
Towards Controller Placement for Robust
Software-Defined Networks

Sheng Guo∗†, Shu Yang∗, Qi Li∗, Yong Jiang∗
∗Graduate School at Shenzhen, Tsinghua University, Shenzhen, China, 518055

†Department of Computer Science and Technology, Tsinghua University, Beijing, China, 100084

Abstract—The core concept of software-defined network (SDN)
is the separation between control plane and date plane. SDN pro-
vides a programmatic interface to network control, significantly
simplifies network management and improves the efficiency of
network utilization. To further improve network performance,
scalability and reliability, it is recommended to deploy multiple
controllers in SDN. However, network performance would de-
grade if operators randomly deploy the controllers, especially in
the case of failure, e.g., router crashes, fiber cuts, etc.

In this paper, we try to optimally place controllers while
taking network failures into account. First, we formally define
two problems, 1) Controller Placement under Comprehensive
Network States (CPCNS) problem; and 2) Controller Placement
under Single Link Failure (CPSLF) problem. Secondly, We pro-
pose a network states traversal based algorithm, which optimally
solve the problem; and further propose another greedy-based
algorithm, which can solve the problem in polynomial time.
Finally, we evaluate the algorithms using real topologies and
empirical data. The results indicate that the new controller
placement strategies can significantly improve the performance
when link failures happen.

Index Terms—software-defined network, controller placement,
network optimization

I. INTRODUCTION

Recently Software-Defined Networks (SDN) has attracted

more and more attentions, due to its separated and cen-

tralized control plane logic, where a set of dedicated con-

troller instances each manages one or more simplified packet-

forwarding switches. A range of academic prototypes and

industry products have emerged, such as the plane of 4D

[1], [2] Ethane [3], OpenFlow-based controllers [4], [5] and

enterprise wireless controller with CAPWAP access points [6].

SDN greatly simplifies control plane design and improves

convergence. However, reliability and scalability should be

more carefully considered in SDN networks. Generally, there

are two interfaces in a controller: 1) the northbound interface

which propagates network state and receives control informa-

tion; 2) the southbound interface which communicates with

the switches. Logically, the controller works in a centralized

manner, and may become a choke point, especially in a large-

scale network, such as a WAN. The capacity of controllers,

including the CPU resources, memory, and input/output band-

width are limited. Therefore, to avoid being a bottleneck,

especially when link failures happen, multiple controllers are

necessary.

To further improve network performance, including latency

and robustness, operators should carefully place the controller

[7]. Moreover, the controller placement problem needs to be

more carefully designed when considering security issues, e.g.,

attack on the controllers, and link failures. In SDN networks,

the propagation delay between switches and controllers affects

flows setup time and network convergence time. Given an

arbitrary number of controllers, the random placement may

even degrade the network performance. Thus, an algorithm

is needed for network operators to compute the controller

placement, which leads to better performance, even when

failure happens. This is because failures can change network

topologies and degrade SDN performance. Fortunately, we are

not the first one to address the problem. However, optimizing

each metric is generally NP-hard, it is important to find an

efficient placement algorithm.

Traditional optimization based on worst case latency ignores

network failures. One of our simulation results shows that

the worst case latency changes within a wide range in the

case of failures and the minimum worst case latency hardly

acquired when link failures happen from another point of

view.Furthermore, a lot of works have been done to study the

features of network failures. They find that links differ widely

in their failure characteristics, which motivates us to explore a

SDN failure model and optimize controller placement decision

under this observation.

In this paper, we improve the network performance of SDN

by employing optimal controllers placement strategies, espe-

cially under network failures. We minimize the propagation

latency of control packets and formalize it as an optimal

problem. To address the problem in different network failure

scenarios, i.e., single failure and multiple failure scenarios,

we develop a SDN failure model to describe network failures

in SDN and formalize two optimization problems according

to the model, i.e., Controller Placement under Comprehensive

Network States (CPCNS) problem and Controller Placement

under Single Link Failure (CPSLF) problem, which are NP-

hard problems. Correspondingly, we put forward a network

states traversal based algorithm, which optimally solve the

problem. Furthermore, We propose a greedy algorithm to solve

the problem and implement controller placement strategies

with these algorithms. Finally, we evaluate the performance

of the algorithms by simulations using real topologies. The

simulation results demonstrate that the proposed controller

placement strategies provide good solutions to the problem

978-1-4673-8590-9/15/$31.00 ©2015 IEEE



we defined.

We make the following contributions in this paper:

1) we formalize a SDN failure analysis model to describe

network failures where network state latency is defined as the

optimization objective.

2) We develop two optimization problems to minimize

network state latency and propose two algorithms to solve

them and implement control placement strategies.

3) We evaluate our control placement strategies using real

topologies and observe that they can properly solve the prob-

lem.

II. BACKGROUND AND RELATED WORK

In SDN, the communication between the control plane and

data plane could utilize standard transport layer security (TLS)

or transmission control protocol (TCP). The whole control

plane formed by hundreds of controllers must keep connecting

with themselves in order to achieve a consistent global view

of the network state. Generally, the Link Layer Discovery

Protocol (LLDP) is applied to establish the communication

path between switch and controller. Once link failure happens,

switches at both ends of the failed link will try to report it to

control plane and the controller recomputes the communica-

tion path, which means the switch would not lose control as

long as there is one path working.

OpenFlow [8] is the most popular SDN prototype which

derives from an academic research project and has a wide

range of usage in industry, where a central OpenFlow con-

troller defines rules for switches how to forward packets, thus

enabling a centralized routing control. Applications that deal

with multiple controllers must carefully design the distribution

strategy and consistency model since some information may

need to be accessible from all controllers and data need to

be synchronized. OpenDaylight [9] is an open platform for

network programmability with clustering as an integral feature.

The first work motivated the controller placement problem

is [7]. The author points that in long propagation delay WANs,

the placement scheme places fundamental limits on availability

and convergence time and it has practical implications for

network design, affecting whether they must push forwarding

actions to forwarding elements in advance.

The logically single SDN control plane must maintain a

unique Network view upon the whole network through each

controller periodically synchronize their databases. Several

design scheme of SDN [5], [10], [11] try to support the

construction and interaction mechanism.

A lot of controllers have declared excellent performance

e.g., [12]–[14], propagation delay is not the only factor that

should be focused since the capacity of a controller is limited.

In [15], the author defines a capacitated controller placement

problem (CCPP), took the load of a controller into consid-

eration and introduced an effective algorithm to solve the

problem.

Normally, the mapping between a controller and a switch

is configured statically, which will become a key limitation

when considering the issues of scalability of the distributed

controllers. In [16], the author proposes an elastic distributed

controller architecture(ElastiCon), which dynamically assigns

switches to controllers according to traffic conditions. How-

ever, this does not mean the strategies of controller placement

is meaningless in this article since the locations of the con-

trollers impact the performance of networks and will become

more sensitive considering the issue of reliability.

In [17], the authors consider different aspects of the con-

troller placement problem, such as the maximum latencies

between nodes and controllers, failure tolerance issues as well

as load balancing, finding that the optimal values for the metric

quality and resilience are impossible to acquire simultaneously

time and trade-offs should be considered.

The most similar work to us is [18], the authors introduce

the Fault Tolerant Controller Placement Problem and present

a heuristic algorithm which computes controller placement

with at least five nines reliability. They find that each node

is required to connect to 2 or 3 controllers, which typically

provide ample reliability. The authors do not optimize the

propagation delay, however, which is a key factor to network

performance.

III. PROBLEM DEFINITION

A. Placement Constraints

For a network denoted by G(V ∪ F,E), where V =
{v1, v2, . . . , vn} is the set of nodes(switches or routers) and

F consists of the different facility locations where a controller

can be deployed (We assume every node to be a candidate of

the facility location, so we would not make the distinction

between F and E in the following chapters). E is the set

of physical links. eij = (vi, vj) ∈ E. , let n be the

number of nodes, i.e., n = |V |. The set of controllers is

denoted by Θ = {θ1, θ2, . . . , θk}. Each link eij ∈ E has a

cost(propagation delay) cij . If vi and vj are not neighbours,

cij =∞. The link failures between each node are statistically

independent. The whole solution space of controller placement

schemes is denoted by P = {p1, p2, . . . , pl} And for p ∈ P ,

θ ∈ Θ, controller θ is placed at a facility’s location denoted

by ψp(θ), ψp(θ) ∈ F . Then P can be formalization described

by:

p = {(θ1, ψp(θ1)), (θ2, ψp(θ2)), . . . , (θk, ψp(θk))} (1)

φp(v) denotes the controller that node v be assigned to

under p. Qφp
(θ) denotes the set of switches controlled by

controller θ. Then an assignment from controllers to switches

is denoted by:

Qφp
= {(θ1, Qφp

(θ1)), (θ2, Qφp
(θ2))

. . . , (θk, Qφk
(θk))} (2)

When {θ1, θ2, . . . , θk} are placed completely, then form a

solution pi, we assign each switch to the controller which

has the minimum propagation latency between each other. So

Qφp
is dominated by p.



The worst case latency is an important metric which is

defined as the maximum node to controller propagation delay:

Cwc(p) = max
v∈V

min d(v, φp(v)) (3)

We also seek the optimal placements p from P , such that

Cwc(p) is minimum.

B. Network Failure Model

Since packet delivery is the basic function of the network

layer, the resilience is of great importance to the network

performance. Unfortunately, network failures frequently occur.

Failures can happen at different protocol layers in the network

for various reasons. A failure of optical equipment or a

fiber cut may lead to loss of physical connectivity at the

physical layer. The loss of connectivity happened between

switches may also stem from software errors, switch processor

overloads, protocol implementation or misconfiguration errors.

Additionally, failures may occur due to scheduled network

maintenance or just be unplanned. In the controllers placement

problem, We consider the following two kinds of failures:

a) Node failure: A node failure could happen in the form

of a switch failing to forwarding packets or losing control from

its controller. Besides, It also can be a controller becoming

unable to handle packets or managing forwarding rules. This

kind of failures connotes that the switch or controller cannot be

proper functioned anymore. Software errors, hardware failures,

misconfigurations or network attacks can cause such kind of

failures.

b) Link failure: When link failure happens, all packets

passing through the failed link will be lost. Link failures can

be caused by fiber cuts, equipment upgrades, maintenance

operations, etc.

We name a network being the intact state when no failure

happens. Either node failures or link failures lead to network

state transforming.

For a given network G(V ∪E), n = |V | and m = |E|, the

state space is 2n+m. Let S be the set of whole states, then

S = {s1, s2, . . . , sl} i.e.,l = 2n+m. Use indicator variables

χv
s and χe

s denote states of node v and link e under network

state s, then s can be formally denoted by:

s = {χv1

s , . . . , χ
vn

s , χe1
s , . . . , χ

em
s } (4)

C. Controller Placement under Comprehensive Network

States

As mentioned above, we often use worst case latency

Cwc(p) to measure network performance under controllers

placement p, p ∈ P . For network G(V ∪E), define ρv and ρe
as the probability of node v ∈ V and e ∈ E that function well.

Use ρvs and ρvs to denote the state probability of node v and

link e under network state s ∈ S, which means if χv
s = 1,then

ρvs = ρv otherwise ρvs = 1 − ρv when χv
s = 0. ρes has the

similar situation. Then the occurrence probability of network

state s ∈ S can be denoted by:

ρs =
∏

v∈V

ρvs
∏

e∈E

ρes (5)

We use Cs
wc(p) to denote the worse case latency of the

whole network G under state s and controllers placement p.

For each placement p, the assignment scheme is decided by

p under intact network state, which means the assignment

between switches and controllers remain unchanged even if

state transitions happen. In this way, avoiding the complexity

of control status migration between different controllers could

achieved. Then the network state latency under solution p can

be defined as:

CS
wc(p) =

∑

s∈S

Cs
avg(p)ρs (6)

Definition 1. Controller Placement under Comprehensive

Network States (CPCNS):

minCS
wc(p) (7)

s.t.

p ∈ P, s ∈ S (8)

The CPCNS is an NP-Hard problem since the optimization

goal can be viewed as a polynomial combination of the one

of traditional K-centre problem which is another NP-Hard

problem already been proved. The computational complexity

of solving the CPCNS is too large according to various

network states constructed by a large amount of nodes and

links. Otherwise, we rather try to solve a pure mathematical

problem than taking it into network scenarios. Furthermore

if a number of nodes or links are out of working, there is

no effective placement strategy can ensure a better network

performance.That is why we should filter out some extreme

situations. The work in [19] shows that 70% of the whole

network failures affect only single link at a time and links

differ widely in their failure characteristics. These observations

have motivated us to explore a more simple network failure

model and focus on single link failure.

D. Controller Placement under Single Link Failure

Suppose the network states is divided into two categories,

namely, the intact state and single link failure states. The intact

state has just one scenario that all the links and nodes work

well, and single link failure states consist of m scenarios

which means each link e ∈ {e1, e2, . . . , em} may fail at

a time. Then we get m + 1 network states, denoted by

S′ = {s0, s1, . . . , sm}. Given ρe, the probability of link e
operating well, e ∈ {e1, e2, . . . , em}, then the occurrence

probability of intact state is:

ρs0 =
∏

e∈E

ρe (9)

Therefore the probability of single link failure states is 1−ρs0 ,

which is shared altogether by m scenarios. The occurrence

probability of each scenario reflects the probability of each

link failure. In the effort of normalization, we define F =
∑

e∈E (1− ρe) to be the sum of probability for each link

failure. Then the relative probability of each link ei ∈ E is :

ρ̂ei =
1− ρei
F

=
1− ρei

m−
∑

e∈E ρe
(10)



For each single link failure scenario si ∈ {s1, s2, . . . , sm},
we suppose ei to be failed. Then the occurrence probability

of scenario si, i ∈ 1, 2, . . . ,m, is:

ρsi = (1− ρs0)ρ̂ei =
(1−

∏

e∈E ρe)(1− ρei)

m−
∑

e∈E ρe
(11)

We also use Cs
wc(p) to denote the worse case latency of

network G under state S as well as controller placement

scheme p, then the S scenarios is replaced by S′ since only

single link failure states are taken into consideration.

Definition 2. Controller Placement under Single Link Failure

(CPSLF):

minCS′

wc(p) (12)

s.t.

p ∈ P, s ∈ S′ (13)

CS′

wc(p) is an irreducible polynomial over Cws(p), at the same

time, computing Cws(p) is NP-Hard. Therefore, Calculating

the CPSLF is also an NP-Hard problem.

IV. PLACEMENT ALGORITHM

To solve the CPSLF problem, the optimal placement algo-

rithm is proposed to be an evaluation baseline for estimating

other algorithms. Since it will exhaust computer resource and

run too much time if a Software-Defined network contains

hundreds or even thousands of switches, we also propose

a greedy placement algorithm based on optimal placement

algorithm, which has a lower time complexity without much

performance degradation.

A. Optimal Placement Algorithm for CPSLF

The Controller Placement in Single Link Failure State

(CPSLF) problem is NP-hard, which means if we want to

work out the optimal placement scheme, the space of whole

placement schemes need to be traversed. We develop the

Optimal Placement Algorithm for CPSLF based on state-first

search. The main idea of state-first search, obviously, is to

traverse all the network states for each placement scheme. For

each state, we calculate the worst case latency and multiply

it by state occurrence probability and then we add up all

the latencies to form the final network state latency of that

scheme. We can optimize the algorithm during the states

traversal procedure by comparing the current network state

latency under current state with the global network state

latency calculated in the previous steps. If the current network

state latency is larger than the global network state latency

calculated in previous state traversal, it means in the previous

steps, we already found some placement scheme which has

a better performance than current scheme traversal procedure.

By this way we can avoid some unnecessary traversal steps.

Since most of the procedures are similar to the following

Greedy Placement Algorithm for CPSLF, details is omitted.

The first step of the algorithm is to calculate and store the

shortest distance between any two nodes which cost O
(

|V |3
)

times. We have
(

|V |
k

)

placement schemes to traverse. In each

scheme traversal, calculating the worse case latency under

|E| + 1 network states costs O
(

(|E|+ 1)k|V |2
)

times. So

the complexity of Optimal Placement Algorithm for CPSLF

is bounded by O
(

k|E||V |2+k
)

.

B. Greedy placement Algorithm for CPSLF

The complexity of Optimal Placement Algorithm for CP-

SLF is exponential which is still too high for computing large

scale Software-Defined Network. However, if k is constant,

the complexity will become polynomial. To reduce computing

complexity, we develop the Greedy Placement Algorithm for

CPSLF. The main idea of the algorithm is to place k con-

trollers iteratively. The input network data of current iterative

process is the output result of the previous iterative process.

Only iterate k times would we get the final placement scheme.

Although most of the time, it would not be optimal, still

acceptable. We will discuss the simulation results afterwards.

The idea of Greedy Placement Algorithm For CPSLF is

detailed in algorithm 1. The input datum include a network

G = (V,E), V is the set of nodes and E is the set of

links. C is the set of propagation delays and P is the set of

operation probabilities of all links. We also need to give the

number of controllers, which is symbolized by k. The output

result include a subset of V ,denoted by Θ which means the

set of places that controllers should be deployed. Qθp is the

collection of sets, and each set represents an administrative

area, meaning the nodes are assigned to a same controller.

The first steps are some variable assignments and since

we need distance operation in many next steps, it is bet-

ter to pre-compute the shortest distances between any two

nodes and store them in the matrix. We assume every node

is expressed numerically and then the rows and columns

in the matrix can be viewed as the corresponding nodes.

Mention that it takes O(n3) operations to get the distance

matrix in a general graph, but there are more efficient al-

gorithms [20] at least theoretically for sparse graphs. The

length matrix and path matrix computed from function

CalShortestLength() store the shortest path distance and

the involved links separately. We need to iterate k times

to get the final placement scheme.During each iteration, we

choose a new potential controller namely candidate from

canlist which denotes the set of nodes that haven’t been

placed controller and add it into cur Θ, forming a new

placement scheme. And then we compute assignments and the

worst case latency applied by length matrix. Since they are

computed in intact network state, so we multiply the worst case

latency by intact state probability and add it to tmp prob dist,
denoting the current network state latency. Afterwards, we

consider the link failures by assign ∞ to each ce separately,

meaning the corresponding link is unavailable. Recompute

the worse case latency and multiply it by current link failure

probability, then add it to the tmp prob dist. At last compare

the tmp prob dist to the network state latency prob dist
calculated from previous traversal steps. If tmp prob dist
is smaller, it means we acquire a better placement scheme.

Then assign it to network state latency prob dist for next



Algorithm 1: Greedy Placement Algorithm for CPSLF

Data: G = (V,E), C,P, k
Result: Θ with Θ ⊆ V ,Qθp

begin

Θ←− ∅; Qθp ←− ∅; prob dist←−∞
compli prob←−

∏

e∈E ρe
length matrix, path matrix←
CalShortestLength(G,C); can list← V
for i←− 1 to k do

cur Θ←− Θ
for candidate ∈ can list do

placement matrix←−∞; plt ←− ∅
tmp Qθp ←− ∅
cur Θ←− cur Θ+ {candidate}
for node ∈ cur Θ do

Calculate φp(node),
tmp Qθp ,max min dist

tmp prob dist← compli prob ∗min dist
for e ∈ E do

ori length←− ce; ce ←−∞
fail dist←− min dist
for node ∈ V do

if e ∈ path matrix[node][φp(node)]
then

tmp dist←−
Shortestlength(node, φp(node))
if tmp dist > fail dist then

fail dist← tmp dist

ce ←− ori length;

tmp prob dist← tmp prob dist+

fail dist ∗
(1−compli prob)(1−ρei

)

|E|−
∑

e∈E
ρe

if tmp prob dist > prob dist then

break

if prob dist > tmp prob dist then

prob dist← tmp prob dist
cur can← candidate; Θ← cur Θ;

Qθp ← tmp Qθp

cur Θ←− cur Θ− {candidate}

can list← can list− {cur can}

traversal step. In each iteration process, we traverse all the

candidate in can list and find the formed placement scheme

with the minimum network state latency within the current

iteration. Concurrently, store corresponding placement scheme

and assignment scheme in Θ and Qθp .

The first step of the algorithm is also to calculate and

store the shortest distance between any two nodes which cost

O
(

|V |3
)

times. The placement scheme space is reduced to

k
(

|V |
1

)

. In each scheme traversal, calculating the worse case

latency under |E|+1 network states costs O
(

(|E|+ 1)k|V |2
)

times.The complexity of Greedy Placement Algorithm for

CPSLF is bounded by O
(

k2|E||V |3
)

.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the performance of the Optimal Placement

Algorithm (OPA) and Greedy Placement Algorithm (GPA) for

CPSLF using the topologies from the Internet Topology Zoo

[21] and Internet2 [22] as well as Cernet2. A case study on

Internet2 and Cernet2 would be in the next section.

1) Topology: The Internet Topology Zoo is public available

repository, from where we exclude all disconnected ones and

final choose 124 topologies at the Point-of-Presence level.

Hence, each PoP corresponds to a node in the network. The

Internet2 in the continental US consists of 34 nodes and 42

links, in different cities, connecting via high-speed links. The

Cernet2 plays as a counterpart of Internet2 in China mainland,

which consists of 21 nodes and 23 links. We consider each PoP

as a candidate for hosting a controller.

0 5 1 0 1 5 2 0 2 5

Lin k(i), in  d e cre a s in g  ord e r o f lin k fa ilu re  ra te

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

0 .3 0

L
in

k
 f

a
il

u
re

 r
a

te

Lin k fa ilu re  ra te

Fig. 1: Per-link failure rate, in descending order.

2) Operational Probability: The operational probabilities

of links coming from Topology Zoo and Internet2 are as-

sumed to follow different i.i.d. Weibull distribution. The

probability density for the Weibull distribution is p(x) =
α
λ (

x
λ )

α−1e−(x/λ)α . We set α = 0.9 and λ = 15526 and such

configuration is intended to reproduce the ”long tails” in the

downtime distribution of Wan links reported in the literature.

As for Cernet2, we apply authentic operational probability

data collected from Oct. 10, 2008 to Nov. 2, 2008. During

this period, we have observed 240 failures. The failure rate of

each link is shown in Fig.1. We can clearly see that the failure

shows a ”long tails” feature. Actually, we can see that almost

60% of failures are caused by a small set of links, e.g., only

17% (4 out of 23 links). This character is also observed from

the ASes of Sprint.

3) Singularity: It is worth mentioning that a well-designed

network should have sufficient redundancy and be carefully

engineered in the case of link failures. For CPSLF problem,

there may have nodes disconnected with others in the process

of traversal, which we call singular nodes. These singular

nodes will bring calculation deviation since the latency will

become Infinity. In our simulation, if single link failure results



0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

Fig. 2: Placement of Internet2

computed by OPA at k=3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

Fig. 3: Placement of Internet2

computed by GPA at k=3

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

Fig. 4: Placement of Cernet2

computed by OPA at k=3

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

Fig. 5: Placement of Cernet2

computed by GPA at k=3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

Fig. 6: Placement of Internet2

computed by OPA at k=5

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

0

1 2

3

4

5

6

7

8

9
1 0

1 1

1 2

1 3
1 4 1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 72 8
2 9

3 0

3 1

3 2

3 3

Fig. 7: Placement of Internet2

computed by GPA at k=5

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

Fig. 8: Placement of Cernet2

computed by OPA at k=5

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

0

1

2

3 4

5 6 7

8

9 1 0

1 1

1 21 3

1 4

1 5

1 6

1 7 1 8 1 9

2 0

Fig. 9: Placement of Cernet2

computed by GPA at k=5

in singular nodes, we add a punitive delay. More accurate

penalty function is left for further research.

B. Simulation Result

1) Location of controllers: We place 1 to 5 controllers in

the topologies Internet2 and Cernet2. Fig.2-Fig.9 show the

placement scheme computed by two algorithms at k = 3 and

k = 5. The circle nodes denote switches and square node

denote controllers. Each switch is assigned to the controller

with the same color. As we can see from the figures, the

placement schemes vary but the placement of controllers is

still in common. For Internet2, the result of OPA shares one

location with the one of GPA which is node 28 when k = 3.

The number grows to two, which are node 26 and node 28

when k = 5. This may result from the similar network states

traversal steps. The GPA is based on the idea of placing the

controllers step by step, so the chosen controllers computed

by small k value will be included in the result computed by

larger value of K. The result of OPA is unsuitable this pattern.

As for Cernet2, a similar situation could be obtained.
2) Network state latency: Minimizing the network state

latency is our optimization objective. Fig.10 and Fig.13 show

the network latency of Internet2 and Cernet2 calculated by the

two algorithms and k is assigned from 1 to 5. For Internet2, the

network state latencies are equal both in two algorithms when

k=1, and for Cernet2, the network state latencies calculated

by GPA and OPA are equal when k = 1 and k = 2. As the

number of controllers increasing, the network state latencies all

decline for both algorithms and topologies. Clearly, network

state latencies from OPA are always better than the ones of

GPA. For Internet2, the peak latency deviation between the

results of OPA and GPA acquires at k = 2 where OPA’s is

17.6% better than the one of GPA, and the deviation declines

under 5% when k > 2. For Cernet2, the gap between the

results of OPA and GPA is not obvious and the peak latency

deviation be acquired at k=5 where OPA’s is 4.4% better than

the one of GPA. We can indicate that there is no observable

difference in performance between the results of OPA and GPA

if we place more controllers into the network.

3) Worse case latency distribution: Fig.16-Fig.18 show the

cumulative distribution of worse case latency computed by all

two algorithms at k = 1, 3, 5 for Internet2 and Fig.19-Fig.21

show the one of Cernet2. We could observe that the worst

case latency changes within a wide range, which shows that

the minimum worst case latency hardly acquired when link

failures happen from another point of view. When k = 1 the

placement schemes calculated by two algorithms are same in

both topologies. For Internet2 Over 75% network states have

the worse case latency less than 10 ms and nearly 50% network

states have a latency of 9.5ms. We can see a significant

decrease in worse case latency calculate by OPA and GPA in

Fig.16 when k = 3. About 38% network states of the result of

OPA and over 33% network states of of the one of GPA have a

latency decreased to 5.86ms. It is interesting that the maximal

worse case latency of OPA is 20.1ms, larger than the 16.2ms
of GPA’s. It seems some link failure has a greater impact on

the worst case latency of the placement scheme calculated

by OPA. The worse case latency distribution deviation gets

smaller between the results of OPA and GPA as k grows.

We can get a similar conclusion from the result computed in

Cernet2. Finally, we could find that the distribution of worse

case latency has a close relationship with topology and the

number of controllers.

4) Runtime: Fig.11 and Fig.14 show the runtime of all

two algorithms for Internet2 and Cernet2 respectively. We can

observe an obvious runtime disparity between two algorithms

among which OPA needs much longer time than GPA for



1 2 3 4 5

n u m b e r of con t ro lle r(k)

0

2

4

6

8

1 0

1 2

n
e

tw
o

rk
 s

ta
te

 l
a

te
n

c
y

(m
s

)
OPA

GPA

Fig. 10: Network state latency of Inter-

net2

1 2 3 4 5

n u m b e r of con t ro lle r(k)

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

ru
n

ti
m

e
(s

)

OPA

GPA

Fig. 11: Runtime of Internet2

1 2 3 4 5

n u m b e r of con t ro lle r(k)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

c
o

s
t-

b
e

n
e

fi
t 

ra
ti

o
s

OPA

GPA

Fig. 12: Cost benefit ratios of Internet2

1 2 3 4 5

n u m b e r of con t ro lle r(k)

0

1

2

3

4

5

6

7

8

n
e

tw
o

rk
 s

ta
te

 l
a

te
n

c
y

(m
s

)

OPA

GPA

Fig. 13: Network state latency of Cernet2

1 2 3 4 5

n u m b e r of con t ro lle r(k)

0

5 0

1 0 0

1 5 0

2 0 0

ru
n

ti
m

e
(s

)

OPA

GPA

Fig. 14: Runtime of Cernet2

1 2 3 4 5

n u m b e r of con t ro lle r(k)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

c
o

s
t-

b
e

n
e

fi
t 

ra
ti

o
s

OPA

GPA

Fig. 15: Cost benefit ratios of Cernet2

both topologies. Actually, for Internet2 the runtime of OPA

is 9398.97s at k = 5, 2564 times the runtime of GPA. The

minimum deviation is at k = 1, where OPA runs 2.51ms, 1.9

times the runtime of GPA. We could observe a similar situation

in Cernet2. It is easy to understand that the time complexity of

OPA is exponential and GPA’s polynomial, so with the growth

of the number k, the runtime of OPA increasing rapidly. The

time complexity expression of GPA has a coefficient related

to k, so k increases the computation time as it grows in size.

On the other hand, k doesn’t play a decisive role in the time

complexity expression of GPA. Thus, it can be seen GPA runs

the minimum time with worse performance and OPA runs the

maximum time with limited performance improvement.

5) Cost-benefit ratios: In Fig.12 and Fig.15, we study the

cost-benefit ratios of all two algorithms for both topologies.

We define the cost-benefit ration as (latency1/latencyk)/k.

A value of 1.0 implies a proportional reduction; where k

controllers reduce latency to 1/k of the one-controller latency.

Higher is better. In Internet2, reducing the network state

latency to half that at k = 1 requires 3, 2 controllers for

OPA and GPA respectively. As for Cernet2 it is requires 3

controllers for both algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed that network states transfor-

mation due to network failures has a huge impact on the

worst case latency between data plane and control plane, and

will further influence network performance. We considered the

transformation between network states and defined network

state latency as a new evaluation criterion of the controller

placement scheme. Accordingly, we defined the Controller

Placement under Comprehensive Network States (CPCNS)

problem and Controller Placement under Single Link Failure

(CPSLF) problem. Accordingly, we proposed two algorithms,

namely, Optimal Placement Algorithm (OPA) for CPSLF and

Greedy Placement Algorithm (GPA) for CPSLF.

We evaluated our algorithms comprehensively using In-

ternet2 and Cernet2 as well as other topologies. Later, we

presented a case study on Internet2 and Cernet2. We study

various aspects of two algorithms. We illustrated that the con-

troller placement scheme computed by OPA has the minimum

network state latency but spending the more time. The runtime

of GPA has a huge degree of reduction over OPA without

much performance degradation. With the number of controllers

increasing, the deviation of network state latencies becomes

smaller between the OPA and GPA.

In the future, we try to work out a good evaluation procedure

for CPCNS problem. Our next work includes taking the node

operational probability and controller operational probability

into consideration and propose a complete evaluation model.

VII. ACKNOWLEDGMENT

This work was supported in part by the R&D Program of

Shenzhen under grant No. ZDSYS20140509172959989, No.

JSGG20150512162853495, and No.Shenfagai[2015]986.

REFERENCES

[1] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni, H. Zhang, and Z. Cai,
“Tesseract: A 4d network control plane.” in NSDI, vol. 7, 2007, pp.
27–27.



9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

wors t  ca s e  la te n cy(m s )

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

c
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n OPA

GPA

Fig. 16: Worse case latency distribution

of Internet2 at k=1

4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

wors t  ca s e  la te n cy(m s )

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

c
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n OPA

GPA

Fig. 17: Worse case latency distribution

of Internet2 at k=3

4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

wors t  ca s e  la te n cy(m s )

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

c
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n OPA

GPA

Fig. 18: Worse case latency distribution

of Internet2 at k=5

7 .0 7 .5 8 .0 8 .5 9 .0 9 .5 1 0 .0

wors t  ca s e  la te n cy(m s )

0 .6 5

0 .7 0

0 .7 5

0 .8 0

0 .8 5

0 .9 0

0 .9 5

1 .0 0

c
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n OPA

GPA

Fig. 19: Worse case latency distribution

of Cernet2 at k=1

4 5 6 7 8 9 1 0 1 1

wors t  ca s e  la te n cy(m s )

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

c
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n OPA

GPA

Fig. 20: Worse case latency distribution

of Cernet2 at k=3

2 3 4 5 6 7 8 9 1 0 1 1

wors t  ca s e  la te n cy(m s )

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

c
u

m
u

la
ti

v
e

 d
is

tr
ib

u
ti

o
n OPA

GPA

Fig. 21: Worse case latency distribution

of Cernet2 at k=5

[2] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach
to network control and management,” ACM SIGCOMM Computer

Communication Review, vol. 35, no. 5, pp. 41–54, 2005.

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” ACM SIGCOMM

Computer Communication Review, vol. 37, no. 4, pp. 1–12, 2007.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[6] L. Yang, P. Zerfos, and E. Sadot, “Architecture taxonomy for control
and provisioning of wireless access points (capwap)”, rfc 4118,” 2005.

[7] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software

defined networks. ACM, 2012, pp. 7–12.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[9] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in 2014 IEEE 15th Interna-

tional Symposium on. IEEE, 2014, pp. 1–6.

[10] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the

first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[11] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management

conference on Research on enterprise networking. USENIX Associa-
tion, 2010, pp. 3–3.

[12] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in USENIX

Workshop on Hot Topics in Management of Internet, Cloud, and Enter-

prise Networks and Services (Hot-ICE), vol. 54, 2012.

[13] D. Erickson, “The beacon openflow controller,” in Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined

networking. ACM, 2013, pp. 13–18.
[14] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, and H. J. Chao,

“Improving the performance of load balancing in software-defined
networks through load variance-based synchronization,” Computer Net-

works, vol. 68, pp. 95–109, 2014.
[15] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller

placement problem in software defined networks,” 2014.
[16] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,

“Towards an elastic distributed sdn controller,” in ACM SIGCOMM

Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
7–12.

[17] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in sdn-based core
networks,” in Teletraffic Congress (ITC), 2013 25th International. IEEE,
2013, pp. 1–9.

[18] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in
software-defined networks,” in Proceedings of the third workshop on

Hot topics in software defined networking. ACM, 2014, pp. 31–36.
[19] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,

Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM Transactions on Networking (TON),
vol. 16, no. 4, pp. 749–762, 2008.

[20] D. B. Johnson, “Efficient algorithms for shortest paths in sparse
networks,” J. ACM, vol. 24, no. 1, pp. 1–13, Jan. 1977. [Online].
Available: http://doi.acm.org/10.1145/321992.321993

[21] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” Selected Areas in Communications, IEEE Journal

on, vol. 29, no. 9, pp. 1765 –1775, october 2011.
[22] “Internet2 open science, scholarship and services exchange.”

http://www.internet2.edu/products-services/advanced-networking/layer-
2-services.


