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Abstract—The ever increasing data demand has led to the
significant increase of energy consumption in cellular networks.
In this paper, we study the problem of energy cost saving
in heterogenous cellular networks with hybrid energy supplies.
Owing to the diversities of mobile traffic and renewable energy,
the energy cost saving problem involves both temporal and spatial
dimensional optimization. We decompose the whole problem into
three sub-problems and correspondingly our proposed solution
is divided into three parts: First, we obtain average estimated
energy consumption profiles for all base stations; Second, we
allocate the green energy for each base station to minimize its
energy cost based on its estimated energy consumption profile;
Third, given the allocated green energy in the current slot, we
perform the user association to minimize the total energy cost of
the network. Simulation results demonstrate that our proposed
algorithm can significantly reduce the total energy cost.

I. INTRODUCTION

With the ever-increasing of data traffic, wireless cellular

networks have been bound to produce huge energy consump-

tion [1], [2]. Particularly, base stations (BSs) consume more

than 50 percent of the energy, as shown in the breakdown

of power consumption in a typical cellular network [3]. The

rising energy costs have made more and more researchers

and engineers focus on the solutions to address the energy

efficiency in wireless communications.

An attractive approach is to deploy heterogeneous networks,

in which macro BSs provide large coverage generally, and one

or more low power pico BSs cover a small area with dense

traffic [4]. Such joint deployment of macro cells and pico cells

can achieve 60% reduction of the overall energy consumption,

compared with the conventional homogeneous deployment [3].

Based on the heterogeneous network architecture, many energy

saving strategies have been proposed [5]–[9]. For example,

the authors [9] sought an optimal macro/micro BS density for

energy-efficient heterogeneous cellular networks. It provides

theoretic analysis for energy efficient cellular network plan-

ning and dynamic operation control. Besides, authors in [8]

investigated an energy-efficient dynamic network selection for

users, balancing the data rate and power consumption.

Another emerging solution is the green cellular network

powered by renewable energy sources, such as wind and

solar [10]–[16]. In [17], Piro et al. demonstrated that a

heterogeneous network with renewable energy could be an

effective and sustainable solution, through evaluations of en-

ergy costs and CO2 emissions savings for different scenarios.

Liu et al. [13] proposed an adaptive user association in the

green heterogeneous networks, maintaining a good tradeoff

between the number of accepted user equipments and the radio

resource consumption. Han and Ansari [11] proposed energy

allocation and balancing algorithms in order to reduce the on-

grid energy consumption in homogeneous networks powered

by hybrid energy supplies. In [10], a two-stage dynamic

programming algorithm has been proposed to minimize the

average grid power consumption while satisfying the users’

blocking probability requirements, adapting BSs’ on-off states,

active resource blocks as well as renewable energy allocation.

Kong and Wang [14] proposed to reassign users originally

associated with on-grid energy powered BSs to green pico

BSs powered by renewable energy or macro BSs in green

heterogeneous networks, so to make the best of green energy

for energy cost saving. However, these works do not take into

consideration the optimal utilization of green energy according

to the green energy generation profile and the network traffic

statistics. In [18] the authors proposed a joint user association

and green energy allocation algorithm to lexicographically

minimize the on-grid energy consumption in an offline manner

without considering the difference between predicted and

realistic mobile traffic.

In this paper, we aim to achieve the efficient utilization

of green energy for the total energy cost minimization in a

green heterogeneous network, where BSs can be powered by

either on-grid energy or green energy. Owing to the temporal

and spatial diversities of mobile traffic and renewable energy,

we decompose this problem into three sub-problems: the

total energy minimization problem, green energy allocation

problem, and user association problem. Our solution consists

of three algorithms to solve the three sub-problems accord-

ingly. They are the energy consumption estimation (ECE)

algorithm, green energy allocation (GEA) algorithm, and user

association (UAC) algorithm. In the ECE algorithm, we obtain

a minimum estimated energy consumption profile for each

BS based on the mobile traffic statistics. Given the estimated

energy consumption profile, the GEA algorithm optimizes the
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Fig. 1. An example green heterogeneous cellular network architecture.

green energy allocation across different time slots to minimize

the energy cost for each BS overall time slots. The ECE and

GEA algorithms are offline algorithms based on the historical

mobile traffic and green energy generation statistics. The UAC

algorithm is an online algorithm to decide the user-BS associ-

ation in each time slot based on the allocated green energy and

the practical user distribution. We conduct simulations for a

seven-cell heterogeneous network and compare the proposed

solution with the recent peer algorithms. Simulation results

demonstrate that our proposed one can significantly reduce

the total energy cost.

The rest of the paper is organized as follows: Section II

presents the system model, and the problem formulation is

provided in Section III. The proposed solution is presented in

Section IV and evaluated in Section V. Finally, the paper is

concluded in Section VI.

II. SYSTEM MODEL

A. Network Model

In this paper, we consider a heterogeneous cellular network

consisting of both macro BSs and pico BSs. Each macro

BS covers a larger area, and each pico BS within a macro

cell covers a smaller area. Mobile users are assumed to be

evenly distributed in the network. For energy supply, all the

BSs in our model are powered by both on-grid energy and

renewable energy sources. We consider to use solar panels as

the source of green energy. Fig. 1 illustrates an example green

heterogeneous network with hybrid energy supplies.

Let N1, N2, and M denote the set of macro BSs, pico BSs

and mobile users, respectively. |N1| = N1, |N2| = N2, and

|M| = M . We use N = {1, 2, · · · , N} to denote the set of all

BSs in the network, i.e., N =N1∪N2, and N = N1+N2. We

use the subscript i ∈ N to denote the i-th BS 1, and j ∈ M
index the j-th user. The operational time of our algorithm is

divided into K = |K| time slots, the length of each time slot

is τ seconds and k ∈ K denotes the k-th time slot.

B. Traffic Model

The mobile traffic shows both temporal and spatial diversi-

ties [19]. In the temporal domain, individual BS exhibits high

1Without specifically stated, a BS can be either a macro BS, or a pico BS.

traffic dynamics over time. We can find that the peak hour

spans from 10 AM to 6 PM, and off peak hours are from 1 AM

to 5 AM. However, the traffic volume has near-term stability.

It is almost constant over a short term like several minutes

of the same time in consecutive days. Thus, we can predict

the average traffic load across several time slots based on the

historical mobile traffic statistics. Here, we assume that each

user has the same data rate yet maybe with different service

durations. So the traffic volume at an BS can be equivalent to

the number of users served by this BS.

According to the temporal and spatial traffic dynamics, we

use a peak and off-peak temporal traffic model for mobile

users. The mean number of users in the peak period is much

larger than that in the off-peak period. In each period, the

number of users is uniformly distributed around the mean

value. In the spatial domain, we assume that mobile users

are randomly distributed in the area.

C. Data Transmission Model

In this paper, we focus on the downlink data trans-

mission as the main energy consumption of all BSs. Let

X = {X1,X2, ...,XK} be the user-BS association matrix.

We use Xk to denote the user-BS association relationship at

the k-th time slot. And the element Xk(i, j) stands for the

connection relationship between user j and BS i at the k-th

time slot, i.e.,

Xk (i, j) =

{

1, user j is served by BS i,
0, otherwise.

(1)

Note that a user in the system can be associated with

only one BS, either a macro BS or a pico BS. That is,
∑

i∈N Xk (i, j) = 1, ∀j ∈ M, ∀k ∈ K.

For simplicity, we ignore the time slot index k in this sub-

section below. During the connection period, according to the

Shannon Theorem, we can obtain the downlink transmission

data rate of user j:

Rj = Wi,j log2(1 +
gi,jPi,j

N0Wi,j

), (2)

where Pi,j is the transmission power of BS i for user j data

transmission, and gi,j is the channel gain between user j and

BS i, which in general includes path loss, shadowing and

antenna gain. N0 denotes the noise power level. And Wi,j

is the bandwidth of user j allocated by its associated BS i. To

reduce the computational complexity, we adopt a simple equal

share strategy to allocate the available bandwidth of each BS

to its associated users. We use Li =
∑

j∈M

Xk (i, j) to denote

the number of users served by the BS i. So the bandwidth

allocated for any user j of its associated users can be computed

by Wi,j =
Wi

Li
, where Wi is the available bandwidth of BS i.

D. Energy Consumption Model

In this paper, we assume that each user has the same

data rate requirement R0 when admitted to the network. But

different users may have different service time because of their

different traffic demands. Then by letting Rj = R0, we can



obtain the transmission power for data transmission of user j
from its associated BS i:

Pi,j =
N0Wi,j(2

R0/Wi,j − 1)

gi,j
. (3)

The total transmission power of BS i at the k-th time slot is:

Pi,k =
∑

j∈M

Xk (i, j)Pi,j . (4)

The total power consumption of BS i is calculated by

P total
i,k = Pi,k + P0. (5)

Considering a short single time slot, we assume that BS i is

in the active status all the time. And P0 is the fixed circuit

power consumption for the BS i. The energy consumption of

BS i at the k-th time slot is given by

Ci,k = P total
i,k τ. (6)

III. PROBLEM FORMULATION

At the beginning of the k-th time slot, the stored green

energy at BS i is denoted by Ei,k, which is determined by the

energy consumption and generation of the previous time slot.

For each BS i, Ei,k evolves to time period k + 1 as

Ei,k+1=Ei,k+Ph
i,kτ − αi,kCi,k, ∀k ∈ {1, ...,K − 1}. (7)

Here, Ph
i,k is the energy harvesting power of BS i at the k-

th time slot, which can be predicted based on the historical

renewable energy statistics [20]. Ei,1 is the initial green energy

stored at BS i. Note that a BS has the sufficiently large battery

capacity, and we do not consider battery overflow. We assume

that each BS is powered by just one kind of energy at any

one time slot. Denote
−→

A = (A1, A2, · · · , Ai, · · · , AN ) as the

green energy allocation vector. And Ai is the green energy

allocation vector for the BS i during all time slots. Besides,

we use its element Ai,k to denote the energy allocation of BS

i at the k-th time slot, and Ai,k ≤ Ei,k+Ph
i,kτ . Let αi,k be

the indicator function of using which energy source:

αi,k =

{

1, Ai,k ≥ Ci,k,
0, Ai,k < Ci,k.

(8)

If αi,k = 1, BS i is powered by green energy at the k-th time

slot; Otherwise, this BS is powered by on-grid energy.

Different kinds of energy have different unit costs. Let λ and

µ denote the unit energy consumption cost for on-grid energy

and green energy, respectively. In general, the unit cost of

green energy is much cheaper than that of the on-grid energy,

and λ > µ ≥ 0. The energy cost of BS i at the k-th time slot

can be computed by

Ji,k = λ(1− αi,k)Ci,k + µαi,kCi,k. (9)

According to the analysis in Section II, we can obtain

that the energy consumption of each BS is dependent on its

associated users, i.e., user-BS association matrix Xk(i, j). As

the unit cost of green energy is cheaper than that of the on-grid

energy, if the BSs which have sufficient green energy could

serve more users, the total energy cost of the whole network

could be much saved. So the green energy allocation vector
−→

A

is also a key factor which affects the total energy cost. Thus,

our objective is to find one user-BS association matrix X and a

green energy allocation vector
−→

A with the least energy cost,

yet satisfying the network QoS requirements. We formulate

the total energy cost saving (ECS) problem as a constrained

optimization problem as follows:

min
X,

−→
A

J = min
X,

−→
A

K
∑

k=1

N
∑

i=1

Ji,k. (10)

subject to:

(c1) Pi,k ≤ Pmax
i , ∀i ∈ N , ∀k ∈ K

(c2)
∑

i∈N

Xk (i, j) = 1, ∀j ∈ M, ∀k ∈ K

(c3) Xk (i, j) ∈ {0, 1}, ∀j ∈ M, ∀i ∈ N , ∀k ∈ K
(c4) Ai,k ≤ Ei,k+Ph

i,kτ, ∀i ∈ N , ∀k ∈ K
(c5) Rj = R0, ∀j ∈ M
(c6) λ > µ ≥ 0.

The constraint (c1) is the maximum transmission power budget

for each BS. The constraints (c2) and (c3) ensure that each user

should be associated with one and only one BS. The constraint

(c4) states that the green energy allocation of each BS cannot

exceed the sum of its stored green energy and the amount of

energy generated at the current time slot. The constraint (c5)

is the data rate requirement for each user.

However, due to the dynamics of renewable energy and

mobile traffic, the above minimization problem involves both

spatial and temporal optimization. On the one hand, we have to

balance mobile traffic among BSs within the whole system in

the space dimension in each time slot. On the other hand, the

green energy allocation across different time slots also have to

be optimized. To approach this temporal-spatial optimization,

we decompose the ECS problem into three subproblems: The

first sub-problem aims to minimize the total energy consump-

tion in the spatial domain by load balancing. The second

sub-problem is to optimize green energy allocation for each

BS in the temporal domain. The third sub-problem performs

user association, with the given allocated green energy in the

current slot, to minimize the total energy cost.

A. Total Energy Minimization Problem

At first, we consider to minimize the total energy consump-

tion by ignoring the energy costs of different energy sources.

The unbalanced user association in a time slot may result in

an increased total energy consumption. To minimize the total

energy consumption, we need to balance the mobile traffic

among different BSs. By doing so, we can obtain the estimated

energy consumption profiles for all BSs in all time slots based

on the mobile traffic statistics. This problem can be formulated

as follows:

min
X

K
∑

k=1

N
∑

i=1

Ci,k. (11)

subject to: (c1), (c2), (c3), (c5).



B. Green Energy Allocation Problem

For one BS, we can optimize its green energy allocation

across different time slots based on its estimated energy

consumption profile, so as to minimize its total energy cost

over all time slots. The green energy allocation for one BS

can be expressed as the following problem:

min
Ai

(Ji,1, ..., Ji,k, ...Ji,K), ∀i ∈ N . (12)

subject to: (c4), (c6). By optimizing green energy allocation

for each BS across all time slots, the total energy cost
K
∑

k=1

N
∑

i=1

Ji,k of the whole network during the operational time

can also be minimized.

C. User Association Problem

The green energy allocation vector obtained above is based

on the estimated energy consumption profile from mobile traf-

fic statistics. But in practice, the user distribution in each time

slot may have some variation. Therefore, with the guideline

of the green energy allocation vector, we need to perform user

association based on practical user distribution in each time

slot, so as to further minimize the total energy cost. The user

association problem can be formulated as follows:

min
X

K
∑

k=1

N
∑

i=1

Ji,k. (13)

subject to: (c1), (c2), (c3), (c5).

IV. THE PROPOSED SOLUTION

Corresponding to the above three sub-problems, the pro-

posed solution is divided into three parts, namely, the energy

consumption estimation (ECE) algorithm, green energy alloca-

tion (GEA) algorithm and user association (UAC) algorithm.

A. Energy Consumption Estimation Algorithm

Considering the near-term stability of mobile traffic, we can

estimate the total energy consumption based on the historical

mobile traffic statistics. In the proposed ECE algorithm, we

aim to obtain the estimated energy consumption profile for

each BS. Here, given one instance of user distribution, we use

the nearest association scheme and calculate the total energy

consumption. In this way, each individual user is associated

with its nearest BS, so we can obtain a minimum total energy

consumption. Algorithm 1 provides the pseudo-codes for the

ECE algorithm.

Denote Li,k as the associated user set of BS i at the k-th

time slot. Let Ce
i,k indicate the estimated energy consumption

of BS i at the k-th time slot. For each time slot k, ∀k ∈ K, each

user j ∈ M is associated with the BS i∗ with the maximum

channel gain (MCG) (line 2 to 7 in Algorithm 1). Therefore,

each user is served with the minimum energy consumption.

Then we calculate the energy consumption Ce
i,k for each BS

at each time slot (line 8 to 12 in Algorithm 1). Note that this

algorithm should be executed many times to obtain the average

estimated energy consumption profile Ca
i,k for each BS at each

time slot.

Algorithm 1 The ECE Algorithm

1: Generate an instance of user distribution;

2: for k = 1; k ≤ K; k ++; do

3: Initialize Li,k = ∅, ∀i ∈ N ;

4: for each user j ∈ M do

5: i∗ = argmax
i∈N

gi,j , Li∗,k = Li∗,k ∪ {j};

6: end for

7: end for

8: for k = 1; k ≤ K; k ++; do

9: for each BS i ∈ N do

10: Calculate Ce
i,k;

11: end for

12: end for

13: Return Ce
i,k, ∀i ∈ N , ∀k ∈ K.

B. Green Energy Allocation Algorithm

Based on the green energy generation model and the average

estimated energy consumption profile, we need to obtain the

green energy allocation vector to minimize the energy cost

of each BS over all time slots. However, the green energy

generated at one time slot cannot be used at its previous time

slot. In addition, the total available green energy in one time

slot depends on the green energy generated at the current time

slot and the residual green energy from previous time slots.

In order to reduce the energy cost of the current time slot, we

need to change the green energy allocation in the previous time

slots. Our proposed GEA algorithm is provided in Algorithm

2.

Let Je
i,k be the estimated energy cost of BS i at the k-

th time slot. Here, to reduce the operational complexity, the

energy cost mode can be simplified as Je
i,k = Ca

i,k − Ai,k.

Then we initialize the green energy allocation as follows:

Ai,k =

{

Ei,1 + Ph
i,1τ , k = 1,

Ph
i,kτ , k > 1,

(14)

and calculate Je
i,k (line 1 in Algorithm 2). For each BS i ∈ N ,

if its energy cost at one time slot is larger than that at the

previous time slot, i.e., Je
i,m > Je

i,m−1, then we find the n-th

time slot from the 1st to (m−1)-th time slot, such that Je
i,n <

−

Je (line 5 to 10 in Algorithm 2). Here,
−

Je is the average energy

cost for BS i from the n-th time slot to the m-th time slot.

When Je
i,n >

−

Je, we find such n-th time slot to prevent green

energy from being allocated to the initial n-th time slot for the

’equal sharing’ of total energy cost across different time slots.

In this way, from the n-th to the m-th time slot, we decrease

for Je
i,n <

−

Je (or increase for Je
i,n ≥

−

Je) the green energy

allocation Ai,k with an amount of |Ai,k − Ca
i,k +

−

Je| to make

Je
i,k equal to

−

Je (line 11 to 17 in Algorithm 2). After the GEA

algorithm, we can see Je
i,m ≤ Je

i,k, ∀k ∈ {1, 2, ...,m− 1}.



Algorithm 2 The GEA Algorithm

Input: Ca
i,k, Ei,1, Ph

i,k, ∀i ∈ N , ∀k ∈ K, τ ;

Output: Ai,k, ∀i ∈ N , ∀k ∈ K;

1: Initialize Ai,k, and calculate Je
i,k;

2: for each BS i ∈ N do

3: for m = 2; m ≤ K; m++; do

4: if Je
i,m > Je

i,m−1 then

5: for n = 1; n ≤ m− 1; n++; do

6: Calculate
−

Je =

m∑

k=n

Je
i,k

m−n+1 ;

7: if Je
i,n <

−

Je then

8: t=n; Break;

9: end if

10: end for

11: for n = t; n ≤ m; n++; do

12: if Je
i,n <

−

Je then

13: Decrease Ai,n to let Je
i,n =

−

Je;

14: else

15: Increase Ai,n to let Je
i,n =

−

Je;

16: end if

17: end for

18: end if

19: end for

20: end for

C. User Association Algorithm

The ECE and GEA are offline algorithms in order to

obtain the estimated energy consumption profiles and green

energy allocation vectors, respectively. Owing to the difference

between predicted and realistic mobile traffic, we need to

execute user association at each time slot based on the current

user distribution. We next propose an online user association

algorithm, which consists of three phases.

Phase one: In this phase, we first obtain an initial user-BS

association scheme by letting each user to be associated with

its nearest BS without violating the constraint (c1). Algorithm

3 provides the pseudo-codes for the first phase of the UAC

algorithm. For each time slot k, ∀k ∈ K, each user j is served

by the BS i∗ with the maximum channel gain (line 3 to 5 in

Algorithm 3). Then, we calculate the total transmission power

Pi,k for each BS i. When it violates the maximum transmission

power budget, i.e., Pi,k > Pmax
i , we throw out the user j∗ ∈

Li,k to the BS n ∈ N\{i} iteratively, until the power budget

constraint can be satisfied (line 8 to 17 in Algorithm 3). Here,

user j∗ has the minimum channel gain difference gi,j − gn,j ,

that is, among available user j ∈ Li,k, user j∗ is the closest

to one of its neighbor BS n ∈ N\{i} (line 9 in Algorithm 3).

We calculate the Pn,k. If the BS n does not violate the power

budget constraint, we associate j∗ to BS n; Otherwise, we do

not consider user j∗, and set gi,j∗ − gn,j∗ = +∞ to prevent

it being selected again (line 11 to 15 in Algorithm 3).

Phase two: After the first phase, we can obtain an initial

user association scheme. However, it does not consider the

Algorithm 3 The UAC phase one

1: for k = 1; k ≤ K; k ++; do

2: Initialize Li,k = ∅, ∀i ∈ N ;

3: for each user j ∈ M do

4: i∗ = argmax
i∈N

gi,j , Li∗,k = Li∗,k ∪ {j};

5: end for

6: for each BS i ∈ N do

7: Calculate Pi,k;

8: while Pi,k > Pmax
i do

9: j∗ = argmin{gi,j−gn,j |gi,j > gn,j , j ∈ Li,k, n ∈
N\{i}}, and Li,k = Li,k\{j

∗}, Ln,k = Ln,k ∪
{j∗};

10: Calculate Pi,k and Pn,k;

11: if Pn,k ≤ Pmax
n then

12: Update Li,k and Ln,k;

13: else

14: Li,k = Li,k ∪ {j∗}, Ln,k = Ln,k\{j
∗} and set

gi,j∗ − gn,j∗ = +∞;

15: end if

16: Recalculate Pi,k and Pn,k;

17: end while

18: end for

19: end for

20: Return Pi,k, Li,k, ∀i ∈ N , ∀k ∈ K.

green energy allocation for each BS. To make the best of

the green energy, it is possible to make BSs with sufficient

allocated green energy to serve more users. Meanwhile, con-

sidering the larger energy consumption of macro BS, we

first take measure to guarantee macro BSs powered by green

energy.

Let αi,k indicate whether a BS i is powered by green energy.

If αi,k = 1, then it is powered by green energy, or called a

green BS; Otherwise, it is not, or called an on-grid BS. Denote

S as the green BS set, in which all BSs are powered by green

energy. In the second phase, for each time slot k ∈ K, if the

energy consumption of macro BS i ∈ N1 is larger than its

green energy allocation, we will throw out some appropriate

user j∗ ∈ Li,k as the same way in the first phase, until it can

be powered by green energy, i.e., Ci,k ≤ Ai,k (line 4 to 7 in

Algorithm 4). We next check which BS can be powered by

green energy, and put green BS into the set S (line 8 to 11 in

Algorithm 4). For each BS i ∈ N , if it has sufficient allocated

green energy, i.e., Ci,k ≤ Ai,k, it will ’deprive’ other BSs of

a user j∗ iteratively, until its allocated green energy becomes

zero (line 12 to 34 in Algorithm 4). If one user j is served

by green BS, we will set gi,j = 0 (line 14 to 18 in Algorithm

4) in advance. Here, we select the user j∗ with the maximum

channel gain among all gi,j , ∀j ∈ M, and find the BS n
with which it is associated. Before the user j∗ is deprived, we

calculate Ji,k and Jn,k, and let Jb
i,k = Ji,k and Jb

n,k = Jn,k
record their energy costs before the deprivation, respectively

(line 19 to 20 in Algorithm 4). Assuming that the user j∗

is associated to BS j, we calculate Ci,k, Cn,k, Ji,k and Jn,k



Algorithm 4 The UAC phase two

1: for k = 1; k ≤ K; k ++; do

2: Initialize S = ∅;

3: Calculate Ci,k, ∀i ∈ N ;

4: while Ci,k > Ai,k, ∀i ∈ N1 do

5: Find appropriate user j∗ and BS n, j∗ =
argmin{gi,j − gn,j |gi,j > gn,j , j ∈ Ln,k, n ∈
N\{i}};

6: Set Li,k = Li,k\{j
∗}, Ln,k = Ln,k ∪ {j∗};

7: end while

8: for each BS i ∈ N do

9: Calculate Ci,k, and check whether it can be powered

by green energy;

10: Put green BS into set S , S = S ∪ {i};

11: end for

12: for each BS i ∈ N do

13: while Ci,k ≤ Ai,k do

14: for each user j ∈ M do

15: if the user j is served by BS m ∈ S then

16: set gi,j = 0;

17: end if

18: end for

19: j∗ = argmax{gi,j |j ∈ M};

20: Find the BS n which the user j∗ is associated with,

calculate Ji,k and Jn,k, and make Jb
i,k = Ji,k, Jb

n,k

= Jn,k;

21: Set Li,k = Li,k ∪ {j∗}, Ln,k = Ln,k\{j
∗};

22: if αn,k == 0 then

23: Calculate Ci,k, Cn,k, Ji,k and Jn,k;

24: if Ci,k ≤ Ai,k && Ji,k + Jn,k ≤ Jb
i,k + Jb

n,k

then

25: Update Li,k and Ln,k;

26: if Cn,k ≤ An,k then

27: αn,k = 1, and S = S ∪ {n};

28: end if

29: else

30: Li,k = Li,k\{j
∗}, Ln,k = Ln,k ∪ {j∗}, and

break;

31: end if

32: end if

33: end while

34: end for

35: end for

36: Return Ji,k, Li,k, ∀i ∈ N , ∀k ∈ K.

when the BS n is an on-grid BS. If the energy consumption of

BS i is less than its allocated green energy and now the total

energy cost of BS i and BS n is decreasing, i.e., Ci,k ≤ Ai,k

and Ji,k + Jn,k ≤ Jb
i,k + Jb

n,k, we associate the user j∗ to

the BS i and check whether the BS n can be powered by

green energy; Otherwise, we abandon the association of the

user j∗ with the BS i, and break (line 24 to 31 in Algorithm

4). Algorithm 4 provides the pseudo-codes for second phase

of the UAC algorithm.

Algorithm 5 The UAC phase three

1: for each BS i ∈ N do

2: for k = 1; k ≤ K; k ++; do

3: if Ci,k ≤ Ai,k then

4: Ai,l = Ai,l(1 +
Ai,k−Ci,k

K∑

l=k+1

Ai,l

), l ∈ {k + 1, ...,K};

5: end if

6: if Ai,k < Ci,k ≤ Ei,k + Ph
i,kτ then

7: αi,k = 1;

8: Ai,l = Ai,l(1−
Ci,k−Ai,k

K∑

l=k+1

Ai,l

), l ∈ {k + 1, ...,K};

9: end if

10: if Ci,k > Ei,k + Ph
i,kτ then

11: Ai,l = Ai,l(1 +
Ai,k

K∑

l=k+1

Ai,l

), l ∈ {k + 1, ...,K};

12: end if

13: end for

14: end for

15: Return Ai,k, αi,k, ∀i ∈ N , ∀k ∈ K.

Phase three: In the third phase, we need to adjust green

energy allocation again for each BS to achieve efficient

utilization of allocated green energy, based on the user-BS

association scheme derived from the second phase. Algorithm

5 provides the pseudo-codes for this phase of the UAC

algorithm. For each BS i ∈ N , at the k-th time slot, if

it has sufficient allocated green energy, the residual energy

(Ai,k − Ci,k) is allocated at the following time slots (line 1

to 5 in Algorithm 5). If Ai,k < Ci,k ≤ Ei,k + Ph
i,kτ , we

can see that there are enough green energy in the batteries, so

we increase Ai,k equal to Ci,k (line 6 to 9 in Algorithm 5).

Thus, the BS i is powered by green energy, but we have to

decrease the energy allocation in the following time slots. If

Ci,k > Ei,k+Ph
i,kτ , the BS i only can be powered by on-grid

energy, and the allocated green energy at this time slot have

to be allocated to the following time slots (line 10 to 12 in

Algorithm 5). Note that the energy increments (decrements) in

the following time slots above are proportional to the amount

of allocated green energy at each time slot.

V. SIMULATION RESULTS

In our simulations, we consider a 2-tier heterogeneous

network consisting of 7 macrocells. There are 4 pico BSs

evenly distributed within each macrocell. All BSs are powered

by both on-grid energy and renewable energy. The radius of

a macrocell is 600m; While the distance between the centers

of pico BSs and macro BS is around 0.6 times of the macro

cell radius. The required date rate of each user is 10Mbps, and

each BS is with 20MHz available bandwidth.

In the simulations, the maximum transmission powers of a

macro BS and pico BS is 46dBm and 30dBm, respectively, and

the value of fixed power expenditure are 23dBm and 20dBm,

respectively. The path loss models are set according to [21]:

L(d) = 128.1+37.6 log(d) and L(d) = 130.7+36.7 log(d) for
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Fig. 2. Traffic and green energy profiles versus different time slots.
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Fig. 3. Comparison of on-grid energy consumption against time slots.

macro BSs and pico BSs, respectively, where d is the distance

from a BS to its served user. The noise power level is set to

be N0 = −174dBm/Hz.

For the solar charging model, we use the PVWatts

model [20] to predict the hourly solar energy generation

in Beijing City. From the measurement report in [19], the

temporal characteristics of mobile traffic can be modeled as

two different periods: the peak period and off-pear period. In

the peak period, the number of users is uniformed distributed

around the mean value of 40 users; and in the off-peak period,

the mean value is 10 users. Furthermore, in the spatial domain,

mobile users are evenly distributed in the network. Fig. 2

illustrates an example of the green energy generation profile

and mobile traffic profile.

We execute our proposed algorithm for 24 hours, with each

time slot equal to τ = 600s. We compare our proposed

algorithm with the typical nearest association [22], and the

centralized user association (CUA) algorithm [14], in which

the BSs serve as many users as possible, as long as they have

sufficient green energy, to make the full utilization of the green

energy storage in each time slot.

Fig. 3 compares the on-grid energy consumption against

the time slots for the three algorithms. It can be seen that the

on-grid energy consumption of our proposed algorithm is the

smallest, and the on-grid energy is consumed in a more flat

way over the whole time duration. This is because we perform
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Fig. 4. Comparison of the total energy cost in different traffic profiles. λ =
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Fig. 5. Green energy consumption in different traffic profiles.

an optimized green energy allocation for individual BSs across

different time slots. So it can use green energy intelligently.

However, in the CUA algorithm and nearest association algo-

rithm, the on-grid energy consumption increases dramatically

from 16:00 to 20:00 in the afternoon, since the green energy

generation decreases rapidly during this time period, while

they don’t have enough stored green energy from the previous

time slots. Owing to the lower mobile traffic volume after

21:00, the on-grid energy consumption goes down sharply.

Fig. 4 compares the total energy cost in different traffic

profiles. The unit price of the on-grid energy and green energy

are set as λ = 1 and µ = 0, respectively. From the simulation

results, we can find that our proposed algorithm causes much

smaller energy cost than the other two algorithms, especially in

the peak period. This is because the proposed GEA algorithm

performs the green energy allocation optimization in the time

domain; while the others do not. Furthermore, we can further

maximize the green energy utilization in each time slot by the

proposed UAC algorithm.

Fig. 5 compares the green energy consumption over the time

slots in different traffic conditions. It is clearly observed that

the green energy consumption of our proposed algorithm and

the CUA algorithm are larger than that of the nearest asso-

ciation algorithm. This is due to that the two algorithms can

make the best use of the available green energy. Although the

CUA algorithm achieves larger utilization of green energy, its
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total energy cost is larger than that of our proposed algorithm.

This is because that it does not consider to optimize the green

energy utilization across different time slots. In other word,

it is a kind of myopic solution of only maximizing the green

energy utilization for only the current time slot, regardless

the traffic and charging dynamics in the time domain. Recall

that in Fig. 4, the CUA algorithm uses much more on-grid

energy in the peak period. But our proposed algorithm can

use more green energy than other algorithms at peak period.

This is due to that the proposed GEA algorithm can make

some reservation of green energy generated at off peak period

for more traffic requirement in the peak period.

Fig. 6 plots the total energy cost for different unit price

ratios, i.e., λ/µ. As seen from the figure, compared with

the CUA algorithm and nearest association algorithm, the

proposed algorithm achieves a much less total energy cost

when the unit price ratio is larger than 5. And the total energy

cost decreases with the increase of the unit price ratio. In

particular, when the unit price of green energy µ = 0, that

is, the green energy is free, it reaches to the highest energy

cost saving. In this case, the total energy cost of our proposed

algorithm, CUA algorithm and nearest association algorithm

are 1.01× 105, 2.87× 105 and 2.92× 105, respectively.

VI. CONCLUSION

In this paper, we have studied how to reduce the total energy

cost in a green heterogeneous cellular network with hybrid

energy sources. We first formulated a total cost minimization

problem and decomposed it into three sub-problems. We then

proposed our solution to solve these sub-problems, which

consists of the ECE algorithm, the GEA algorithm, and the

UAC algorithm. Simulation results have demonstrated the

effectiveness of the proposed algorithm in terms of much

reduced energy cost. We notice that the proposed solution

is a centralized one. In our next work, we will first design

a distributed solution and also take into consideration of

potential green energy generation interrupts as well as different

traffic QoS requirements.
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