processing, can be divided into two

parts: the travel time and waiting time. The aggregate travel

time of requests from the tenant Ai per unit time is

Pi =
∑

j:Cj∈C

∑

k:Dk∈D

λidijxijk.

Since each VM behaves as an M/M/1 queueing system, when

the resource Cj and Dk is assigned to tenant Ai, the expected

waiting time at Cj is Wijk = 1/(1

αitjk
− λi) [2]. Thus, the

aggregate waiting time of requests from the tenant Ai per unit

time is

Qi =
∑

j:Cj∈C

∑

k:Dk∈N

λixijkWijk.

Thus, The sum of the response time of requests can be

formalized by:

S =
∑

i:Ai∈A

(Pi +Qi) =
∑

i:Ai∈A

∑

j:Cj∈C

∑

k:Dk∈D

xijkd
′

ijk.

where d′ijk = λi(dij+Wijk) represents the aggregate response

time of requests of the tenant assignment < i, j, k >.

Based on the analysis above, we can obtain the following

mathematical programming formulation:

minS =
∑

i:Ai∈A

∑

j:Cj∈C

∑

k:Dk∈D

xijkd
′

ijk,

subject to
∑

j:Cj∈C

∑

k:Dk∈D

xijk = 1, ∀i : Ai ∈ A, (1)

∑

i:Ai∈A

∑

k:Dk∈D

xijk ≤ 1, ∀j : Cj ∈ C, (2)

∑

i:Ai∈A

∑

j:Cj∈C

xijk ≤ 1, ∀k : Dk ∈ D, (3)

∑

j:Cj∈C

∑

k:Dk∈D

(λi −
1

αitjk
+

1

W
)xijk ≤ 0, ∀i : Ai ∈ A, (4)

xijk ∈ {0, 1}, ∀i : Ai ∈ A, ∀j : Cj ∈ C, ∀k : Dk ∈ D. (5)

The objective is to minimize the total response delay of

requests, subject to constraints (1) ∼ (5). Equation (1) ensures

that each application is deployed. Inequalities (2) and (3)

assure that VM and DN can be assigned only one application.

Constraint (4) ensures that the expected waiting time at any

VM does not exceed W . Finally, the last constraint (5) ensures

the binary nature of the variable x.

As shown above, the main factors that lead to the hardness

of this problem include the nonlinear objective function, the

large number of constraints, and the binary nature of the

decision variables. It is proved that the VMMD problem

defined above is NP-hard in the following theorem.

Theorem 1: The VMMD problem (defined above) is an NP-

hard problem.

Proof: We assume the number of tenants, VMs and DNs

are the same, that is, l = m = n, and the upper bound for the

expected waiting time of requests W is infinity. In this case, all

of the resources including VMs and DNs are assigned to ten-

ants. Thus, the constraints (2), (3) will be equal. The constraint

(4) can be ignored. The original problem is reduced to axial

3-dimensional assignment problem (3-DAP), and Karp [21]

showed that the axial 3-DAP is NP-hard. So the VMMD is an

NP-hard problem. �

IV. ALGORITHMS FOR THE VMMD PROBLEM

Due to NP-hardness, finding an optimal solution is infeasi-

ble. On the other hand, we tackle the problem by using heuris-

tics. In this section, three heuristic algorithms are developed

for the problem. The first one is the Greedy heuristic. The

second is an improvement of the first one using Local Adjust-

ment heuristic. Thirdly, a global searching method simulated

annealing heuristic will be proposed.

A. Greedy Algorithm

Generally speaking, the greedy strategy is often used to

solve the optimization problem. We can iteratively select the

appropriate tenant assignment that minimizes the objective

function. However, in the VMMD problem, there are some-

thing important to consider. First, in our constraint, it should

ensure that the waiting time at the VM does not exceed W ,

and we solve it by assuming the delay of the tenant assignment

is Γ when the waiting time at the VM exceed W , where Γ
is a large enough positive number. Then, it can be noticed

that each resource, including the VM and the DN, can only

be assigned to one tenant. Thus, in our algorithm we need to

remove the allocated resources in each iteration.

Algorithm 1 Greedy heuristic

1: Step 1: Initialization

2: for all tenant assingment (i, j, k) do

3: if λi −
1

αitjk
+ 1

W
< 0 then

4: d′ijk ← λi(dij + 1/(1

αitjk
− λi))

5: else

6: d′ijk ← Γ
7: end if

8: end for

9: Step 2: Iterations

10: while there exists tenant isn’t assigned resources do

11: d′ijk ← min{d′}
12: Push (i, j, k, d′ijk) to M
13: for all tenant assingment (i′, j′, k′) do

14: if i′ = i OR j′ = j OR k′ = k then

15: d′i′j′k′ ←∞
16: end if

17: end for

18: end while

The system parameter in Table. I will be initialized in the

beginning of Greedy heuristic. According to the method above,

the delay matrix d′ could be obtained. In each iteration, we

find a tenant assignment < i, j, k > so that the delay d′ijk
is minimum in the matrix d′, and we assign the resources

Cj and Dk to Ai. Afterwards, the tenant Ai and the allocated

resources Cj and Dk should be removed by setting the element

that is related to Ai, Cj and Dk in the matrix d′ to infinity.

The iteration is terminated when all of the tenants are assigned

resources. The detailed algorithm description is shown in

Algorithm 1.

B. Local Adjustment Algorithm

Because of the limitation of the service rate of the VM, the

Greedy heuristic algorithm may find an infeasible solution, in

which there exists an application that the waiting time of its

corresponding requests exceeds W . In order to investigate a

better solution, or to possibly find feasible solution in the case

Algorithm 2 Local Adjustment (LA) Heuristic

1: Step 1: Initialization

2: The parameter initialization is same to Greedy heuristic

3: Let M be the solution generated by Greedy heuristic

4: Step 2: Iteration

5: while true do

6: f ← false
7: for all z in {1, 2, · · · , l} do

8: for all z′ in {i+ 1, · · · , l} do

9: if Find_Better(d′,M ,z,z′,false) then

10: f ← true
11: break

12: end if

13: end for

14: if f then

15: break

16: end if

17: end for

18: if !f then

19: break

20: end if

21: end while

of Greedy heuristic fails, we propose Local Adjustment (LA)

heuristic that takes the relation between two applications into

account.

In order to easily introduce this algorithm, we define one

key terminology of our proposed work.

Definition 3: given a solution, assume arbitrary two tenants

Ai and Ai′ are assigned the resource pair < j, k > and <
j′, k′ > respectively. The Adjustable Set of the tenant Ai and

Ai′ is divided into two parts: C ′(i, i′) and D′(i, i′), where

C ′(i, i′) = {j, j′}
⋃

{j′′|Cj′′ ∈ C&&Cj′′ isn’t assigned to any

tenant in this solution} is the VM Adjustable Set. D′(i, i′) =
{k, k′}

⋃

{k′′|Dk′′ ∈ D&&Dk′′ isn’t assigned to any tenant

in this solution} is the DN Adjustable Set.

For example, in Fig.1, we assume l = 3,m = 4, n = 5,

and a solution {< 1, 1, 1 >,< 2, 2, 2 >,< 3, 3, 3 >}. the

adjustable set of A1 and A2 is C ′(1, 2) = {1, 2, 4} and

D′(1, 2) = {1, 2, 4, 5}. Clearly, the tenant Ai and Ai′ can

select resources from C ′(i, i′) and D′(i, i′) without affecting

on other tenants.

The LA heuristic starts with a random solution. Since the

Greedy algorithm is a convenient way to generate the initial

solution, it is applied first. Then, LA algorithm adjusts the

assignment with the goal of decreasing the objective function

S in each iteration. Note that in order to adjust the assignment,

it is necessary to solve the problem that how to find the

adjustable tenant assignments. In our algorithm, we consider

the relation between two applications. If there exists a tenant

pair that makes S decrease by adjusting their assignments

without affecting on other tenants, we can reallocate the

resources to this two tenants. In order to judge weather there

exists the adjustable tenant pair, we traverse all of the tenant

Algorithm 3 Find_Better (d′, M , z, z′, SA)

1: Let (i, j, k, d′ijk) and (i′, j′, k′, d′i′j′k′) be Mz and Mz′

2: Calculate the adjustable set C ′(i, i′) and D′(i, i′)
3: s←∞, (p1, p2)← (0, 0), (p′

1
, p′

2
)← (0, 0)

4: for all (r, t) in C ′(i, i′)×D′(i, i′) do

5: for all (r′, t′) in C ′(i, i′)×D′(i, i′) do

6: if r 6= r′ AND t 6= t′ AND d′irt + d′i′r′t′ < s then

7: (p1, p2)← (r, t)
8: (p′

1
, p′

2
)← (r′, t′)

9: s← d′irt + d′i′r′t′
10: end if

11: end for

12: end for

13: if d′ijk + d′i′j′k′ > s then

14: Mz ← (i, p1, p2, d
′

ip1p2
)

15: Mz′ ← (i′, p′
1
, p′

2
, d′i′p′

1
p′

2

)
16: return true
17: end if

18: if SA then

19: //This part is for SA heuristic

20: Randomly generate (r, t) and (r′, t′), where r, r′ ∈
C ′(i, i′),t, t′ ∈ D′(i, i′),r 6= r′, t 6= t′

21: if exp((s− d′irt − d′i′r′t′)/s) > rand(0, 1) then

22: Mz ← (i, r, t, d′irt)
23: Mz′ ← (i′, r′, t′, d′i′r′t′)
24: end if

25: end if

26: return false

pairs. For each tenant pair (i, i′), their adjustable set C ′(i, i′)
and D′(i, i′) can be obtained according to Definition 3. Then,

we figure out a pair of resource pair that meet the following

conditions:

1) They are in the adjustable set C ′(i, i′) and D′(i, i′);
2) They are not the same resource;

3) When they are assigned to Ai and Ai′ respectively, the

sum of their delay denoted by s should be minimum a-

mong all the pairs of resource pair that meet the condition

1) and 2).

If s is less than the sum of delay of Ai and Ai′ in current

solution, that is, (i, i′) is an adjustable tenant pair, and we

reallocate this pair of resource pair to them. Otherwise, we

test other tenant pairs. The iteration traverse all of the tenant

pairs to find an adjustable tenant pair until there doesn’t exist

it. Once an adjustable tenant pair is found, it is reallocated, and

the algorithm enter the next iteration. The detailed description

of LA heuristic is shown in Algorithm 2. The Find_Better

sub-procedure used in LA heuristic is described in Algorithm

3, in which the parameter SA is false.

C. Simulated Annealing Algorithm

The solutions obtained from Greedy heuristic and LA

heuristic are local optimization. Based on LA heuristic, we

propose Simulated Annealing(SA) heuristic that is a global

Algorithm 4 Simulated Annealing (SA) Heuristic

1: Step 1: Initialization

2: The parameter initialization is same to Greedy heuristic

3: Let m be the solution generated by LA heuristic

4: M ← m, t← 0
5: Step 2: Iteration

6: while the number of iterations is ≤ Ω1 do

7: f ← false
8: while the number of tenant pair ≤ Ω2 do

9: Randomly generate (Az, Az′), where z 6= z′

10: if Find_Better(d′,m,z,z′,false) then

11: f ← true
12: t← 0
13: break

14: end if

15: end while

16: if !f then

17: Randomly generate (Az, Az′), where z 6= z′

18: if !Find_Better(d′,m,z,z′,true) then

19: t← t+ 1
20: else

21: t← 0
22: end if

23: end if

24: if m is better than M then

25: M ← m
26: end if

27: if t ≥ Ω3 then

28: break

29: end if

30: end while

searching algorithm in theory.

It is necessary to find an initial solution for SA heuristic.

we can use the solution obtained from LA heuristic. Different

from traditional simulated annealing, we use a global param-

eter M to record the best solution that is found in the second

step. We can initialize this parameter by the initial solution.

In each iteration, the parameter M is updated to the solution

if it’s better.

After an initial solution is obtained, the iteration starts.

Based on the searching method in LA heuristic, the searching

neighborhood N is defined as all of the tenant pairs. In

each iteration, we randomly test Ω2 tenant pairs from N ,

where Ω2 is a positive integer defined in advance. For each

tenant pair, we identify it as an adjustable tenant pair by the

method from LA heuristic. If it is an adjustable tenant pair,

the SA heuristic perform the same way as LA heuristic to

reallocate the resources to this pair of tenant, and terminates

the test for other tenant pairs. When there doesn’t exist the

adjustable one in these Ω2 tenant pairs, we randomly select

an tenant pair (z, z′) from N , and probabilistically decide

whether reallocate resources to them. If (z, z′) is an adjustable

pair, the probability is 1 to reallocate the pair of resource pair

obtained by the way of LA heuristic to them. Otherwise, a pair

of resource pair without the same resource from the adjustable

set of (z, z′) should be generated randomly. For this pair of

resource pair, we let s′ be the sum of the delay when it is

assigned to (z, z′). The probability is exp(−∆/s) to reallocate

this pair of resource pair to (z, z′), where s is the sum of delay

of (z, z′) in current solution, and ∆ = s′ − s. The iteration

is terminated until one of the following stopping conditions is

met:

1) The number of iterations is greater than Ω1, where Ω1 is

a predefined positive integer.

2) There doesn’t exist the adjustable tenant pair in Ω3

consecutive iterations, where Ω3 is a predefined positive

integer.

At the end of the iteration, the parameter M is the assign-

ment we need. The detailed description of SA heuristic is

shown in Algorithm 4. The Find_Better sub-procedure used

in SA heuristic is described in Algorithm 3.

Since the Greedy heuristic is a sub-procedure of the LA

heuristic, which is a sub-procedure of the SA heuristic, the

result of SA heuristic is always better than that of LA heuristic,

and then that of Greedy heuristic, while running time is on the

contrary.

V. NUMERICAL RESULTS

This section mainly presents the numerical results to demon-

strate the efficiency of Greedy, LA and SA heuristic algo-

rithms. What’s more, we conduct comparisons between these

algorithms. We first introduce the simulation settings.

4 16 64 256
0

0.5

1

1.5

2

2.5

The number of racks

A
v
er

ag
e

d
el

ay
 o

f
th

e
re

q
u
es

ts
(s

)

Random

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 2: Average Delay vs. Number of Racks

A. Simulation Settings

We consider a datacenter architecture, which is organized

in a hierarchical manner. We assume there are 256 racks in

this datacenter, which are used to be assigned to some nodes.

The node that belongs to a rack connects to others through

38 40 42 44 46 48 50
10

12

14

16

18

20

22

24

26

The number of applications

T
ot

al
 d

el
ay

 o
f

th
e

re
qu

es
ts

(s
)

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 3: Total Delay vs. Number of Applications (K = 16)

38 40 42 44 46 48 50
20

25

30

35

40

45

The number of applications

T
ot

al
 d

el
ay

 o
f

th
e

re
qu

es
ts

(s
)

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 4: Total Delay vs. Number of Applications (K = 256)

38 40 42 44 46 48 50
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

The number of CNs

A
ve

ra
ge

 d
el

ay
 o

f
th

e
re

qu
es

ts
(s

)

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 5: Average Delay vs. Number of VMs (K = 16)

38 40 42 44 46 48 50
0.54

0.56

0.58

0.6

0.62

0.64

0.66

The number of CNs

A
ve

ra
ge

 d
el

ay
 o

f
th

e
re

qu
es

ts
(m

s)

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 6: Average Delay vs. Number of VMs (K = 256)

38 40 42 44 46 48 50
0.3

0.32

0.34

0.36

0.38

0.4

0.42

The number of DNs

A
ve

ra
ge

 d
el

ay
 o

f
th

e
re

qu
es

ts
(m

s)

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 7: Average Delay vs. Number of DNs (K = 16)

38 40 42 44 46 48 50
0.54

0.56

0.58

0.6

0.62

0.64

0.66

The number of DNs

A
ve

ra
ge

 d
el

ay
 o

f
th

e
re

qu
es

ts
(m

s)

Greedy Heuristic

LA Heuristic

SA Heuristic

Fig. 8: Average Delay vs. Number of DNs (K = 256)

a four-layer structure. In this structure, there is a switch in

the first layer, which connects four switches in the second

layer, and each of the switches in the second layer connects

four switches in the third layer. Similarly, each of the switches

in the third layer connects four switches in the fourth layer.

Finally, each of the switches in the four layer connects the

nodes that belong to racks that are in blocks of 4 (i.e. 0-3,4-7

etc). Clearly, the nodes that connect with the nth layer switch

can communication with each other using (9− 2n) switches.

The required number of VMs and DNs are randomly generated

and assigned to one of the racks. While selecting the racks

for the VM and DN, we may also restrict it to a subset of

racks(e.g. one of the first 16 racks). The latency between a

VM and a DN is taken as random between 1 to k+1 (ms) per

unit data, where k is the number of switches between them.

For the simulations, we assume the cost matrix from ten-

ants to VMs [dij] are the random value between 5ms-30ms.

The request rate [λi] are randomly chosen from 20-30. The

average size of transmission data for each application [αi]
are generated randomly between 1-20 unit data. The expected

waiting time upper bound is set as W = 1s. We examine the

performance of our algorithms by 20 times with various link

delay values to make our simulation results convincing, and

report the average of these examinations.

B. Simulation Results

In order to check the effectiveness of our algorithms. We

first observe the performance of our algorithms by comparing

them with the randomized approach, in which the resources are

assigned to the tenants randomly, under the different number

TABLE II: Success Rate of the Heuristic

The value of K Greedy Heuristic LA Heuristic SA Heuristic

4 100% 100% 100%
16 96% 100% 100%
64 95% 99% 100%
256 90% 95% 99%

of available racks denoted by K for 4,16,64 and 256. In this

part of the simulations, we assume the number of tenants,

VMs and DNs are the same, that is l = m = n = 50.

Fig.2 shows the results on different number of rack sizes. As

it can be seen, the average response delay of the requests

increases along with the number of racks. This is because as

the number of available racks increases, the link delay between

VMs and DNs will be increase. Figure also shows that our

algorithms can decrease much more average response delay of

the requests compared with the randomized approach. The SA

heuristic achieves the best performance in our algorithms by

decreasing the average response delay for about 68%, while

the LA heuristic and Greedy heuristic achieves the second

and third optimization with the decreasing percentage as about

64% and 55% respectively.

The proposed algorithm may fail to find a feasible solution,

so the success rate is an important measure to evaluate

the algorithms. We calculate the success rate with different

number of available racks K. Table II shows the statistic result

of the success rate. We can see that the success rate of SA

heuristic is higher than LA heuristic, and then in turn Greedy

heuristic. The figure also shows that the success rate decreases

as number of available racks increases. This is because of the

link delay between VMs and DNs is increasing and the service

rate is decreasing as well. In general, all of our algorithms can

find a feasible solution with probabilities higher than 90%

when the number of available racks is small.

Then, we study the impact of the number of tenants, VMs

and DNs under two different number of racks for 16 and 256.

The results are shown in Fig.3-8. In each figure, the green

curve represents the results of Greedy heuristic, while the red

curve represents the results of LA heuristic. The performance

of SA heuristic is illustrated by the blue curves. From all of

these figures, we can see that the SA heuristic outperforms

other approaches in all scenarios, and the performance of LA

heuristic is better than that of Greedy heuristic. The delay of

SA heuristic decreases about 20% of the Greedy increase on

average, while the LA heuristic deceases the delay for about

15% on average. Figures also show that the delay decreases

as we reduce the number of racks. The reason is same as the

one mentioned in the previous experiment.

The simulation results with the number of tenants l from

38 to 50 and m = n = 50 are shown in Fig.3-4. The total

response delay is increasing as number of tenants becomes

larger. The reason is that when the number of tenants is larger,

more resources are needed, which results in the increase of

number of waiting queue and more total delay.

The simulation results with the number of VMs from 38 to

50 and l = 38, n = 50 are shown in Fig.5-6 and that with

the number of DNs from 38 to 50 and l = 38,m = 50 are

shown in Fig.7-8. We can see that the average response delay

of the requests trends down along with the number of VMs

(DNs). This is because there are more choices available for

tenants, and more DNs (VMs) get closer to the VMs (DNs)

as the number of VMs (DNs) increases.

From these simulation results, we can make some con-

clusions. Our algorithms are efficient in finding a feasible

solution. What’s more, solutions found by our algorithms

result in much less average response delay than the randomized

approach. Especially, The SA heuristic achieves the best per-

formance in our algorithms by decreasing the average response

delay for about 68%.

VI. CONCLUSION

In this paper, we study the techniques of VM placement

with stochastic requests from the tenants to minimize the total

(average) response latency. We model the requests of each

application from corresponding tenant as independent Poisson

stream. In addition, the VMs are modeled as simple M/M/1

queueing systems, that is, the service time at each VM obeys

the exponential distribution. We define VMMD problem and

propose three heuristic algorithms: Greedy, Local Adjustment

(LA) and Simulated Annealing (SA). According to simulation

results, our algorithms are efficient in decreasing the total

(average) response latency of the requests from tenants. E-

specially, the SA heuristic, which decreases the total response

latency about 68% on average, shows the best performance

on minimizing the total response latency in distributed cloud

systems.

ACKNOWLEDGMENT

This paper is supported by the National Science Foundation

of China under No. U1301256, 61170058, and 61472383,

Special Project on IoT of China NDRC (2012-2766), Research

Fund for the Doctoral Program of Higher Education of China

No. 20123402110019, the Natural Science Foundation of

Anhui Province in China under No. 1408085MKL08.

REFERENCES

[1] Alicherry, Mansoor, and T. V. Lakshman. "Optimizing data access
latencies in cloud systems by intelligent virtual machine placement."
INFOCOM, 2013 Proceedings IEEE. IEEE, 2013.

[2] D. Gross and C.M. Harris, Fundamentals of Queueing Theory [M], Wiley:
New York, 1998.

[3] Boloor, Keerthana, et al. "Dynamic request allocation and scheduling
for context aware applications subject to a percentile response time
SLA in a distributed cloud." Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on. IEEE,
2010.

[4] Amazon EC2, "http://aws.amazon.com/ec2".
[5] Cisco Data Center, "http://goo.gl/Sil548".
[6] C. Hyser, B. McKee, R. Gardner, and B. J. Watson. Autonomic virtual

machine placement in the data center. Technical report, HP Laboratories,
February 2008.

[7] hadoop.apache.org
[8] Li, Xin, et al. "Let’s stay together: Towards traffic aware virtual machine

placement in data centers." INFOCOM, 2014 Proceedings IEEE. IEEE,
2014.

[9] Cohen, Reuven, Liane Lewin-Eytan, and Joseph Naor. "Almost optimal
virtual machine placement for traffic intense data centers." INFOCOM,

2013 Proceedings IEEE. IEEE, 2013.
[10] Randles, Martin, et al. "Distributed redundancy and robustness in

complex systems." Journal of Computer and System Sciences 77.2 (2011):
293-304.

[11] Li, Xin, et al. "Energy efficient virtual machine placement algorithm
with balanced and improved resource utilization in a data center."
Mathematical and Computer Modelling 58.5 (2013): 1222-1235.

[12] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz and
E. Silvera. A Stable Network-Aware VM Placement for Cloud Systems.
IEEE International Symposium on Cluster, Cloud and Grid Computing

(CCGrid12), 2012.
[13] Johnston M, Lee H W, Modiano E. Robust network design for stochastic

traffic demands[J]. Lightwave Technology, Journal of, 2013, 31(18):
3104-3116.

[14] Piao, Jing Tai, and Jun Yan. "A network-aware virtual machine place-
ment and migration approach in cloud computing." Grid and Cooperative

Computing (GCC), 2010 9th International Conference on. IEEE, 2010.
[15] Gao Y, Guan H, Qi Z, et al. A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing[J]. Journal
of Computer and System Sciences, 2013, 79(8): 1230-1242.

[16] Fang W, Liang X, Li S, et al. VMPlanner: Optimizing virtual machine
placement and traffic flow routing to reduce network power costs in cloud
data centers[J]. Computer Networks, 2013, 57(1): 179-196.

[17] Dong, Jiankang, et al. "Energy-saving virtual machine placement in
cloud data centers." Cluster, Cloud and Grid Computing (CCGrid), 2013

13th IEEE/ACM International Symposium on. IEEE, 2013.
[18] Vu, Hieu Trong, and Soonwook Hwang. "A traffic and power-aware al-

gorithm for virtual machine placement in cloud data center." International

Journal of Grid & Distributed Computing 7.1 (2014): 350-355.
[19] Li, Kangkang, Huanyang Zheng, and Jie Wu. "Migration-based virtual

machine placement in cloud systems." Cloud Networking (CloudNet),

2013 IEEE 2nd International Conference on. IEEE, 2013.
[20] Huang, Wei, Xin Li, and Zhuzhong Qian. "An energy efficient virtual

machine placement algorithm with balanced resource utilization." Innova-

tive Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013

Seventh International Conference on. IEEE, 2013.
[21] Burkard R E, Cela E. Linear assignment problems and extensions[M].

Springer US, 1999.

