
A Customizable MapReduce Framework for
Complex Data-Intensive Workflows on GPUs

Zhi Qiao∗, Shuwen Liang∗, Hai Jiang† and Song Fu‡
∗‡Department of Computer Science and Engineering, University of North Texas

†Department of Computer Science, Arkansas State University
∗Email: {ZhiQiao, ShuwenLiang}@my.unt.edu

†Email: hjiang@astate.edu
‡Email: song.fu@unt.edu

Abstract—The MapReduce programming model has been
widely used in big data and cloud applications. Criticism on its
inflexibility when being applied to complicated scientific appli-
cations recently emerges. Several techniques have been proposed
to enhance its flexibility. However, some of them exert special
requirements on applications, while others fail to support the
increasingly popular coprocessors, such as Graphics Processing
Unit (GPU). In this paper, we propose MR-Graph, a customizable
and unified framework for GPU-based MapReduce, which aims
to improve the flexibility and performance of MapReduce. MR-
Graph addresses the limitations and restrictions of the traditional
MapReduce execution paradigm. The three execution modes
integrated in MR-Graph facilitates users to write their appli-
cations in a more flexible fashion by defining a Map and Reduce
function call graph. MR-Graph efficiently explores the memory
hierarchy in GPUs to reduce the data transfer overhead between
execution stages and accommodate big data applications. We have
implemented a prototype of MR-Graph and experimental results
show the effectiveness of using MR-Graph for flexible and scalable
GPU-based MapReduce computing.

Keywords— MapReduce, GPU, Customizable, Data Inten-

sive, Iterative, Recursive

I. INTRODUCTION

The performance of CPUs has stagnated while both the

programmability and availability of Graphics Processing Units

(GPUs) have been improved dramatically. Modern GPU are

equipped with thousands of processing units and is particu-

larly suitable for data-intensive computations and massively

parallel applications. However, GPU’s programmability is still

a challenge. The complicated and highly parallele architecture

makes GPU difficult to extract massively parallel computing

components from applications and schedule them efficiently

on a huge pool of processing resources.

The MapReduce programming model provides an easier

way for parallel data processing in the cloud. With MapRe-

duce, users need only write Map and Reduce functions to solve

problems in parallel. The underlying programming details,

such as how to handle communication among data nodes,

are transparent to users. Data affinity across the network

and fault tolerance among multiple nodes can be achieved

automatically, which allows programmers to focus more on

the target problem itself and the algorithm design.

Because of its massive parallelism, GPU has been explored

for MapReduce execution and processing large datasets. In

today’s scientific analysis applications, not only the data

volume grows fast, but also the data type and data dependency

become much more complicated [1]. However, most existing

GPU-based MapReduce implementations use the traditional

MapReduce programming model, which processes data in a

single-step fashion with one round of Map followed by another

round of Reduce operations. This makes applications with

complex data dependency difficult and even impossible to be

implemented and executed by MapReduce.

In this paper, we present MR-Graph, a customizable GPU-

based MapReduce framework, which is designed for complex

data intensive scientific analysis applications. MR-Graph pro-

vides multiple configurable options or modes, allowing users

to customize their MapReduce workflow and data locality.

The new execution paradigm enables MR-Graph to handle

complicated data dependency effectively. MR-Graph is de-

signed to have a two-layer structure, in which the lower level

is the execution unit for user-defined computations on the

corresponding data items, while the upper layer is a graph-

based job control unit to coordinate tasks and communication

between each task.

MapReduce applications are classified by MR-Graph into

iterative, recursive and hybrid modes based on the charac-

teristics of an application’s computations. Programmers can

thus organize the computations of their applications in the

proper mode and provide the configuration information to the

job control unit. Then, user-defined map and reduce functions

can be run on the execution unit. We have implemented a

prototype of MR-Graph based on Thrust, a light-weight CUDA

C++ library, with optimization for guaranteed performance.

Experimental results show the flexibility and effectiveness of

MR-Graph running MapReduce applications on GPUs.

The remainder of this paper is organized as follows. Sec-

tion II presents the background and related workson MapRe-

duce and GPU computing, as well as the challenges for com-

plex applications. The three MapReduce computation modes

are described in Section III. Section IV presents the design of

the proposed MR-Graph framework for flexible MapReduce

execution on GPUs and the implementation issues. Experi-

mental results are shown in Section V. Section VI concludes

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

this paper with remarks on the future work.

II. BACKGROUND AND RELATED WORK

A. MapReduce Programming Model

MapReduce is a functional programming model that sim-

plifies data parallelism based on two primitives, Map and

Reduce. Map function performs the procedure similar to

filtering, and Reduce function performs the summarization op-

eration. MapReduce was originally introduced by Google [2]

for their large-scale data processing in distributed comput-

ing environments, and it has been widely adopted. It has

attracted huge attention due to its simple design and significant

performance gains. MapReduce has been applied to various

applications in business and scientific computing domains.

Several commercial and research implementations have been

developed.

Hadoop is a well-known open-source MapReduce imple-

mentation licensed by Apache. Dispite the fact that it has been

widely used, the resilience centric design significantly impact

its overall performance. Other popular Big Data processing

platform such as Apache Spark [3] and Apache Flink [4]

add the support to in-memory processing, steam processing

and iterative algorithms thanks to the rich extension provided

by research community. Recent works even shows the usage

of Spark in GPU environment [5]. However, Spark lack of

support to dataset larger than RAM before version 1.5, whereas

Flink does not provide integrated storage system. In addition,

many extensions that enrich the functionality of both are

require to run on top of Hadoop, which introduce the extra

system overhead and redundency. Mars [6] and GPMR [7]

are two MapReduce frameworks used on GPU platforms,

which only support traditional MapReduce model. Twister [8]

is a CPU-based MapReduce runtime focusing on iterative

MapReduce. Carlos et al. [9] present a flexible MapReduce

workflow for data analysis. However, it is only applicable to

the AWARD (Autonomic Workflow Activities Reconfigurable

and Dynamic) framework. Other implementations, such as

Pilot-MapReduce [10], limit their applications to specific

abstractions, e.g., Pilot.

B. GPU Architecture and CUDA

GPU has been widely used as a general-purpose high-

throughput computing device. A GPU contains a large number

of Single-Instruction-Multiple-Data (SIMD) multiprocessors,

that can run thousands of threads concurrently. Compared with

CPU, which provides a low latency and low throughput and

performs well for sequential and low-parallelism jobs, GPU

provides a high throughput and high latency and excels in

massive data parallel applications. Since MapReduce applica-

tions typically involve high data parallelism, GPU better suits

their needs.

Compute Unified Device Architecture (CUDA) is a

general-purpose parallel computing and programming environ-

ment [11], which facilitates the application programmers to

rein in the fiery GPU computability. It leverages the parallel

computing engine in GPUs to solve complex computational

problems in a more efficient way than on a CPU. CUDA allows

application developers to use C as a high-level programming

language with many useful tools/libraries, such as Thrust [12],

a C++ template library that allows user to implement high-

performance parallel code with minimal programming efforts.

In this paper, we implement the proposed MR-Graph frame-

work by using Thrust.

C. Challenges for MapReduce in the Cloud

The traditional MapReduce model works well for applica-

tions with large datasets, although it supports only a single-

round process, that is one round of Map followed by one round

of Reduce. However, the size and complexity of applications’

data increase tremendously in the cloud. The single-round

process significantly limits the application of MapReduce in

the cloud computing environment, which is elaborated from

the following three aspects.

1) Communication Overhead: MapReduce adopts the

divide-and-conquer technique to break large data into smaller

pieces, which are reordered and reassembled to produce the

final outputs. An important side effect of this simple yet power-

ful model is the heavy communication overhead. Traditionally,

MapReduce launches many worker nodes to handle Map and

Reduce tasks. Each worker node takes a copy of the data

to process, and then sends the results back to the master

node. When thousands of workers transfer data simultaneously,

traffic congestion will inevitably happen, especially when data

blocks are large. Moreover, in the GPU architecture, data

need to be copied further to the GPU memory before being

processed. This extra hardware layer makes the communica-

tion overhead even higher. Several implementations minimize

this overhead by moving the computation, instead of data,

to the worker nodes that have the corresponding data stored

locally. But these solutions raise another problem, that is

data stored on different nodes have to be independent. If the

MapReduce tasks need to exchange data between nodes, the

communication overhead will again become a major problem.

2) Acyclic Workflow: MapReduce was originally designed

for acyclic dataflow where data are processed in the batch

mode. First, the MapReduce runtime gathers and prepares all

required data. Then a large number of workers are launched to

execute Map and Reduce functions in two sequential phases.

Once all tasks are completed, the final results are gener-

ated. However, MapReduce does not work well for iterative

algorithms, which are widely used in big data processing,

such as data mining and machine learning. A typical iterative

algorithm, such as K-Means, requires revisiting the same

dataset multiple times to produce gradually developed or

frequently updated data. Application programmers can write

scripts to repeatedly launch MapReduce jobs with updated

data. However, this needs to copy large sets of data back

and forth, causing considerable communicate overhead. Since

MapReduce is designed to produce stateless programs, any

attempt to reuse the data from a previous round without data

movement requires the modification of the runtime system.

3) Ordinary Data: Due to the high communication over-

head of data movement from the Map tasks to the Reduce

tasks, MapReduce is usually applied to big datasets to mitigate

the cost. However, the simplicity of the programming model

and the stateless implementation make MapReduce not easy to

be applied to handle applications with complex datasets, such

as data clustering, machine learning and computer vision. The

current MapReduce model requires application programmers

to convert the raw data to a MapReduce-ready format. This

preprocessing can take several stages in order to eliminate

data dependency and noises and to extract useful information

for execution. Once all the raw data are precisely organized

and fine-tuned into big yet simple datasets, the MapReduce

application can start execution. In this process, again, the

involved datasets are copied back and forth between disks and

memory multiply times, making the execution inefficient.

III. MAPREDUCE MODES

To address the limitations of the MapReduce programming

model, we have done a comprehensive analysis of the pro-

gramming patterns of many complex scientific applications.

To adapt MapReduce to different applications, we categorize

the operation patterns into three modes, which are Iterative,

Recursive and Hybrid modes.

A. Iterative Mode

Iterative algorithms, such as those in machine learning and

data clustering applications, requires the MapReduce dataflow

to access the intermediate data multiple times to generate

gradually developed or frequently updated data. These data

are dynamically produced and evolved through iterations in

the execution.

The traditional MapReduce programming model processes

the input dataset in a single-round fashion, as discussed in

Section II-C2. These data, are usually referred to as static data,

having little data dependency. Therefore, an iterative mode is

required for MapReduce to process the dynamic data in those

iterative applications.

(a) Iterative MapReduce with Condition Check

(b) Iterative MapReduce without Condition Check

Fig. 1. Iterative MapReduce Mode

Figure 1(a) shows the flowchart of our generalized iterative

MapReduce. During the execution, map initially reads data

from the input files. Then the produced data is sorted and

summarized by reduce. After that, a condition is checked

to determine whether to continue the execution for the next

iteration or not. In the former case, iterative MapReduce loads

intermediate data as a new input, performs map and reduce

operations until the condition defined by the user is satisfied.

As an example, K-Means Clustering (KMC) algorithm can

be implemented with our iterative MapReduce mode. KMC

aims to partition n observations into k clusters where all the

observations in a cluster are close to the nearest mean. In real

implementation, it usually takes a set of points in space and

determines the clusters that can best approximate the space.

It also uses a fix-sized, randomly generated set of cluster

centers to start with. Since it may take a large number of

rounds to reach a theoretically close result, in practice, the

number of iteration is usually predefined and fixed for a quick

convergence. If the condition check is disabled, the iterative

mode will be reduced to the traditional MapReduce operation

model with a single-round processing, as shown in Figure 1(b).

B. Recursive Mode

For many Big Data applications, the raw data are either

too complex or contain a large amount of noise that cannot

be processed by MapReduce directly. Data pre-processing and

post-processing become a labor-intensive and time-consuming

task in addition to the MapReduce tasks. For instance, an

extremely large dataset usually requires researchers to adopt

a multi-stage approach, which partitions data into reasonable

sizes, and then processes each part separately. Similarly, for

large intermediate data, partial reduction of the sub-stages is

usually used to minimize the communication overhead.

Fig. 2. Recursive MapReduce Mode

Recursive MapReduce mode binds multiple map() and

reduce() functions together for data pre-processing, post-

processing and refinement. Different from the iterative mode

where the MapReduce workflow evolves horizontally, the

recursive mode evolves vertically for a fine-grained data

processing, as shown in Figure 2. Traditional MapReduce

model cannot easily handle such situations as it does not allow

multiple consecutive map() or reduce() functions. The original

jobs have to be divided into multiple stages, each with a

corresponding function. If the intermediate data between them

are saved on the disk storage as in original MapReduce, the I/O

overhead is significant. Flexible MapReduce frameworks help

address this by allowing many map() or reduce() functions to

be executed consecutively and keeping the intermediate data

in memory for fast reuse.

C. Hybrid Mode

Not all MapReduce execution patterns fall into either itera-

tive or recurve MapReduce modes. A combination of both may

better suit them. This hybrid mode is more flexible and can be

applied to complicated cases. It is created by inserting the con-

dition check and a loop to each Map-Reduce pair in a recursive

manner, shown in Figure 3. In the hybrid mode, functions in

the Map-Reduce pair may vary in different iterations as in

the iterative mode. This enables flexible function repetition

at different levels so that the workflow can be expanded

horizontally. Meanwhile, each function can be replaced by a

Map-Reduce pair so that the workflow can also be expanded

vertically.

Fig. 3. Hybrid MapReduce Mode

IV. DESIGN OF MR-GRAPH SYSTEM

Our proposed MR-Graph system aims to enhance the

flexibility of MapReduce to process complex applications

and datasets. First, programmers should be able to follow

MapReduce-type programming paradigm and develop more

complex applications easily. Multiple Map-Reduce pairs and

flexible Input/Output buffers can be specified. Second, mem-

ory hierarchy will be exploited to handle big data applications.

Intermediate results may not need to be sent back to secondary

storages as in traditional MapReduce. Third, GPU is leveraged

as a new computing platform. The extraordinary computing

power and shared memory architecture of GPUs can improve

the overall performance.

A. Programming with MR-Graph

Programming with MR-Graph is similar to that with the

traditional MapReduce. Other than providing different user-

defined Map and Reduce functions, programmers need to

specify the relationship between Map-Reduce pairs as well

as the buffers for input and output data.

MR-Graph supports a function call graph developed based

on the aforementioned iterative, recursive and hybrid MapRe-

duce modes. In a function call graph, nodes are Map and

Reduce functions with user-provided information to perform

the application logic. Two nodes are connected if one node’s

output is used as the input to the other node.

As in the iterative mode, if some Map-Reduce pairs need

to be repeated for certain number of times, they are placed

in a loop with one special Condition Node at the end. A

Condition Node contains the condition specified by a users,

and according to the condition check result it determines to go

to the next iteration or terminate the workflow. Map-Reduce

pairs keep updating their intermediate data until the condition

is satisfied [13].

B. MR-Graph Runtime System

(a) Traditional MapReduce Model

(b) MR-Graph with Execution Unit

Fig. 4. MapReduce execution models

The traditional MapReduce runtime system adopts a Map-

Shuffle-Reduce pipeline as shown in Figure 4(a). Users define

the Map and Reduce functions, whereas Shuffle is provided by

the MapReduce runtime system and transparent to users. The

main purpose of Shuffle is to handle communication between

computers without the involvement from programmers. The

traditional MapReduce emphasizes the right execution order.

If multiple Map-Reduce pairs are required, shell scripts are

used for job connection and saving the intermediate data

on secondary storages. The movement of a large amount of

intermediate data can compromise the system performance.

In MR-Graph, the order of function execution is enforced by

the function call graph. MR-Graph’s runtime system consists

of two layers as shown in Figure 4(b) to emphasize data and

computation. The upper layer, Job Control Unit (JCU), loads

the function call graph, maintains the execution order, and

loads and redistributes data. The lower layer, Execution Unit

(EU), runs user-defined Map and Reduce functions as well as

system-default sort algorithms on GPU platforms. This two-

layer strucure enables efficient computation concatenation and

effective data sharing.

C. Job Control Unit

The Job Control Unit (JCU) loads and parses user files

to build up the function call graph using linked list as its

data structure. Then, depth-first-traversal is adopted to visit

all nodes in a sequential order. Nodes for Map and Reduce

functions specify where to load the input data, where to find

the user-defined function code, and where to send the output

data. All of these will be provided to the Execution Unit (EU)

for calculation. After each Map function, one system-default

Sort function will be activated automatically. This sorting

algorithm is executed by the Execution Unit. The traditional

MapReduce combines the Sort function as a part of Shuffle to

reduce the communication volume. In the MR-Graph system,

sorting is activated implicitly by JCU on EU. Condition Nodes

allow JCU to verify if the contained data have reached some

specified values, which is used to determine the continuity of

a loop and termination of the entire job.
In addition to job control, JCU is responsible for data

management. Data locality is important for MapReduce’s

performance [14]. In the existing implementations, such as

Hadoop and Sphere inherited from the Google MapReduce

model, most of the I/O operations target file systems and disk

storages. They mainly focus on the performance of single-

round data processing, instead of complex application logic

and datasets.

Fig. 5. MR-Graph Data Locality

In contrast, the proposed MR-Graph system explores the

flexible memory hierarchy in GPUs to reduce the access

latency and increase the data bandwidth. More specifically,

the intermediate data will be stored in GPU’s global memory

to minimize the communication cost. However, GPU has a

limited amount of memory, which makes it impractical to hold

all intermediate data. Thus, the main memory and disk storages

are used as backups. As shown in Figure 5, for a task node,

users can configure its output to the main memory or even

to a disk file if the data is too large. In addition, JCU can

save the data in the GPU’s memory transparently [15]. In a

GPU cluster, each compute nodes is usually equipped with

several gigabytes of GPU memory on each GPU device, tens

of gigabytes of main memory, and several terabytes of disk

storage. JCU intends to keep data closer to GPU and send

them to slower and larger storage only when the data size is

beyond the capacity of the GPU memory. Overall, MR-Graphs

three-layer memory hierarchy is capable of handling most

MapReduce jobs with multiple terabytes of data (including

the intermediate data).
The MR-Graph’s data I/O behavior is shown in Figure 6.

For each Execution Unit, JCU loads the input data to keys and

values containers that reside in GPU’s global memory or the

main memory based on the users’ settings. Each Execution

Unit gets the input data in one of the two ways: 1) reads new

data from the input files, or 2)loads intermediate data from

previous tasks. In the first case, JCU launches an input file

stream and reads data from the specified file(s). To read a file,

the Execution Unit activates a main memory container for the

input data, and then copies data to the GPU container. To

better utilize the system resource, the container in the main

memory will be released after the current task is finished.

Thrust performs garbage collection automatically when the

vector containers are no longer used.

Fig. 7. Data Retrieval from Multiple Sources

In the second case, a function’s input comes from a previous

task. In some special cases, tasks may require the intermediate

data from the task that is executed several steps earlier. For

example, in Figure 7, reducem fetches data from both mapm
and mapi+2. JCU locates the input nodes by following the

backward pointers. These nodes contain pointers to the output

buffers which could be in the main memory, GPU memory,

or even disks. If necessary, JCU loads data into GPU memory

so that the next nodes can start execution immediately.

D. Execution Unit

The MR-Graph system exploits GPUs for massively parallel

data processing. The Execution Unit sets up the GPU kernel

and launches the executions. Kernels can run user-defined Map

and Reduce functions as well as MR-Graph system’s sorting

functions. They are executed on thousands of GPU cores with

data provided by JCU. EU is a unified unit as all Map, Reduce

and Sort functions use it. Job scheduling is based on the data

size.

Since traditional MapReduce and MR-Graph use computer

cluster and GPU as the computing platforms respectively, their

communication mechanisms are different. Communication in

GPU with shared memory is simpler than that with the dis-

tributed memory structure in computer clusters. Therefore, the

communication mechanism of MR-Graph focuses on exploring

the memory hierarchy for high-throughput data processing

rather than on reducing the communication overhead. The ex-

ecution mechanism on GPU is more computationally powerful

and energy efficient than on computer clusters.

The Execution Unit in MR-Graph has the following unique

features.

Unified Interface: In MR-Graph, data is transferred/saved

in a key-value pair format. A list of values acts as the index

for each key. EU takes in and processes key-value pairs,

then generates different key-value pairs as output. Since GPU

is not good at processing complex data structure, in GPU

MapReduce, key-value pairs are usually stored separately in

Fig. 6. Input/Output Data Management in JCU

two containers. In MR-Graph, four buffers are allocated in

GPU global memory and reserved for input keys and values

as well as the output keys and values. Each function node

in MR-Graph has access to these four buffers. To unify the

interface prepared by JCU, Map, Reduce and Sort functions

use the same parameter list: the input/output keys and values.

The Execution Unit will only provide the basic data process-

ing functionality, such as reading keys and values from the

input buffers, executing user-defined functions or default sort

functions, and saving results output buffers.

Output Data Size Predication: Before activating Execution

Unit, Job Control Unit will loads data into input key and value

buffers. But the size of output data still needs to be calculated

at runtime. Since GPU does not support dynamic memory al-

location in device memory during GPU computing, most GPU

MapReduce implementations usually require users to pre-

calculate the size of output data size. So memory allocation

takes place before GPU kernel launches. With CUDA Thrust

library, MR-Graph can solve this problem smoothly. During

kernal launch, JCU reserves a piece of global memory for

each declared buffer. During the runtime, EU will reallocate

this reserved address space to the user defined size by invoking

Thrust resize function. JCU and EU work together to handle

data. The whole precoess is completely transparent to users.

Sort Stage: In traditional MapReduce, sorting intermediate

data is usually a part of shuffle stage. After data sorted in order,

shuffle stage will deliver some values by keys to the coore-

sponding reduce workers. In MR-Graph, since communication

is handled by Job Control Unit, shuffle stage is omitted. Same

as other parts of MR-Graph, sort stage is also implemented

by Thrust. The inputs of sort function are the key and value

buffers located at GPU global memory. The technique sort by

key, is used to sort two device vector arrays, key and value, by

their corresponding keys. Since each value can be viewed as

key’s index, this technique is actually binding the key and its

index together for a temporary key-value pair. Therefore sort

by key is in fact sorting key-value pairs by their keys. Once

it is done, both keys and values will be sorted accordingly.

Processing characters in GPU: CUDA only support stan-

dard C/C++ data type such as int, double, and char, but

not character string. Therefore, the size and the index of

the character string need to be managed. In MR-Graph, char

Fig. 8. Character String Processing in GPU

arrays are represented in three different device vector arrays,

as shown in Figure 8 : In order to sort a character string,

MR-Graph GPU runtime will do the following:

1) Concatenate all the strings together into a single char

vector, CharArr.

2) In int vector CharIdx, mark the starting index for each

string.

3) Save the length of each string in an integer type vector,

CharLen.

After the above steps, char string is ready for GPU runtime

to process. But in order to construct the comparison operator,

runtime will further combine the start index and the length

into a Thrust tuple. Since reordering integers in GPU is much

faster than moving blocks of char string around, to reduce the

communication overhead, MR-Graph does not sort the actual

char string arrays, but the index and length tuples instead. This

is a straightforward algorithm for this framework. The data

rearrangement can be accomplished later using the reordered

the index vector.

V. PERFORMANCE EVALUATION

Testing Environment

All experiments are conducted on a workstation containing

four Intel Xeon E5-2620 CPU (24-Core in total operate at

2.00Ghz) with 32GB RAM and two Nvidia Tesla K-20Xm

GPUs (0.73 GHz, 5,760MB global memory). It is running

the GNU/Linux operation system with kernel version 2.6.32.

Testing applications are implemented with C++11 and CUDA

6.5 and compiled with g++ and NVCC compiler in CUDA

Toolkit 6.5.

K-20Xm is based on Kepler GK110 architecture. A simpli-

fied architecture is shown in Figure 9. Each GK110 consists

of 15 streaming-multiprocessors unit (SMX) and can execute

thousands of light-weighted threads concurrently. By using

Fig. 9. Simplified View of K-20 GPU

Fig. 10. Kepler Memory Hierarchy

the CUDA programming model, all these threads are mapped

onto GPU cores. This allows up to 512 threads to be grouped

into thread blocks that are then assigned to SMX, scheduled

to work concurrently in groups of 32 threads, called warps.

Figure 10 shows Kepler architecture’s memory hierarchy. Each

thread is assigned some registers whereas each warp has one

program counter. Hence, all threads within the same blocks

can access the common shared memory, which eases the

synchronization of threads in same blocks and also facilitate

extensive reuse of on-chip data, greatly reducing off-chip

traffic. Extremely fast context switch among threads in a warp

can help tolerate memory access latency.

In a computer system with multiple GPUs, Nvidia GPUDi-

rect is the technique used to handle inter-GPU communication

within a single system, so network adapters and storage

devices can directly read and write data in the GPU device

memory, eliminating unnecessary copies in system memory

(on the CPU side) to achieve significant performance improve-

ment in data transfer. High-speed DMA engines enable this

inter-GPU communication within similar systems.

Experimental Results

The first benchmark program is a Word Count application

with data size varying from 32MB to 256MB. Both CPU

MapReduce and GPU MapReduce (MR-Graph) are imple-

mented and compared. As shown in Figure 11(a), due to the

GPU communication overhead, CPU MapReduce outperforms

GPU one (MR-Graph) when test case is relatively small.

However, as dataset increases in MR-Graph, the computing

power gained from GPU starts to surpass the communication

overhead. Figure 11(b) shows the pure computation time

comparison between them. As dataset gets larger, MR-Graph

finishes job exponentially faster then CPU MapReduce.

(a) Overall Performance (b) Computing Time Comparison

Fig. 11. Performance Profiling

The second experiment is about an application which in-

tends to solve a real world problem. IT department in an

organization such as Enterprise or University often needs to

analyze their web logs for information related to their website.

It is convenient to use MapReduce as the programming model

to process pile of web logs. A list of the most popular websites

or peak visiting time often means a lot for future develope-

ment. The first action is to find a list of the most frequently

accessed URLs. In addition, popular webpages usually need

to be categorized by their departments, and finally the peak

visiting time for each webpage should be reported. Traditional

MapReduce has to split this job into three tasks: first, URLs

from the web logs are sorted out by number of visit; then

based on the results, top k web sites for each departments are

categorized(k is the threshold value); finally the peak visiting

time for every webpage in the list will be reported. However,

processing data in three separate MapReduce tasks not only

requires to write an inefficient scripting language program on

shell, but also spends more time on data transfer between

file systems and memory. Intermediate data are definitely not

reused.

Fig. 12. MR-Graph for Intricate Web-log Analysis

MR-Graph handles this whole job in a natural and efficient

way. As shown in Figure 12, first MapReduce stage will gen-

erate the top k frequently visited pages, then second stage will

categorize the list; the third MapReduce stage will calculate

the peak visiting time for each webpage in the categorized

list; and the final stage will gather the results and format

them for the final result. Since all the intermediate data can

be kept in GPU memory, no data migration is needed during

the execution.

(a) MR-Graph Performance Profile (b) Data Location

Fig. 13. Performance Measurement on Web Log Analysis

Our test case size varies from 100 to 1 million of records.

During the experiment, MR-Graph shows that its well main-

tained construction has negligeable impact on the overall

performance. Figure 13(a) shows MR-Graph’s performance

profiling. GPU computation only takes one-tenth of data

communication time for web log analysis. After measuring the

breakdown of the overhead caused by all major components

in the system, MR-Graph shows excellent stablility during

the experiment. The overhead caused by MR-Graph takes at

most 1/10th of the computation time or 1/100th of the overall

execution time, and remains stable as datasize increase.

Compared with the traditional MapReduce approach, MR-

Graph effectively utilizes the memory hierarchy to keep all

reusable data closer GPU global memory. By avoiding redun-

dent communication, MR-Graph greatly improves the overall

performance. For a comparison, Figure 13(b) shows that when

each MapReduce stage always sends data back to file systems,

the execution time will be at least 4 times longer for the same

job.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a customizable and unified GPU

MapReduce framework, MR-Graph which enables users to

deploy their applications based on three major MapReduce

modes. Map-Reduce pair can be duplicated horizontally and

extended vertically so that the restriction in the original

MapReduce is removed. With a three-tier memory hierarchy,

intermediate data are placed close to GPU and do not need

to be transferred back and forth for better data reusabil-

ity. MR-Graph is also ready for Big Data processing since

oversized data can be moved out of GPU memory to CPU

memory or even hard disks. MR-Graph’s runtime system uses

Job Control Unit to handle task execution order and data

input/output. Unified Execution Unit helps accelerate user-

defined Map and Reduce functions as well as system-default

Sort functions. Experimental results have demonstrated that

MR-Graph framework works for real cases and has effectively

controlled its construction overhead while maintaining the

necessary configurability.

MR-Graph intends to explore the customizability of the

MapReduce model and open as many configurable options to

users as possible. However the tradeoff is the development

agility. The future work includes reducing users’ configu-

ration efforts, improving MR-Graph’s performance through

multi-GPU [1] [16] [17], benchmarking computation-intensive

applications [18] and effectively using shared memory [15].

MR-Graph can be a promising candidate for solving complex

applications through MapReduce paradigm in GPU Clouds.

REFERENCES

[1] Y. Chen, Z. Qiao, S. Davis, H. Jiang, and K.-C. Li, “Pipelined multi-
gpu mapreduce for big-data processing,” in Computer and Information

Science. Springer, 2013, pp. 231–246.
[2] J. Dean and S. Ghemawa, “Mapreduce: Simplied data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107 –
113, 2008.

[3] Apache Spark. [Online]. Available: http://spark.apache.org/
[4] Apache Flink. [Online]. Available: https://flink.apache.org/
[5] “Tutorial: Spark-gpu cluster dev in a notebook,” 2014. [Online].

Available: http://iamtrask.github.io/2014/11/22/spark-gpu/
[6] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a

mapreduce framework on graphics processors,” in Proceedings of the

17th international conference on Parallel architectures and compilation

techniques. ACM, 2008, pp. 260–269.
[7] J. A. Stuart and J. D. Owens, “Multi-gpu mapreduce on gpu clusters,”

in Proceedings of the 2011 IEEE International Parallel & Distributed

Processing Symposium, 2011, pp. 1068–1079.
[8] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and

G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings

of the 19th ACM International Symposium on High Performance Dis-

tributed Computing, 2010, pp. 810–818.
[9] C. Goncalves, L. Assuncao, and J. C. Cunha, “Data analytics in the

cloud with flexible mapreduce workflows.” in CloudCom. Citeseer,
2012, pp. 427–434.

[10] P. K. Mantha, A. Luckow, and S. Jha, “Pilot-mapreduce: an extensible
and flexible mapreduce implementation for distributed data,” in Proceed-

ings of third international workshop on MapReduce and its Applications

Date, 2012, pp. 17–24.
[11] NVIDIA CUDA Programming Guide 6.5. [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
[12] Thrust. [Online]. Available: https://developer.nvidia.com/Thrust
[13] R. Tudoran, A. Costan, and G. Antoniu, “Mapiterativereduce: a frame-

work for reduction-intensive data processing on azure clouds,” in
Proceedings of third international workshop on MapReduce and its

Applications Date. ACM, 2012, pp. 9–16.
[14] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,

and X. Qin, “Improving mapreduce performance through data placement
in heterogeneous hadoop clusters,” in IEEE International Symposium

on Parallel & Distributed Processing, Workshops and Phd Forum

(IPDPSW). IEEE, 2010, pp. 1–9.
[15] L. Chen and G. Agrawal, “Optimizing mapreduce for gpus with effective

shared memory usage,” in Proceedings of the 21st international sympo-

sium on High-Performance Parallel and Distributed Computing, 2012,
pp. 199–210.

[16] Y. Chen, Z. Qiao, H. Jiang, K.-C. Li, and W. W. Ro, “Mgmr: Multi-gpu
based mapreduce,” in Proceedings of the 8th International Conference

on Grid and Pervasive Computing, 2013.
[17] H. Jiang, Y. Chen, Z. Qiao, K.-C. Li, W. Ro, and J.-L. Gaudiot,

“Accelerating mapreduce framework on multi-gpu systems,” Cluster

Computing, vol. 17, no. 2, pp. 293–301, 2014.
[18] W. Jiang and G. Agrawal, “Mate-cg: A map reduce-like framework for

accelerating data-intensive computations on heterogeneous clusters,” in
IEEE 26th International Conference on Parallel & Distributed Process-

ing Symposium (IPDPS). IEEE, 2012, pp. 644–655.

