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Abstract—Coexisting 802.11 and 802.15.4 single-cell wireless
networks are experiencing significant performance degradation
due to the aggressive nature of 802.11 (when compared to
802.15.4) and to their different traffic characteristics [1]. Pro-
viding tight delay guarantees to certain 802.15.4 applications
(e.g., health monitoring with unsaturated, periodic traffic) is
becoming increasingly infeasible, in the presence of coexisting
WiFi with bursty and bandwidth-hungry traffic. Optimizing the
performance of these coexisting networks (e.g., WiFi throughput
maximization, while satisfying 802.15.4 deadlines) has been a
challenging task, primarily due to the lack of: i) analytical models
that take into consideration realistic network traffic conditions;
and ii) accurate simulators for coexistence. In this paper, we
address the aforementioned research challenges by modeling the
transmission buffers of wireless devices as M/G/1 queues, and
employ queuing theory and Markov Chain models to derive, for
the first time, closed form solutions for throughput and delay in
802.11/802.15.4 coexisting networks. Using our proposed models,
this paper presents a novel approach for joint MAC protocol
tuning, that maximizes 802.11 throughput while satisfying delay
constraints of 802.15.4. We validate our proposed solutions and
models through new 802.11/802.15.4 coexistence capabilities in
the ns-3 simulator (important for the research community).

I. INTRODUCTION

In recent years, the massive increase in the number of

wireless network deployments has led to the spectral crowding

of the unlicensed 2.4GHz ISM band. WiFi network traffic is

mostly contributed by mainstream/entertainment applications

that exploit the high data rate provided at the 802.11 MAC

layer. Wireless Sensor Networks (WSN) traffic on the other

hand, has been concentrated towards industrial/monitoring

applications due to throughput limitations imposed by the

IEEE 802.15.4 standard. The increased proliferation of both

types of wireless networks demands the study of their behavior

in coexisting environments. Additionally, with the advent of

newer standards (e.g., the energy modulation based 802.11n,

ac) as well as long range 802.15.4 radios (e.g. the Freescale

ZigBee range extender), the single-cell wireless coexistence is

expected to become pervasive in the future.

Coexistence issues have been reported and have shown the

significant impact of IEEE 802.11 and 802.15.4 networks

on each others’ performance [2] [3], resulting in undesired

throughput degradation and a significant increase in delays. On

one hand, longer transmission durations of 802.15.4 devices

(because of lower data rate) result in throughput degradation

of 802.11 networks, negatively influencing WiFi users’ ex-

perience. 802.15.4 devices, on the other hand, suffer due to

the non-aggressive nature of the MAC protocol they employ

(when compared to 802.11). Consequently, satisfying delay

constraints, which are a necessity for WSN applications like

health monitoring in hospitals and environmental monitoring

for hazardous substances [4], becomes rather challenging. This

single-cell coexistence problem to optimize the throughput

of 802.11 while ensuring application delay constraints for

802.15.4 motivates the need for an accurate model for the

coexistence networks with realistic traffic patterns.

Recently [1] proposed the first analytical model for single-

cell coexistence of 802.11 DCF and 802.15.4 (as BoX-

MAC [5] for simplicity) networks. Though it demonstrated

promising results, the analysis has two major drawbacks: i)

the Markov Chain model made improper assumptions on some

probabilities (discussed in Section III), which hurt its accuracy;

and ii) it assumed saturated traffic, leaving unsaturated/bursty

traffic conditions as an open research problem. We address

these problems by developing a new Markov Chain model

which not only relaxes the strong assumptions aforementioned,

but also introduces the probabilities for the transmission

buffers of 802.11/BoX-MAC being empty to account for

unsaturated traffic. We model the buffers as M/G/1 queues

to accurately compute the buffer empty probabilities. We then

derive closed form solutions for normalized throughput and

total packet delivery delay. It is worthwhile to emphasize that

this paper investigates an important, difficult research problem

(i.e. coexistence with unsaturated traffic) that is part of a much

more complicated problem, namely performance optimization

of coexisting wireless networks with duty-cycling techniques

such as 802.11 PSM [6] and BMAC LPL [7]. We intend to

provide a stepping stone towards modeling/analysis of their

duty-cycling behavior under coexistence.

The contributions of this paper are as follows: 1) it presents

a joint MAC protocol tuning method (computationally facile),

that maximizes WiFi throughput while satisfying 802.15.4

packet delivery delay constraints; 2) it proposes a new accurate

Markov Chain model to account for unsaturated traffic; 3) it

proposes a M/G/1 queueing model that can accurately predict

buffer empty probabilities; 4) it presents the first analysis and

closed form expressions for throughput and packet delivery

delay; 5) it presents the first ns-3 based coexistence simulator;

and 6) it validates the accuracy of the model and MAC

protocols tuning method through extensive simulations.

This paper is organized as follows. Section II presents

the state of art. Section III-C introduces new models for

coexistence and the queueing analysis. Section IV describes a

joint protocol tuning method. In Section VI we propose our

ns-3 simulator and evaluate the accuracy of proposed models
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and joint protocol tuning method. Section VII concludes and

presents ideas for future work.

II. STATE OF THE ART

In the recent past, there has been significant research on

Markov Chain models for CSMA based networks. [8] is

the seminal work to model 802.11 DCF as a 2-D Markov

Chain. [9] and [10] improve [8] by considering the retransmis-

sion limits and the freezing of the backoff counter. Moreover,

various studies have extended [8] to address the unsaturated

traffic [11] [12] [13]. More precisely, some works introduce

to the Markov Chain the probability of buffer being empty,

which is then estimated by simple probabilistic methods [13];

while others not only bring in the aforementioned probability,

but also employ queueing theory (M/G/1, M/G/1/K etc.) to

compute it more rigorously [11] [12]. However, these methods

have only been applied to 802.11, whereas, we tackle a more

challenging problem, that of coexistence analysis.

There have been approaches proposed to mitigate the

problems in coexisting 802.11 and 802.15.4 networks. One

approach introduced the concept of orthogonal channel assign-

ment for WiFi and WSN devices [14], which is rendered in-

effective in high density deployments. Other approaches were

based on exploiting WiFi and WSN signal properties [15].

Most of these approaches, although provide promising results,

are limited to non-single-cell coexistence (i.e., WiFi can harm

ZigBee, but not vice versa, due to the power level asymmetry)

and hence are not applicable to single-cell scenario.

Recently, an analytical model for coexistence was pro-

posed [16]. Using existing Markov Chain models for

802.11 [8] and 802.15.4 [17], a combined model was for-

mulated, and mathematical expressions for aggregate through-

put were derived. The model was evaluated using a newly

built Monte Carlo based coexistence simulator. [1] improves

upon [16] by predicting channel busy probabilities more accu-

rately and proposing two contention window tuning methods

to achieve QoS and fairness. However, improper assumptions

of some key probabilities attenuate the fidelity of these models.

This paper investigates a different problem, that of 802.11

throughput maximization while meeting the 802.15.4 packet

delivery delay guarantees. For this, we first change the Markov

Chains in [1] significantly to enhance the accuracy, and then,

to model the unsaturated traffic we introduce the buffer empty

probabilities, which are predicted by a M/G/1 queueing

model. We validate the accuracy of our proposed models and

MAC protocols tuning method through extensive simulations

using our novel extensions for coexistence to the well known

ns-3 simulation framework.

III. MODEL FOR 802.11 AND 802.15.4 COEXISTENCE

WITH UNSATURATED TRAFFIC

In this section, we first of all briefly describe the BoX-

MAC standard and some key assumptions of our Markov

Chain (MC) model. Then we introduce the MC model in

detail (it is worth noting that, this MC model, which, is quite

different from the ones in [16] and [1], significantly improves
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Fig. 1: Markov Chain for the BoX-MAC protocol

the accuracy). Finally we cover the M/G/1 queueing model

and derive the expressions of throughput and delay.

A. Preliminaries and Assumptions

We consider BoX-MAC in this paper because it is the

MAC protocol of TinyOS, and yet a simplified version of

802.15.4. Generally, 802.15.4 has several double sized con-

tention window (CW) backoff stages up to a maximal one

(e.g. CW=8, 16, 32 etc.), while BoX-MAC only uses two such

backoff stages (shown as CW=W ′

0,W
′

1 in Figure 1). Same

as 802.15.4, BoX-MAC employs the double-channel-sensing

(DCS) mechanism, i.e. a device transmit a packet only if the

channel stays idle for two continuous time slots.

We assume that all devices employ energy based modula-

tion, and are within a single wireless cell. The same type of

devices are homogeneous, i.e. their traffic pattern are Poisson

with equal λ , and they transmit packets of equal size L (i.e.

λi=λj and Li=Lj if nodes i and j are of same type). For

simplicity, we also consider an ideal channel (i.e. no shadow-

ing, fading and capture effect), implying communication fails

only due to collisions. Moreover, we make two fundamental,

yet widely used assumptions on the probabilities of a reference

device: a) the probability of a transmission attempt is constant

and independent of the attempts of other devices; and b) the

collision probability (conditioning on an attempt) is constant

and independent of the number of collisions experienced.

These assumptions were proven to be accurate [8]- [13].

B. Markov Chain models for coexisting BoX-MAC and 802.11

1) BoX-MAC: The MC for BoX-MAC is shown in Figure 1,

where each state is two dimensional (s(t), c(t)). Specifically,

s(t) is a stochastic process representing the current backoff

stage (i.e. two backoff stages as 0 and 1); while c(t) is

a process representing the current backoff counter in the

corresponding stage (0≤c(t)≤W ′

0 or W ′

1). Notably, in the

dashed-line box in Figure 1, since BoX-MAC has a time slot 3

times longer than 802.11 (i.e. 802.11 time slot is our baseline),

to account for the difference in slot sizes, for each state (j, k)
(not including the states for double-sensing, i.e. (0,−1) and

(1,−1), because double-sensing is generally fast, and we

assume each such state takes one baseline time slot) in the

BoX-MAC MC, we add two dummy states to it (i.e. (2j+4, k),
and (2j+5, k)). Thus the node entering state (j, k) will transit

to state (2j+4, k), and then to (2j+5, k) with probability 1,

thereby accounting for an entire BoX-MAC slot. For clear

presentation, we omit the two dummy states henceforth.



In the BoX-MAC protocol, a device starts by choosing a

random number from 0 to W ′

0−1, and then begin with the

backoff procedure by decrementing the backoff counter. In the

Markov Chain, this behavior corresponds to starting from state

(0, k), where k is a random number between 0 and W ′

0−1, and

then move to the (0, k−1) and so on so forth, until it reaches

states (j, 0) and (j,−1), where the double-channel-sensing is

performed. If the channel is sensed busy (with probability

α+(1−α)β, where α and β are the probabilities that the

node finds the channel busy for the first and the second time,

respectively), the device transitions to state (1, k) where k is a

random number between 0 and W ′

1−1. If the channel is sensed

idle in both states (j, 0) and (j,−1), the packet is transmitted.

Transmission is represented by TXB, which includes LTXB

tandem states with all transition probabilities are equal to one

(LTXB is the duration of a BoX-MAC transmission). Since two-

dimension for TXB is meaningless, each state is simplified to

one dimensional. Unlike the saturated traffic scenario, for this

unsaturated case, the probability that the transmission queue

being empty is not zero, and we denote by PB such probability.

Thus after a transmission, a device enters IDLE state to

check the status of its queue, i.e. wherever there is no packet

in the queue (w.p. PB), it stays in the IDLE; otherwise, it

begins a new backoff process immediately. Note that since β
is conditioned on the success of the first channel sensing, it

differs from [1] where β=α is improperly assumed.

The next step is deriving the expression for the proba-

bility that a BoX-MAC device attempts to sense the chan-

nel for the first time, i.e. φB . Notably, φB is the another

difference from [1] where the probability that a BoX-MAC

node attempts to send (i.e. τB) is derived. The reason we

use φB here is that it gives us opportunity to model the

details of the coexistence, lacking of which bring inaccuracies.

Moreover, since φB is a conditional probability given that

the reference node is not transmitting, the expression for it

is φB=
∑1

i=0 b
′

i,0/(
∑1

i=0

∑W ′

i

j=0 b
′

i,j+b′IDLE), where b′i,j (and

b′IDLE) represents the stationary probability of state (i, j) (and

state IDLE) in the MC. The denominator of the equation

serves as the condition for φB because it includes all states

that the reference node is not transmitting. Then by similar

method in [8], we can derive an elegant form of φB as

φB=
2(1−PB)

3((3+(1−α)β+α)(1−PB)+2(1−α)(1−β))
(1)

As we can see, Equation (1) needs three unknown probabil-

ities, i.e. α, β and PB . For the derivations of the former two,

we will leverage a MC for the channel (shown later), while

for PB , a queueing analysis will be used.

2) 802.11: The Markov Chain for 802.11 is shown in

Figure 2. Unlike the MC for BoX-MAC and the one in [1],

each state in this one is three dimensional, i.e. (s(t), c(t), p(t)).
The first two stochastic processes have same meaning as BoX-

MAC (the backoff behavior is also similar expect there are m
stages instead of 2 for 802.11, and for conciseness the details

are not elaborated here), while the third one p(t) represents

the channel status in the previous time slot (i.e. p(t)=1 or

0, corresponds to busy or idle). Generally, the purpose of
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Fig. 2: Markov Chain describing the 802.11 protocol.

p(t) is to describe the event that the channel being idle for

two continuous baseline time slots, which is critical for BoX-

MAC devices because they can transmit data only if the

double-channel-sensing is passed. Notably, for each backoff

stage in Figure 2 (i.e. each solid line box), the bigger circles

represent the time instances that the channel is idle, while

each smaller circle denotes an ongoing transmission by other

devices (either BoX-MAC or WiFi or both, see the dashed

line box in Figure 2). The probability Pf is the transition

probability from state (i, j, 0) to a channel busy state (i.e. at

least one other node is sending). Since (i, j, 0) means that its

previous time slot is idle, which implies that there are two

continuous idle time slots, BoX-MAC devices have chance to

transmit. However, from state (i, j, 1), since there is single idle

slot for the channel, BoX-MAC cannot seize the channel, thus

the corresponding P ′

f is not equal to Pf . Note that for states

where the reference device attempts to transmit, i.e. states

(1∼m, 0, 0∼1), the corresponding transition probabilities are

denoted as Pc and P ′

c (i.e. collision probability), and since

both Pc and Pf imply the same transition probability, we have

Pc=Pf (similarly, P ′

c=P ′

f ).

The state IDLE is a shorthand for several states (shown in

the dot-dash line box in Figure 2) according to the behavior

of 802.11. When the transmission queue is empty (with

probability PW ), the device has to wait in (−1, , 0) or (−1, , 1)
state. Note that here we denote by s(t)=−1 the queue being

empty (abused a little bit), and as before p(t)=0 or 1 depends

on the channel status of the last time slot. Since the transitions

between (−1, , 0) and (−1, , 1) are fairly simple (e.g. the self-

loop for (−1, , 0) happens only if the queue is empty and no

other nodes is transmitting, i.e. PW (1−Pf )), the elaboration

is omitted here. When the queue is not empty (w.p. 1−PW )

and if no one is using the channel (w.p. 1−Pf or 1−P ′

f ), the
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Fig. 3: Markov Chain describing the channel.

device will begin with the backoff process from (0, j, 0); if

the channel is being used (w.p. Pf or P ′

f ), the device simply

wait until the transmission finishes and begin to backoff from

(0, j, 1). Notably for backoff stages other than 0, there is only

one input (i.e. to (1 · · ·m, j, 1)) because from their (i.e. stages

1 to m) perspectives the channel is always busy in the previous

time slot due to the collided transmission.

Before deriving Pf and P ′

f , we first of all discuss the

probability that a 802.11 device attempts to transmit, i.e. τW ,

which is needed in the expressions of Pf and P ′

f . Similar to

φB we discussed before, τW is also a probability conditioned

on the channel being idle, thus we have

τW=

∑m

i=0

∑

1

k=0
bi,0,k

∑m

i=0

∑Wi

j=0

∑

1

k=0
bi,j,k+bIDLE

(2)

where bi,j,k (and bIDLE) represents the stationary probability

of state (i, j, k) (and state IDLE) in the MC.

Unfortunately, for such a complex MC, there is no sim-

ple close form expression for τW , we therefore resort to a

more general method, namely the transition matrix method.

Since each transition probability for the 802.11 MC is known

(symbols such as Pf , Pc are also considered known because

they will be replaced by initial guesses of number when using

numerical method), its transition matrix T can be built. And

for a MC being stationary, πT=π must hold, where π is the

row vector stores the stationary probabilities of all states. Then

by using the condition that
∑

πi=1, each element in π (i.e.

πi) can be obtained. Thus the value of τW can be computed.

Having obtained τW , we are ready to discuss Pf and P ′

f .

For Pf , since it is conditioned on p(t)=0 (two continuous idle

time slots), thus BoX-MAC can transmit, then we have

Pf=1−(1−φB)
NB (1−τW )NW−1=Pc (3)

where NB and NW are the number of BoX-MAC and WiFi

devices, respectively. While for P ′

f , since the previous time

slot is busy, BoX-MAC has no chance to transmit, thus

P ′

f=1−(1−τW )NW−1=P ′

c (4)

As mentioned before, α and β can be derived using a

Markov Chain for the channel, which is discussed next.

3) Channel: The Markov Chain describing the channel

is shown in Figure 3. This MC is simple and only one

dimensional. In particular, state 0 represents a currently idle

channel with the previous time slot being idle, while state

1 represents a currently idle channel with the previous time

slot being busy. States STW , CTW , STB and CTO are

similar to STW in the MC of 802.11, and they respectively

denote a successful WiFi transmission, a collision WiFi trans-

mission, a successful BoX-MAC transmission and all other

cases. Notably, we assume that the occupation of a BoX-

MAC packet in the channel is longer than that of WiFi, thus

the length for CTO is the length of a BoX-MAC packet.

Same as the cases in the 802.11 MC, BoX-MAC can only

send data when the channel is idle for two continuous time

slots (i.e. state 0), thus from 0 there are four transitions

to STW , CTW , STB and CTO respectively. Whereas

from 1, there are only two transitions to STW and CTW
because BoX-MAC has no chance to transmit in this case.

According to the meaning of these transitions, we first of all

define A0=(1−φB)
NB (i.e. no BoX-MAC attempts to send),

A1=NBφB(1−φB)
NB−1(i.e. only one BoX-MAC attempts

to send), B0=(1−τW )NW (i.e. no WiFi attempts to send)

and B1=NW τW (1−τW )NW−1 (i.e. only one WiFi attempts

to send), and then we easily have P00=A0·B0, P0STW=A0·
B1, P0CTW=A0·(1−B0−B1), P0STB=A1·B0 and P0CTO=
1−A0−P0STB for state 0, and P10=B0, P1STW=B1 and

P1CTW=1−B0−P1STW for state 1. By solving this simple

MC (using the same method as in [8]), and denoting P0STW+
P0CTW+P0STB+P0CTO by P0X as well as P1STW+P1CTW

by P1X for simplicity, we obtain the stationary probabili-

ties of state 0 and 1 as b0=
1−P00

P10(1+P0X)+(1−P00)(1+P1X) and

b1=
P10

P10(1+P0X)+(1−P00)(1+P1X) .

Then by the definition of α, i.e. the probability that the

channel being busy, then α=1−P(channel idle), thus

α=1−(b0+b1) (5)

The derivation of β is little tricky because it is a probability

of channel being busy in current time slot conditioned on

it was idle in last time slot, namely P (b|i). What we do is

utilizing the law of total probability i.e. P (b|i)=P (b, i)/P (i)=
(P (i0)P (b|i0)+P (i1)P (b|i1))/P (i), which gives us

β=
b0(1−A0·B0)+b1(1−B0)

b0+b1
(6)

So far, we have eight unknowns (i.e. φB , α, β, τW , Pf , P ′

f ,

PB , PW ) and six Equations (1)-(6). We move to queueing

theory to model the transmission buffers of BoX-MAC and

802.11 as two M/G/1 queues to find the remaining two

expressions for PB and PW . Note that in this paper we use

the terms buffer and queue interchangeably.

C. M/G/1 queue models for BoX-MAC and 802.11

We first define λB and µB as the arrival rate and the service

rate for the queue of a BoX-MAC node, and λW and µW

as the same for a 802.11 node. For M/G/1 queue, we have

PB=1−ρB and PW=1−ρW , where ρB and ρW are the traffic

intensities (defined as ρB=λB/µB and ρW=λW /µW ), and

since the arrival process is Poisson, we only need to get the

expressions for µB and µW .

Since service processes are based on the CSMA behavior,

which is generally distributed, there is no simple expressions

for them. However, as mentioned before, what we really need

is the service rate, i.e. the mean of the service time. In the

following subsections, we first of all introduce the concept of

probability generating function (PGF) and how it is related to

mean and variance. Then by using PGF, we derive expressions

for the mean (i.e. µB and µW ) and variance (i.e. σ2
B and σ2

W ).

Notably the variance is needed in the computation of delay.
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Fig. 4: Signal Flow Graph of a Markov Chain.

1) Probability generating function (PGF): PGF is a math-

ematical tool to describe a discrete random variable (r.v.).

Assume X is a discrete r.v. taking values in {0, 1, ...}, then its

PGF is defined as: G(z)=
∑

∞

x=0 p(x)z
x, where p is the prob-

ability mass function of X . PGF has two important properties,

i.e. the expectation of X is given by E (X)=dG(z)
dz |z=1=

G′(1), while the variance of X is given by Var(X)=G′′(1)+

G′(1)−(G′(1))2, where G′′(1)=d2G(z)
dz2 |z=1.

Moreover, as shown in [12], the PGF for any given two

different states in a MC is the transfer function (TF) of the

corresponding signal flow graph (SFG), which can be obtained

by taking Z-transform for each transition probability (along

with the time spent in the transition) in the MC. Then we can

apply the well-known Mason formula to the SFG to derive the

PGF. Figure 4 shows a MC and its SFG, where the SFG is very

similar to the MC, except that each transition probability is

replaced by its Z-transform (i.e. p·zδ , where p is the transition

probability and δ is the duration of a baseline time slot).

Furthermore, by the property of Z-transform, the SFG can be

simplified by combining all states with transition probability

1. For example, the states 1 to L can be simplified as a single

state LA, and the PGF between A and L (without the loop)

becomes p1z
(L+1)δ . Note that z(L+1)δ here actually means

the overall transition between A and L uses L+1 time slots,

which is accurate. Now, by the Mason formula, we can obtain

the overall PGF from A to L as GAL(z)=
p1z

(L+1)δ

1−p1z(L+1)δp2zδ .

2) BoX-MAC MAC service time characteristics: Let TB be

the r.v. representing the MAC service time of BoX-MAC. As

before, to compute E(TB), we need to obtain the PGF of TB ,

i.e. BG(z)=E(zTB ) by using the SFG of the BoX-MAC MC

(Figure 1). The SFG is generated by simply adding z to each

transition probability in Figure 1 (to make the presentation

concise, a figure for the SFG is omitted here). It is worth

noting that since TB is the MAC service time, the PGF of

TB is actually the transfer function between point S and B
in Figure 1. Since the entire SFG is a little complex, we

first of all derive the PGF between point S and state (0, 0)

(using the Mason formula) as BG0,0(z)=
z3δ

W ′

0

1−z3δ·W ′

0

1−z3δ , where

3δ represents a BoX-MAC time slot which is 3 times longer

than the baseline (802.11) one. Then since the PGF between

(0, 0) and (−1, 0) is simply (1−α)zδ , the PGF between S
and (0,−1) is BG0,−1(z)=BG0,0(z)·(1−α)zδ . Using similar

method (note that due to the self loop of C, the derivation is

a little harder), we can have the PGF between point C and

(1,−1) as BG1,−1(z). Finally by combining all the PGF’s

of different parts, the overall PGF (between S and B) can

be expressed as BG(z)=BG0,0(z)(1−α)zδ(1−β)z3δLTXB+
BG0,0(z)(αz

δ+(1−α)βz2δ)BG1,−1(z)(1−β)z3δLTXB .

Then by the property of PGF, we have 1/µB=E(TB)=
BG′(1), thus

PB=1−λB ·BG′(1) (7)

3) 802.11 MAC service time characteristics: We define TW

as the r.v. denoting the MAC service time of 802.11. Similar

to the analysis for BoX-MAC, here the PGF (i.e. WG(z)=
E(zTW )) of TW is needed to obtain E(TW ). The same method

as before is used to convert the MC for 802.11 (in Figure 2)

to its corresponding SFG. To get the expression for the PGF

between point S0 (or S1) and B, we also employ the divide-

and-conquer strategy, i.e. first expressing the TF’s from S0 (or

S1) to C, then C to D and so on, and finally combining them

to generate the overall PGF.

However, due to the increased complexity of the SFG, the

derivation for the PGF between S0 (or S1) and C is more

difficult than that for BoX-MAC. We first of all define the

PGFs from S0 to two states with same backoff counter (e.g. S0

to (0, j, 0) and to (0, j, 1)) as a row vector WG00,j(z).Then

the PGF from S0 to (0,W0−1, 0) and to (0,W0−1, 1) (for

demonstration purpose) is WG00,W0−1(z)=
[

z/W0, 0
]

.

From WG00,W0−1(z), WG00,W0−2(z) is also obtained,

and so on so forth, until WG00,0(z) is derived. Specifically,

based on the transitions between WG00,j(z) and

WG00,j−1(z), we define a matrix which describes the

TF between them as Q0=

[

(1−Pf )z a(z)
(1−P ′

f )z b(z)

]

, where a(z)=

A0C1z
δLSTW+A0(1−C0−C1)z

δLCTW+(1−A0−A1C0)z
3δLTXB

and b(z)=P ′

fz
δLSTW+(P ′

f−C1)z
δLCTW , where A0, A1

are defined in Section III-B3, and C0 and C1 are

defined as (1−τW )NW−1 and (NW−1)τW (1−τW )NW−2,

respectively. Although the expressions above look

tedious, they are simple Z-transforms of all different

transition paths between WG00,j(z) and WG00,j−1(z).
With Q0 (note that I−Q0 is invertible), we note that

WG00,0(z)=WG00,W0−1(z)·(I+Q0+· · ·+Q0W0−1)=

[z/W0, 0]·
I−Q0W0

I−Q0
. Since the PGF (denoted by

TG(z)) between [(0, 0, 0), (0, 0, 1)] and point C is

TG(z)=
[

a(z)−A0C1z
δLSTW , b(z)−P ′

fz
δLSTW

]T

(note

Pc=Pf and P ′

c=P ′

f ), we define the PGF for backoff

stage 0 (represented by WG00(z)) as the PGF between S0

and C. We then have WG00(z)=WG00,0(z)·TG(z). By

similar method, the PGF for backoff stages 1 to m−1 can be

derived. For example, the PGF for stage 1 (i.e. between C and

D) is WG01(z)=WG01,0(z)·TG(z), where WG01,0(z)
is the PGF between C and [(1, 0, 0), (1, 0, 1)] and TG(z)
is the PGF from [(1, 0, 0), (1, 0, 1)] to D. Note that TG(z)
does not change with backoff stage.

Same as BoX-MAC, the PGF for stage m is a little tricky

because of the self-loop. The derivation, however, is still trivial

by using the Mason formula. The corresponding result is as

WG0m,0(z)=







WG0
′

m,0
(1)(z)

1−WG0′

m,0
(1)(z)·TG(1)(z)

,
WG0

′

m,0
(2)(z)

1−WG0′

m,0
(2)(z)·TG(2)(z)







where the superscript (i) represent the ith element in a vector,

and WG0′

m,0 is the forward PGF (i.e. without the self-loop)

from point E to [(m, 0, 0), (m, 0, 1)].

Having had the PGF’s for all stages, the final PGF from S0

to B can be derived using Mason formula as below



WG0(z)=WG00,0(z)·
[

(1−Pf )z
δLSTW , (1−P

′

f )z
δLSTW

]T

+
m
∑

i=1



WG0i,0(z)·
[

(1−Pf )z
δLSTW , (1−P

′

f )z
δLSTW

]T
·

i−1
∏

j=0

WG0j(z)





By similar derivation as above, the PGF from S1 to B (i.e.

WG1(z)) is obtained. Then by the property of PGF, we have

PW=1−λW ·
(

P0·WG0′(1)+P1·WG1′(1)
)

(8)

where P0=(bIDLE,0·(1−Pf )+bIDLE,1·(1−P ′

f ))/bIDLE and

P1=(bIDLE,0·Pf+bIDLE,1·P
′

f )/bIDLE , which denote the

probabilities that the outputs of IDLE state being S0 and

S1, respectively.

Now, by employing numerical methods to solve Equations

(1)-(8), all eight unknown probabilities are obtained. Several

performance metrics can be derived from these probabilities.

In this paper, we are interested in the aggregate throughput

and the total delay, i.e., the time between a packet entering

the queue until it is transmitted successfully.

D. Throughput Analysis for Coexisting BoX-MAC and 802.11

With the help of the Markov Chain model for the channel

shown in Section III-B3, it is straightforward to derive the

expressions for the throughput of BoX-MAC and 802.11.

1) Throughput for BoX-MAC: From the perspective of the

channel, the throughput of BoX-MAC is simply the time spent

in a successful BoX-MAC transmission, thus we have

SB=b0P0STB3LpTXB

where b0 is the stationary probability for state 0 in the channel

MC (Section III-B3), P0STB is the transition probability for a

BoX-MAC transmission being succeed, and 3LpTXB is packet

payload size of BoX-MAC in baseline time slot.

2) Throughput for 802.11: Similar to BoX-MAC, we can

express the 802.11 throughput as

SW=(b0P0STW+b1P1STW )LpSTW (9)

where b1 is the stationary probability for state 1 in the channel

MC (Section III-B3), P0STW is the transition probability for

an 802.11 transmission being succeed, and LpSTW is packet

payload size of 802.11 in baseline time slot.

E. Delay Analysis for Coexisting BoX-MAC and 802.11

By Little’s Law, delay D=L/λ, where L is the steady

state queue length and λ is the arrival rate. Consequently,

to compute the delay we need to obtain the steady state

queue length of the BoX-MAC and 802.11. For a M/G/1
queue, the expression for the average queue length is L=

ρ+λ2(σ2+1/µ2)
2(1−ρ) [18], where σ2 is the variance of the service

time, and ρ=λ/µ.

Since we obtain the PGF’s of the MAC service

time of BoX-MAC and 802.11 in Section III-C2

and III-C3, the corresponding variances are

σ2
B=Var(TB)=BG′′(1)+BG′(1)−(BG′(1))2 and

σ2
W=Var(TW )=WG′′(1)+WG′(1)−(WG′(1))2. Then the

expressions for the queue length are LB=ρ+
λ2
B(σ2

B+1/µ2
B)

2(1−ρB)

and LW=ρ+
λ2
W (σ2

W+1/µ2
W )

2(1−ρW ) , respectively.

With average MAC service time, we can simply write the

expressions for delay (by Little’s Law) as DW=LW /λW and,
DB=LB/λB (10)

IV. JOINT PROTOCOL TUNING FOR COEXISTING 802.11

AND 802.15.4 WITH DELAY CONSTRAINTS

In this section we present a protocol tuning method that

maximizes 802.11 throughput while satisfying delay con-

straints of 802.15.4, by varying the CW size of individual

nodes. CW affects throughput since it directly controls the

transmission probability (i.e. aggressiveness) [19]. As previ-

ously demonstrated [16] [1], the congested CW size of BoX-

MAC (W ′

1) and the minimum CW size of 802.11 (W0) have a

significant impact on the achievable throughput in coexisting

networks, while the initial CW size of BoX-MAC (W ′

0) and

the maximum CW size of 802.11 (Wm) do not. Thus, we only

consider tuning W ′

1 and W0, and fix the other two. Our tuning

method also adjusts the WiFi data arrival rate λW since it is the

only way to tune the throughput under unsaturated condition.
Since we want to ensure that the performance (i.e. through-

put) of WiFi devices be maximized under the delay constraint

of BoX-MAC, we formulate this as a non-linear optimization

problem, argmax SW (W0,W
′

1, λW )

subject to DB≤Delay Threshold,

Equations(1)−(8),

W ′

1,W0, LB , LW≥0
where the throughput of 802.11 SW (see Equation (9)) is the

objective function, while the delay threshold of BoX-MAC

(see Equation (10) for DB) and Equations (1)-(8) serve as

the main constraints. More importantly, the CWs and queue

lengths (i.e. LW , LB) for all nodes must be greater than or

equal to 0, so that the queue of each node is stable (i.e. arrival

rate < service rate). By solving this problem numerically

(e.g. fmincon toolbox in MATLAB), we obtain the optimal

CW sizes for BoX-MAC and optimal CW’s and arrival rates

λW for WiFi. This tuning method is centralized, and due

to the homogeneity of devices of same type, the optimal

parameters for same type are equal. Thus this method does

not exhibit fairness issues for the same type of devices. We

note that ensuring fairness between BoX-MAC and 802.11 is

not appropriate because of the very large difference in their

maximal flow rates.

V. VALIDATION OF MODEL FOR COEXISTENCE

We implemented our coexistence simulator based on the

well-known ns-3 simulator. The spectrum PHY module in ns-

3 is used as the common operating channel for both 802.11 and

BoX-MAC devices. The implementation involved significant

modifications at different layers of the network architecture of

WiFi and LrWPAN modules of ns-3, to handle homogeneous

and heterogeneous collisions along with support for unsatu-

rated traffic conditions. We compare the throughput and delay

obtained from our analytical model with those obtained from

the ns-3 simulator.
Extensive simulations were performed under varying con-

figuration parameters in order to characterize the effects of

CW size tuning on aggregate throughput and total delay.

The parameters we vary are: number of nodes, the minimum

contention window size W0 of 802.11, the congested con-

tention window size W ′

1 of BoX-MAC and the corresponding
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Fig. 5: Throughput of model and simulator vs # devices.
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Fig. 6: Total delay of model and simulator vs # devices.

per-node offered load (data arrival rate) λW and λB . The

default values of these parameters are: W0=16, Wm=1024,

PW=1500, λW=20 for WiFi, and W ′

0=310, W ′

1=70, PB=48,

λB=4 for BoX-MAC.

Typically, the time spent for the model to numerically

converge is less than one minute on a fast PC (with i7 4790K

CPU and 16GB ram), while solving the optimization problem

takes a little longer than that. The simulation time for all tests

is 10000s, which, on average, takes more than ten hours on

the same machine.

A. Effects of number of devices

Analyzing the coexistence of WiFi and WSN by varying

the number of devices in a real implementation is tedious and

time consuming. The same can be done by merely varying

the number of devices in the analytical model and simulator.

Figure 5 and Figure 6 depict the effect on throughput and

delay when the number of WiFi (i.e., {5, 10, 20, 40}) and BoX-

MAC (i.e., {10, 20, 40, 80}) devices are varied, while setting

other parameters to their defaults. We surprisingly observe

that the results for the simulator and analysis match each

other closely. Specifically, when the network density is small

(e.g. 20 BoX-MAC vs 10 WiFi), the throughput of both types

increase linearly with the increase of the number of devices

due to unsaturated queueing condition. For a crowded network

(e.g. 80 BoX-MAC vs 40 WiFi), the BoX-MAC reach near-

saturated condition (we have chosen λB=4 on purpose to

demonstrate), and the 802.11 devices reach saturated con-

dition. Thus, we observe that the throughput of BoX-MAC

still increase linearly, however, the one for 802.11 increases

slowly due to saturation. The delay exhibits similar behavior

as the throughput. Especially when the number of devices

becomes large, the delay of BoX-MAC becomes large due

to near-saturated condition, while the queue for 802.11 tends

to infinity (denoted by “Inf” in the figure) due to saturation.

B. Effects of contention window sizes

To analyze the impact of contention window size on

throughput and delay, we consider a scenario with 10 802.11

and 20 BoX-MAC devices. All default parameters are used
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expect the CW size, which are selected within {30, 50, 70}
and {16, 32, 64} for BoX-MAC and 802.11, respectively. The

results are depicted in Figure 7 and Figure 8 for throughput

and delay, respectively. Remarkably, the results obtained from

the model agree with the simulation quite well. In the case

of throughput, since the CW’s for BoX-MAC always lead

to unsaturated condition, its throughput does not vary much.

While for 802.11, since a smaller CW (such as W0=16)

implies higher aggressiveness, the queue is unsaturated, and

the throughput of 802.11 equals to its input. However, when

the CW of 802.11 increases, due to the decrease of the aggres-

siveness, its queue becomes sensitive to the aggressiveness of

BoX-MAC devices. For example, if CW of BoX-MAC equals

70, W0=64 lead to saturation, but if CW of BoX-MAC equals

30 or 50, W0=32 tends towards saturation. For the delay

analysis, since bigger CW results in longer MAC service time,

the delay is higher for bigger CW. As mentioned before, the

queue of 802.11 becomes saturated for some cases, hence the

corresponding delay is infinite.

C. Effects of per-node offered load

Due to the significant impact of traffic arrival rate, i.e per-

node offered load, on the network performance, we study its

effect on the throughput. As earlier, we consider a scenario

with 40 WiFi, 40 BoX-MAC devices and default parameters.

We vary the per-node offered load in {2, 4, 6} packets per

second for Box-MAC and {1, 10, 20, 30} packets per second

for WiFi. The results are depicted in Figure 9 and Figure 10

for throughput and total delay, respectively. Amazingly, the

simulation results are in close agreement with those obtained

from the model. In particular, when the offered load of WiFi

increases, until saturation, the throughput of both BoX-MAC

and WiFi increase linearly. Then, their throughput gradually

and slowly decreases due to the increased collision rate.

Similar results can be observed for the delay. As the queue

becomes saturated, the delay tends toward infinity.

VI. JOINT PROTOCOL TUNING EVALUATION

We evaluate the tuning method proposed in Section IV using

our ns-3 simulator. We demonstrate that our approach guar-



 0

 50

 100

 150

 200

1 10 20 30

B
o
X

-M
A

C
 T

h
ro

u
g
h
p
u
t 
(K

b
p
s
)

Offered Load (WiFi) λW

Model λB=2
Model λB=4
Model λB=6

Sim λB=2
Sim λB=4
Sim λB=6

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 10 20 30

8
0
2
.1

1
 T

h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Offered Load (WiFi) λW

Model λB=2
Model λB=4
Model λB=6

Sim λB=2
Sim λB=4
Sim λB=6

Fig. 9: Throughput of model and simulator vs offered load.

0

3000

Inf

1 10 20 30

B
o
X

-M
A

C
 T

o
ta

l 
D

e
la

y
 (

m
s
)

Offered Load (WiFi) λW

Model λB=2
Model λB=4
Model λB=6

Sim λB=2
Sim λB=4
Sim λB=6

0

2000

Inf

1 10 20 30

8
0
2
.1

1
 T

o
ta

l 
D

e
la

y
 (

m
s
)

Offered Load (WiFi) λW

Model λB=2
Model λB=4
Model λB=6

Sim λB=2
Sim λB=4
Sim λB=6

Fig. 10: Total delay of model and simulator vs offered load.

antees the delay constrains of BoX-MAC while maximizing

802.11 throughput. The evaluation of the tuning method is

performed upon 20 BoX-MAC and 10 802.11 nodes, with

different BoX-MAC delay constraints among {50, 100}ms.

We inspect three cases of the arrival rates λB for BoX-

MAC from {2, 4, 6}, and obtain from the model the optimal

CW sizes for BoX-MAC (i.e. W ′

1) and 802.11 (i.e. W0) as

well as the optimal arrival rates λW for 802.11. As shown in

Table I, when the delay constraint for BoX-MAC is 100ms,

the optimal CWs obtained from the tuning method are sig-

nificantly different from their default values (i.e. W0=16 and

W ′

1=70). And since λB is only 2, it is easy to satisfy the

delay constraint, which offers WiFi a very good available

throughput (which is =78). However when delay constraint

becomes 50 ms, since it is harder to satisfy the constraint, the

BoX-MAC becomes more aggressive by reducing its W ′

1, and

WiFi increase the W0 to further give space for BoX-MAC.

Therefore the maximal throughput of WiFi λW decreases to

53. Similarly, when λB=4 or 6, the same trends of W ′

1, W0

and λW can be observed in Table II and III. Especially, for an

extreme case where λB=6 and delay constraint equals 50, the

BoX-MAC becomes very aggressive (i.e. W ′

1=3.1837), while

WiFi reduce its aggressiveness by increasing its W0 to 20.3774
and thus has a throughput of only 27.

In practice, this tuning method can be used on a dual

radio powerful master device which first computes the optimal

parameters and then informs both WiFi and BoX-MAC devices

about the values obtained.

VII. CONCLUSIONS

To optimize the performance in single-cell coexisting

802.11 and 802.15.4 networks with realistic traffic patterns,

we have presented the first analytical model for predicting

throughput and total delay. Our analysis is anchored in solid

theoretical results based on modeling coexisting 802.11 DCF

and BoX-MAC as Markov Chains [1] and M/G/1 queueing

theory. Additionally, we proposed the first protocol tuning

method that maximizes 802.11 throughput while satisfying

BoX-MAC delay constraints. Through extensive simulations,

TABLE I: Optimal parameters obtained under λB=2

Delay constraint λW (802.11) W0 (802.11) W ′

1
(BoX-MAC)

50 ms 53 8.1748 13.2673
100 ms 78 5.1457 21.3654

TABLE II: Optimal parameters obtained under λB=4

Delay constraint λW (802.11) W0 (802.11) W ′

1
(BoX-MAC)

50 ms 42 14.6472 6.7848
100 ms 60 9.2516 10.8520

TABLE III: Optimal parameters obtained under λB=6

Delay constraint λW (802.11) W0 (802.11) W ′

1
(BoX-MAC)

50 ms 27 20.3774 3.1837
100 ms 46 13.2743 7.2562

we demonstrate the correctness of our analysis and the ef-

fectiveness of the tuning method. As future work, we aim to

extend our work to optimize the performance of coexisting

802.11 and 802.15.4 networks with duty-cycling devices.
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