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Abstract—Today’s smartphones and tablet PCs are equipped
with various sensor units and wireless capabilities along with
high performance computing units, which make these mobile
devices capable of providing a wide range of services. Because of
such characteristics, mobile devices consume more network traffic
and frequently use multiple Internet services at the same time.
The performance degradation of a foreground service happens
frequently due to concurrently running background services in
a mobile device. In this paper, we propose NetPIS, Network
Performance Isolation Scheme for QoE, which resolves the
aforementioned problem by applying the concept of performance
isolation to the foreground service. NetPIS is the receiver-based
scheme suitable for mobile devices without any modification
on senders. Furthermore, unlike most performance isolation
implemented by virtual machines, we suggest a scheme that does
not require virtualization that might be heavy for mobile devices.
The proposed scheme was implemented on a smartphone by
modifying the kernel, and various experiments were conducted
to evaluate the advanced system behavior of NetPIS.
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I. INTRODUCTION

There are various applications that utilize the Internet ser-
vices on mobile device, and network traffic incurred by these
applications has been growing rapidly. In fact, the Ericsson mo-
bility report [1] predicts that the amount of traffic per mobile
device subscription will increase five-fold between 2013 and
2019. Moreover, smartphones and tablet PCs mostly provide
multi-processing functionality, which can generate concurrent
Internet services. To test the frequency of concurrent Internet
services usage, we collected traffic statistics of 6 users’ devices
24 hours long using an application we designed. As a result,
the time of the concurrent Internet services running on a device
differs for each user but this time reaches up to about 34% of
the total. Furthermore, 92.3% of the total traffic was receiving
traffic, which means that the downlink traffic is dominant in
mobile devices.

Without mitigating the interference between foreground
and background services on the concurrent wireless commu-
nications in one device, Internet services may meddle in one
another, resulting in starvation on the service that might be
important to the device user. For instance, file download or
application update services on a mobile device can downgrade
the performance of a foreground service such as video stream-
ing or Internet browser, and this problem is distinctly shown
in the video we made [2]. Without a sophisticated solution for
the interference mitigation, this effect can severely affect the
quality of experience (QoE) of the user who directly interacts

with a foreground service. Therefore, performance isolation to
mitigate the interference between foreground and background
services is required with priority. We designed our system in a
way to satisfy the aforementioned requirement, which will give
better QoE to users while sustaining resources to concurrently
running background processes with certain level. Instead of
the traditional performance isolation, our goal is to provide
enough resource to the foreground process, and give the rest of
the resource to the concurrently running background processes
without loss of the overall network resource.

Network performance isolation is important in various
areas and can be divided into two types [3]: virtualization
and flow level solution. Network performance isolation through
virtual machines is advantageous in the aspect of easy isolation
without the sensitive control of the network parameters. In-
deed, most of the performance isolation approaches in various
areas are mainly done by virtualization which restricts the
amount of allocated resource per virtual machine. However,
the aforementioned network virtualization approach is not
actively researched in the area of mobile devices. This is
due to the limited hardware performance of mobile devices
compared to that of large scale systems, which means the
processing overhead of a virtual machine can be greater than
its advantages [4]. Enabling virtual machine for mobile devices
may enlarge the delay of inter-process communication and
eventually lead to lower battery lifetime. This is why the flow
level isolation is crucial in the area of mobile devices, although
deep understanding of wireless network and congestion control
methods from various protocols is required. However, even the
flow level approach does not actively support the isolation in
the aspect of a data receiver. This is because most of the flow
controls are based on senders rather than receivers, resulting in
the limited control in the aspect of receivers. In reality, such
solutions are hard to be applied to mobile devices because
most mobile devices use Internet services that usually produce
downlink traffic rather than uplink traffic.

Aforementioned problems can be categorized into two
major challenges in designing network performance isolation
scheme for mobile devices. Firstly, the hardware performance
of a traditional mobile device is still limited, which means a
virtualization based solution is not appropriate yet. Secondly,
most of the mobile devices usually receive data rather than
transmit data, which makes currently proposed flow based
approaches difficult to be implemented in mobile devices. In
order to overcome these challenges, we propose a Network
Performance Isolation Scheme (NetPIS), and the effect of
NetPIS is shown in a demonstration video we made [5].
NetPIS adaptively controls several Transmission Control Pro-
tocol (TCP) parameters to provide adequate level of network
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bandwidth isolation for a foreground service when background
services run concurrently. Among transport layer protocols, we
focus on TCP because it is the most widely used transport
layer protocol, and more than 95% of total data traffic over
the Internet is transferred over TCP [6].

The contribution of NetPIS to current mobile devices is
listed as follows. (i) NetPIS guarantees higher service quality
for a foreground service and maintains the overall performance
of a device. (ii) NetPIS is the receiver-based scheme suitable
for mobile devices. (iii) NetPIS provides a flow level control
without using any virtual machine, which can be a burden
on mobile devices. Thus, a NetPIS-enabled device consumes
similar amount of power to a unmodified device. (iv) Proposed
isolation technique adjusts the receive buffer size efficiently,
which provides more usable memory for a mobile device.

In order to prove the applicability of the proposed scheme,
we implemented NetPIS on the kernel space of a real smart-
phone named Galaxy Nexus, and multiple evaluation studies
were conducted to show the distinctive performance of NetPIS.

This paper is organized as follows. Section II shows prior
researches that have similar purposes or techniques compared
to NetPIS. Section III lists control parameters used by NetPIS
and justifies the reasons of using these parameters. Section IV
describes the overall design of NetPIS and the implementation
architecture made in kernel space of Android mobile platform.
Section V explains evaluation environments and results that
prove the performance enhancement made by NetPIS. Finally,
Section VI concludes the paper.

II. RELATED WORK

There are various performance isolation researches target-
ing the mitigation of interference among multiple processes
(computing units generated by Internet services) running on a
same device or system. Especially in data centers, isolating
performance among different tenants is a crucial issue [7].
Since the level of service should be proportional to what
the tenants expect out of their payment, the performance
downgrade of a tenant due to heavy traffic of other tenants
is never tolerable. Therefore, virtualization is often applied to
support performance isolation in the perspective of the network
data rate in data centers.

Other than aforementioned large scale systems such as data
centers, there are also several researches that tried to perform
performance isolation on individual devices. For instance, [8]
suggests flexible virtualization which virtualizes specific layers
only in order to reduce the overhead from the layers that are
unnecessarily virtualized. In addition, SR-IOV system [9] is a
generic virtualization architecture that enhances CPU utiliza-
tion with proper isolation of CPU resource among processes.

Among many researches focusing on performance isola-
tion, some researches considered user interactions with de-
vices in order to improve QoE. Y. Etsion et al. proposed a
process prioritization scheme that concentrates CPU resources
on user-interacting processes for processing performance iso-
lation [10]. Similarly, H. Zheng et al. suggested a processor
scheduling framework to guarantee the performance of user-
interacting processes [11]. However, these researches focused
on improving performance in terms of only processing without
considering network performance. Therefore, these researches
cannot be used to guarantee the network performance of
application with which an user interacts.

Other than isolation focused on the processing resource
such as CPU usage, there are few researches focused on
network performance isolation within a mobile device. In ad-
dition, virtualization is not highly recommended because most
virtual machines (VMs) are heavy to low performance devices
such as smartphones. In fact, Android mobile platform recently
discarded Dalvik VM. Therefore, most network performance
isolation schemes for mobile devices use flow level control.
Among the researches on flow level control, some researches
focused on modifying TCP parameters to dynamically assign
resources to multiple ongoing flows. Some researches [12],
[13] tried to adjust both sender and receive buffer sizes to
increase or decrease the TCP throughput. However, these
systems require modification on both the data sender and the
receiver, which is not easily applicable to the real devices that
usually receive data from different servers of various Internet
services. In order to solve such the scalability problem, some
researches such as [14], [15] suggested adjustment only on the
receiver. However, such an adjustment only lowers the data rate
of low priority services, and there is no modification on the
high priority services that require more resource allocation.

In order to solve these problems that prior work could not
resolve, we propose NetPIS suitable for mobile devices, which
is designed to isolate performance of a foreground service
from interfering flows. Unlike prior related work focusing
on the processing performance isolation, NetPIS focuses on
the network performance isolation to guarantee the QoE of
mobile users. NetPIS adjusts per-flow TCP parameters in a way
that immediately increases data reception rate of a foreground
service and downgrades receiving performance of concurrently
running background services. Although NetPIS increases data
rate of a foreground service by sacrificing the quality of
concurrently running background services, the scheme does
not affect the overall network performance of the device.

III. CONTROL PARAMETERS FOR NetPIS

Advertised window is a notification parameter which re-
ports the condition of the receive buffer to the data sender.
According to the advertised window size, the sender can adjust
the next window size to perform appropriate flow control.
NetPIS adjusts the advertised window size which belongs to
either foreground or background processes. If the advertised
window belongs to a foreground process, in order to utilize
the full bandwidth of the network, NetPIS enlarges the adver-
tised window size and prevents the advertised window from
becoming the restriction of sender’s window increase. On the
other hand, NetPIS decreases the advertised window size if
the process is a background process. This tendency is similar
to most of the prior work we mentioned in Section II, which
means solely modifying this parameter cannot stably isolate
the network performance of the foreground process.

In TCP, final congestion window size is normally decided
by the minimum size between the sender’s window and the
receiver’s advertised window, which means the final window
size cannot be increased unless the sender’s window size
increases along with the advertised window size. Although the
window size always increases additively or multiplicatively, the
data rate of the foreground process will always be bounded to
the congestion window size. In addition, if the background
process started first and already took much of the network
resource, the foreground process cannot get enough resource.

This constrained performance of the foreground process
can be breached by downgrading the performance of con-



currently running background processes, but it is hard to
know what degree of window size reduction is optimal. If the
advertised window size is smaller than the sender’s window
size, the performance will be proportional to the advertised
window size. However, if the advertised window size is greater
than the sender’s window size, advertised window size needs
to be lowered even more. Therefore, it is hard for the receiver
to make such decision since the data receiver cannot know the
sender’s window size. Too much downgrading of the advertised
window can possibly lower the overall performance of the
mobile device, and little adjustment sometimes merely affect
the performance of the background process. This is why most
of the prior work focused on changing both sender and receiver
side window variables. However, it is a serious drawback
of the aforementioned work that modifications of servers are
necessary. In addition, most of the wireless data generated by
mobile devices are downlink data. Therefore, the performance
isolation on mobile devices should be done in the aspect of a
data receiver.

In order to overcome the limitation of prior work, Net-
PIS adjusts additional parameters from delayed ACK mech-
anism [16]. Delayed ACK mechanism is a TCP technique,
which reduces ACK sending overhead to increase efficiency
of the network. TCP data receiver was originally designed to
acknowledge every packet it received. However, some services,
such as HTTP, send very small packets to user devices, leading
to frequent ACK transmissions by the users. In order to prevent
this inefficiency, delayed ACK mechanism utilizes a value
called bounded frame size, which prevents a TCP receiver
from sending an ACK until the total payload size reaches
the bounded frame size no matter how many packets were
received. When filling up the bounded frame size takes too
much time, the mechanism uses ACK timeout (ATO) to prevent
the sender from unnecessary retransmissions.

However, less ACK transmissions cause the sender’s win-
dow size to increase slowly. Therefore, using the behavior
of this mechanism, we can decrease the data rate of the
background process by enlarging the bounded frame size and
ATO to certain values. No matter how large or small the
congestion window size of the data sender is, enlarging the
delayed ACK parameters will slow down TCP data rate. Unlike
the advertised window size that has limitation on controlling
TCP flow, delayed ACK parameters can directly affect the flow
by forcing data sender to slow down transmission. Moreover,
less number of ACKs sent by the background processes will
eventually provide more chances of data reception for the
foreground process, resulting in a faster performance recovery
of the foreground process when the background processes
already took good spots for communications.

In addition to the above parameters, NetPIS also controls
receive buffers of both foreground and background processes.
We found out that device memory is exceedingly wasted
because of the unnecessarily large size of default buffer. In
addition, many Internet services open tens of sockets for
faster Internet service. Therefore, a large portion of receive
buffers is wasted even though most part of the receive buffers
are not even used by the service. In order to prevent such
waste, NetPIS controls the receive buffer size for all processes
according to their needs.

IV. NetPIS DESIGN AND IMPLEMENTATION

In this section, we describe the overall design of NetPIS.
Also, we give a detailed explanation of NetPIS’s major com-

Fig. 1: The overall design of NetPIS

ponents and implementation.

A. Overall design

Figure 1 shows the overall design of NetPIS. As shown in
the figure, NetPIS consists of three major components: Data
communication tracer (NetPIS-D), Socket classifier (NetPIS-
S), and Resource allocator (NetPIS-R). NetPIS allocates the
different amount of network resources to each process in order
to guarantee the isolated performance of foreground process
and to improve user QoE as much as possible. In order to
allocate resources to processes properly, NetPIS-D monitors
the data reception of each process and analyzes the data
communication characteristics. After that, NetPIS-D hands
over the analyzed characteristic of each process to NetPIS-
R. NetPIS-S takes a roll of finding the sockets conducting the
data transmission for a foreground process and notifying which
sockets belong to the foreground process to NetPIS-R. Fi-
nally, using information provided by NetPIS-D and NetPIS-S,
NetPIS-R allocates data communication resources to processes
accordingly. In order to implement NetPIS, we modified the
network stack of Linux-based kernel, so NetPIS can be flexibly
applied to other systems.

B. NetPIS-D

NetPIS-D takes a role of tracing and analyzing the network
usage of each process that is most likely to contain more than
one socket. After that, NetPIS-D hands the network usage
information over to NetPIS-R, and NetPIS-R appropriately
controls the network resource using the information. Therefore,
NetPIS-D is necessary for an accurate resource control of each
process. In kernel, received data is temporarily stored in the
receive buffer, and afterwards the process takes some or all of
the stored data. If the amount of received data is larger than the
amount that the process can take at once, the remaining data
is stored in the receive buffer until the process takes it in next
time. At this moment, the required size of the receive buffer is
twice the remaining data size in order to prevent an overflow
of the receive buffer. NetPIS-D traces the required size of
the receive buffer of each process’s sockets continuously,
analyzes this traced information, and provides NetPIS-R with
each process’s data communication characteristics such as the
average, minimum, and maximum required size of the receive
buffer. Therefore, NetPIS-D sends feedbacks to NetPIS-R over
and over, and NetPIS-R can control each socket’s allocated
network resources using latest information.

After NetPIS-D finishes generating the trace data, Trace
Data Container in NetPIS-D, as shown in Figure 1, is periodi-
cally called to save the overall network trace data. Trace Data



Container creates a file that records the trace information to
the sdcard of the mobile device, which allows to maintain the
trace data safely, regardless of device reboot or system error.

C. NetPIS-S

Basically, end to end communications are conducted by
sockets, and sockets contain network related resources. There-
fore, NetPIS-R controls each socket’s allocated network re-
sources. In addition, today’s many applications concurrently
use multiple sockets rather than only one socket. Thus, in
order to provide more network resource to the foreground pro-
cess, sockets conducting data transmission for the foreground
process need to be distinguished from other sockets. Thus,
NetPIS-S conducts two analyses for socket classification.

1) Process analysis: Process analysis is the first step of
socket classification. Process analysis is designed to filter
out the on-going foreground process from multiple processes,
which can be further categorized into two types: user processes
and system processes. User processes are defined as processes
which interact with user directly, whereas system processes
refer to processes executed by the operating system or the
framework mostly. Most foreground or background processes
considered in this paper are user processes. Therefore, pro-
cess analysis only targets the user processes. Basically, user
processes are created by the zygote process in Android OS.
Thus, NetPIS-S can know that a process is an user process
if the parent process ID (ppid) of the process equals to the
process ID (pid) of the zygote process. Among the user
processes, NetPIS-S finds the foreground process containing
zero oom adj, because a process’s oom adj value is zero only
if the process is a foreground process. oom adj is one of the
variables found in proc file system in kernel and indicates the
priority of the process.

2) Socket analysis: After finding the foreground process, it
is necessary to find which sockets conduct the data transmis-
sion for the foreground process. Therefore, NetPIS-S includes
an additional step called socket analysis. There are several
cases for using sockets, and the most straightforward and
general case is when the foreground process makes sockets
for itself and uses them. In this case, NetPIS-S knows that the
socket belongs to the foreground process if pid of a socket
owner process equals to the foreground process’s pid. The
second case is when the foreground process’s child process
conducts data communications. In this case, the foreground
process does not make a socket for data communications. In-
stead, the foreground process makes a new child process which
conducts data communications on behalf of the foreground
process. Therefore, NetPIS-S knows that the socket belongs to
the foreground process if ppid of the socket owner process
equals to the foreground process’s pid.

Additionally, in some exceptional cases, NetPIS-S can
distinguish sockets using additional parameters such as pro-
cess name. For instance, NetPIS does not limit the network
resources of the processes, such as VoIP services, which are
frequently used as background processes but should have high
priority. After socket classification in terms of foreground or
background, NetPIS-S hands over the classification result to
NetPIS-R.

D. NetPIS-R

A role of NetPIS-R is to set each socket’s receive buffer,
advertised window, and delayed ACK parameters properly.

NetPIS-R uses three algorithms to adjust these parameters.
However, the algorithm for receive buffer control is similar
to that of advertised window control because the size of the
advertised window is derived by using the receive buffer size.
Therefore, we will explain the algorithms of receive buffer and
advertised window control together. Then the delayed ACK
control algorithm will be explained separately. In order to
implement the aforementioned algorithms, we modified the
network stack of kernel, which makes our algorithms run
packet-wise.

1) Algorithms for receive buffer and advertised window
control: Basically, we created a base algorithm for the adjust-
ment of receive buffer and advertised window. In addition, a
supplementary method is added to the base algorithm in order
to cover diverse situations.

Base algorithm: Suppose that f and b provided by
NetPIS-D indicate the required resource size of the foreground
and background processes respectively. In this situation, the
data communication of the foreground process is in com-
petition with those of the background processes. Therefore,
it is reasonable to allocate resource larger than f to the
foreground process in order to guarantee its performance. On
the other hand, the amount of resources for the background
processes should be limited. By doing so, the connection of the
foreground process will be superior to that of the background
processes, and the network performance of the foreground
process can be isolated. Thus, NetPIS-R gives the foreground
process’s sockets an advantage by multiplying f by (1 + α).
α indicates the weight factor which is between zero and one.
On the contrary, a weight factor β acts as a disadvantage for
the background processes by multiplying b by (1 − β). Like
α, β is between zero and one.

Algorithm 1 and 2 show the pseudo codes of the receive
buffer and the advertised window control respectively. As we
have just explained, the receive buffer size is newly decided
in terms of the priority of the process in line 2 and 9 of
Algorithm 1. buffer in Algorithm 1 indicates the required
buffer size of process’s socket, and it is provided by NetPIS-
D. Because NetPIS-D provides NetPIS-R various statistics such
as the average, minimum, and maximum required size of the
receive buffer, the used information can be different depending
on the purpose. Basically, NetPIS-R uses the average required
buffer size for buffer. As we explained before, NetPIS-D
consistently traces the required size of the receive buffer of
each process’s sockets, provides latest network usage informa-
tion, and sends feedbacks to NetPIS-R. Thus, the new value
of buffer is used whenever Algorithm 1 runs, and NetPIS-
R can adjust network resource using the latest network usage
information. Note that netpis buffer does not become the
new value of buffer in next iteration because the new value
of buffer is newly decided by NetPIS-D. Therefore, the size
of buffer allocated to each socket cannot increase or decrease
infinitely.

In a similar way, the size of advertised window is newly
determined in line 5 and 11 of Algorithm 2. win in Algo-
rithm 2 is the size of advertised window, and its derivation
follows the original TCP using buffer. Therefore, similar to
buffer, the new value of win is used whenever Algorithm 2
runs. Basically, NetPIS-R increases the allocated resources to
the foreground process’s sockets and limits the network re-
sources of the background processes’ sockets to guarantee the
performance of the foreground process. However, there is no
need to restrict the background processes’ resource when the



Algorithm 1 Receive buffer control

1: if a socket belongs to the foreground process then
2: netpis buffer ← buffer ∗ (1 + α)
3: else
4: if only background processes exist then
5: netpis buffer ← buffer
6: else if it is in Case 2 then
7: netpis buffer ← buffer
8: else
9: netpis buffer ← buffer ∗ (1− β)

10: end if
11: end if

Algorithm 2 Advertised window control

1: if a socket belongs to the foreground process then
2: if it is in Case 1 then
3: netpis win← win
4: else
5: netpis win← win ∗ (1 + α)
6: end if
7: else
8: if only background processes exist then
9: netpis win← win

10: else
11: netpis win← win ∗ (1− β)
12: end if
13: end if

foreground process does not generate any data transmission.
In such the case, NetPIS-R allocates the required resource to
the background processes’ sockets without resource restriction.
This operation is shown in line 5 of Algorithm 1 and in line
9 of Algorithm 2.

Supplementary method: In order to prevent possible
problems caused by the resource allocations, NetPIS-R config-
ures the advertised window and the receive buffer size of each
socket depending on the circumstances.

Case 1 specified in line 2 of Algorithm 2 is when NetPIS-
R increases the allocated resources of sockets. In this case,
NetPIS-R increases the receive buffer size and then the size of
advertised window. If NetPIS-R does not modify the aforemen-
tioned parameters in this order, a server may calculate the size
of a new data using the new value of the advertised window
and send a data, which is bigger than the amount that the
receiver can receive. Consequently, a drop of partial data may
occur at the receiver side. Therefore, NetPIS-R should prevent
such possible loss by increasing the receive buffer size first. In
line 3 of Algorithm 2, the size of the advertised window does
not increase although the socket belongs to the foreground
process, which means that NetPIS-R waits for the increase of
the receive buffer.

On the contrary, Case 2 in line 6 of Algorithm 1 is when
NetPIS-R decreases the allocated resources of sockets. In this
case, NetPIS-R reduces the size of the advertised window
and then the receive buffer size. Fundamentally, the server
decides the size of the data to be sent based on the previous
advertised window. Therefore, if the receive buffer size is
reduced before the decrease of the advertised window, the
receiver may not receive a part of the data sent by the server,
and the receive buffer may overflow. Therefore, NetPIS-R
should decrease the amount of data sent from the server by

Algorithm 3 Delayed ACK Control

1: if a socket belongs to the background process then
2: if the foreground process exists then
3: size bf ← γ ∗ buffer
4: ato← (size bf/size obf) ∗ ato o
5: end if
6: end if

decreasing the advertised window before curtailing the receive
buffer size. The receive buffer does not decrease although
the socket belongs to the background process in line 7 of
Algorithm 1, which means that NetPIS-R waits for the decrease
of the advertised window.

2) Algorithm for delayed ACK control: The advertised
window control is an effective method to control network
flows. However, the advertised window is just a feedback to
a sender, and the final decision of the window size is decided
by the sender, not by the receiver. In addition, it is hard
for the receiver to know the sender’s window size accurately.
Thus, most of the prior work focused on changing both sender
and receiver side window variables. In order to overcome the
difficulty, NetPIS adjusts additional parameters from delayed
ACK mechanism as we described in Section III.

Delayed ACK algorithm contains two major parameters.
The first parameter, the bounded frame size variable, indicates
the size of data that should be received prior to sending
an acknowledgement packet. A receiver will not send the
acknowledgement packet until it receives enough amount of
data or ATO alarms. ATO is the second parameter to be
adjusted for our proposed mechanism because ATO should
be long enough to make a receiver collect data as large as
the bounded frame size. We can decrease the data rate of the
background process by enlarging the bounded frame size and
ATO to certain value. The enlargement is made corresponding
to the background process’s buffer, and Algorithm 3 shows
this expansion method.

In line 3 of Algorithm 3, size bf indicates the size of
the bounded frame, and γ is a proportional constant we
defined for the delayed ACK control and is between 0 and
1. At line 4, size obf , ato, and ato o indicate the size
of the original bounded frame, the adjusted ATO, and the
original ATO respectively. size obf and ato o are constant
and default values of Linux kernel. size bf/size obf in-
dicates the increase or the decrease ratio of the bounded
frame size. Thus, a level of restriction on the background
process is proportional to the background process’s buffer.
A large buffer means a large bounded frame size, a large
ATO, and less ACK transmissions consequently. Less ACK
transmissions cause that the window size of the background
process’s sender increases slowly and that the wireless access
point connected to the mobile device will gain more access
for data transmission. Therefore, the concurrently running
foreground process can benefit from the decreased number of
ACK transmissions of the background processes. The effect of
the delayed ACK control is evaluated thoroughly in Section V.
Line 2 in Algorithm 3 is needed for NetPIS-R to restrict the
data communications of the background processes only when
the foreground and the background processes conduct data
communications concurrently.



V. PERFORMANCE EVALUATION

We performed various experiments to show the practicality
of NetPIS in terms of enhancing the performance of the
ongoing foreground Internet service while maintaining the sys-
tem throughput of the evaluated device that runs background
services concurrently [5]. Evaluations were conducted to show
the validity to control the foreground and the background
processes together, the effect of delayed ACK control, and
the comparison of NetPIS and the original kernel in terms of
service quality. Constant variables mentioned in Section IV, α,
β, and γ, were fixed as 0.6, 0.3, and 0.5 respectively. These
variables were not optimized but proved to behave well in a
number of evaluations shown in this paper.

The service quality is defined in many ways in this paper.
We evaluated various versions of NetPIS in terms of sequence
number, and service delay time. The sequence number is
derived by packet capture files that are recorded by a program
named shark [17]. The service delay time is recorded by
evaluating multiple devices at the same time to visualize the
effect of the foreground performance isolation behavior of
NetPIS. All devices in the same experiment are connected to
the same AP to prove that NetPIS outperforms other devices
within the same environment. In addition to the evaluation of
NetPIS performance, we analyzed the impact of the efficient
buffer control in NetPIS. Also, we added a simple experiment
to see the low power overhead of the proposed scheme. All the
evaluations were carried out on Galaxy Nexus with Android
4.3 JellyBean mobile platform.

A. Justifying simultaneous foreground and
background control

Several prior work focused on lowering receive buffer or
advertised window size of low priority services only, so that
the service quality of high priority service will automatically
increase due to the remaining network bandwidth. However,
this assumption can only be applied to the cases where there
are no other devices using the wireless media. This is unlikely
to happen these days where tens of public access points are in-
stalled for traffic offloading from cellular network. Immediate
reaction of the foreground service is necessary to get back the
network resource which is released by the background service
within the same device.

In order to justify the aforementioned reasonings, we
played a 2 minute long video using YouTube application as
a foreground service, and performed PlayStore download of
size 1.1 GB as a background service on three devices. One
device controls the advertised window and the receive buffer
size for both the foreground and the background service,
whereas the other two devices control those parameter for
either the foreground or the background service. After the
video service for each device was finished, we stopped the
download service of the device and examined the pcap files
to analyze the increase of TCP sequence number for each
service. Because TCP sequence number indicates the total
size of received data, it can be a good indicator to show the
network quality regardless of video service providers’ own
quality control techniques.

In NetPIS, unlike the advertised window and the receive
buffer control which are used in both the foreground and
the background process, delayed ACK adjustment is used
to restrict only the background processes’ communications.
Therefore, delayed ACK adjustment is not yet applied to

(a) TCP sequence number of Foreground service

(b) TCP sequence number of Background service

Fig. 2: TCP sequence number comparison among three dif-
ferent types of buffer+window control (foreground only, back-
ground only, and both)

this evaluation to demonstrate the validity to control both the
foreground and the background process together.

Figure 2 shows the result of the evaluation, and it is easy to
see that buffer and window control to both service types out-
performs the other two single service controls. The foreground-
only control device shows the worst performance among the
three devices since it only shifts up the buffer and window
size of the foreground service without releasing any network
resource that belongs to its background service. Although the
device with background-only control shows better performance
than the one with foreground-only control, controlling both
together outperforms the others. This is because the foreground
service of the background-only control device does not try
to reclaim the network resource released by the background
service promptly. From this experiment, we can see that both
the buffer and the window size control on both services
are important for quick release and recovery of the network
resource within a device.

B. Analyzing the effect of delayed ACK

This part of the evaluation is shown to analyze the effect
of the delayed ACK control in NetPIS. As mentioned before,
solely modifying the advertised window size of a data receiver
does not always guarantee the performance enhancement of a
foreground service along with overall throughput maintenance.
On the other hand, increasing bounded frame size and ATO
can slow down the performance of the background service
no matter how large or small the congestion window size is.
At the same time, the reduced trial of background service’s
TCP ACK transmission will give the wireless access point
more chances of releasing the downlink traffic, resulting in
faster network throughput of the foreground service. In order



(a) TCP sequence number of Foreground service

(b) TCP sequence number of Background service

Fig. 3: TCP sequence number comparison among original,
buffer+window only control, and NetPIS that includes delayed
ACK adjustment

to visualize this effect clearly, we evaluated another experiment
with three devices, similar to the prior evaluation. Three
devices have different kernel implementation as follows: one
with the original kernel, one with buffer and window control
only, and one with all controls including delayed ACK.

As shown in Figure 3, the sequence number of NetPIS
accelerates much faster than the other two devices without the
delayed ACK control. In addition, NetPIS quickly recovers
the performance of the background service after the data
reception of the foreground service is almost finished at
about 90 seconds. On the contrary, the background service’s
performance of the device with buffer and window control
only is poor. Since the performance isolation with buffer and
window control without delayed ACK control has the risk of
killing too much traffic of the background service, the device
fails to recover the performance of the background service after
the end of the foreground service. Therefore, we assure that
the sole control of window and buffer size is unstable, and it
is necessary to apply delayed ACK adjustment to reduce such
risk for the overall device performance.

Interestingly, the streaming session of NetPIS with delayed
ACK control actually ends later than the other two. This is
due to the better network status which automatically leads
YouTube to switch to a better quality video that requires
more data reception than the other two cases. In addition,
YouTube application receives traffic maximally to collect as
many video stream data as possible and rests itself until the
play time almost reaches the end of the buffered video data.
This is why mobile devices showed a data receiving pattern
with short pauses. Although the foreground duration of NetPIS
with delayed ACK control is longer than the other two, we can
see that the total received data is much greater than the other

Original NetPIS Service Delay

YouTube 6m 49.53s 6m 51.08s 1.55s
1m 53.53s 1m 53.70s 0.17s
2m 16.37s 2m 17.29s 0.92s
2m 10.77s 2m 11.55s 0.78s
7m 17.88s 7m 18.64s 0.76s

Daum TV Pot 1m 30.80s 1m 31.15s 0.35s
7m 14.19s 7m 15.78s 1.59s
1m 07.18s 1m 08.69s 1.51s
3m 24.83s 3m 28.87s 4.04s
2m 18.16s 2m 19.03s 0.87s

TABLE I: Performance isolation in terms of service time

two (about 1.4 times of the original device), which means the
quality of the video is outstanding.

C. Performance Isolation effect: in terms of service time

The evaluation of performance isolation can also be done
in the perspective of service time. The service time indicates
the time taken to complete the service. The service time of the
original device without any concurrently running background
services should be the target of NetPIS. To see whether NetPIS
device with concurrently running services achieves such the
target, we made an experiment configured as follows. Total 10
different videos were used as a foreground process individu-
ally, with two different video streaming services: YouTube and
Daum TV Pot. Unlike TCP sequence number, the service time
can be influenced by the video quality. Thus, we used videos
with a fixed quality setting in this evaluation. The background
service is a PlayStore download used by the prior evaluations.
We evaluated the service time of the aforementioned ten videos
by using two different devices: original and NetPIS. Original
device runs the foreground service only, whereas NetPIS device
runs both services concurrently.

The evaluation result of each video is shown in Table I,
where the service delay indicates the service time difference
between the two devices. If this delay is 0, NetPIS achieves
perfect performance isolation for the foreground service. As
the results show, we can see that the performance isolation
of NetPIS is guaranteed well since most of the videos are
delayed within or around 1 second regardless of the duration
of the video. Although there are few cases of delay longer
than 1 second, we can expect that those cases happen rarely
since most Wi-Fi APs do not guarantee resource allocation
fairness of different devices in some exceptional cases such as
starvation, link failure, buffer bloat, and etc. Other than that,
the result of the isolation technique is satisfactory.

D. Memory usage efficiency

Unlike the default setting, NetPIS adaptively allocates
buffer space corresponding to the required buffer size of each
process. In order to evaluate the memory efficiency of NetPIS,
we tested two types of services: YouTube and web browsing.
For the test of YouTube, we recorded the memory utilization
from the start of YouTube application, and included additional
steps to find a video such as clicking several buttons. After
finding a specific video, which is 29 seconds long, we touched
the play button and recorded the memory until the video was
finished. About 1 minute long evaluation was made for each
video play, and the same sequence was tested 5 times to



Original NetPIS Gain

Youtube 21.75 MByte 17.13 MByte 21.24%
Web surfing 70.49 MByte 58.16 MByte 17.49%

TABLE II: Memory efficiency

Concurrent Foreground Background

Original 2103.13 mW 1315.91 mW 1528.54 mW
NetPIS 2134.42 mW 1335.12 mW 1565.23 mW

TABLE III: Power overhead analysis

average the results of memory utilization. For browsing test,
the default web browsing service of Galaxy Nexus was tested
for 2 minutes. The 2 minute long test includes the steps of
entering m.daum.net website, additional sequential entering of
3 links, and changing to another portal site, m.naver.com. This
was also tested 5 times to average the results. The memory
size of each case is the average memory size sampled over
1 second interval during each experiment. Table II shows the
result that indicates NetPIS uses buffer space efficiently. It is
because NetPIS only provides buffer space as needed, whereas
default setting of Android mobile phone provides default buffer
space to all the sockets without any process profiling.

E. Power overhead analysis

In order to adopt NetPIS to real world mobile devices,
the scheme should not generate too much power waste. Using
an electric power meter named Monsoon Power Monitor, we
measured the power consumption of Galaxy Nexus phone with
NetPIS implementation, and compared the result to the power
consumption of the original device. Since the power of mobile
device depends on the data rate, we made the environment of
two devices as similar as possible and averaged the results of
5 repeated experiments for each device. The power analysis is
made for three cases total: one with foreground service only,
one with background service only, and one with concurrently
running services. All the experiments are evaluated for 1
minute each, and the foreground service is a YouTube video
stream, whereas the background service is a PlayStore down-
load. As shown in Table III, the power consumptions of two
devices are similar, and this is because the computation caused
by NetPIS is negligible. Therefore, we can say that NetPIS does
not affect the longevity of mobile devices significantly.

VI. CONCLUSIONS

Due to the development of mobile devices and commu-
nication technology, not only the foreground service but also
the background services often generate data communications
at the same time in a mobile device. Therefore, the network
performance of the foreground service frequently suffers from
concurrent data communications of the background services.
In order to resolve this problem, this paper proposed Net-
PIS which provides network performance isolation for the
foreground service by receiver based control. A mobile de-
vice using NetPIS can manage downlink wireless traffic in
terms of processes and guarantee the network performance
of the foreground process when multiple Internet services
run concurrently. Unlike the existing performance isolation

methods executed by virtual machines or flow based mech-
anisms with limited scalability, NetPIS uses network trace
information and adjusts receive buffer size, advertised window
size, and delayed ACK parameters in order to provide network
performance isolation with low overhead. The performance
of NetPIS was evaluated by in-depth analysis with various
experiments using a real mobile device. Indeed, NetPIS is
proved to behave well with frequently used services such as
video streaming and Internet browsing services [5].
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