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Abstract—In traditional networks, it is difficult to manage
the distributed detection and prevention nodes of IDS and
IPS due to the laborious manual deployment and independent
configuration. Software defined networking (SDN) provides a
flexible approach to control the underlying network infras-
tructures efficiently. However, the OpenFlow flow table is too
simple to provide complex functions with the match-action style
processing. To support more functionalities, in this paper, we
propose a middlebox management architecture with SDN –
OpenMiddlebox, by extending OpenFlow to support middleboxes
with ClickOS virtual machines (VM), so that programmable
middleboxes could be deployed and managed in switches with
fast booted ClickOS VMs flexibly. We then design automatic
deployment and update schemes of network intrusion detection
and prevention middleboxes with the centralized controller.
The evaluation results show that OpenMiddlebox could manage
the distributed middleboxes efficiently and is scalable to large
networks, and the centralized control also improves the network
intrusion detection and prevention accuracy.

I. INTRODUCTION

In traditional networks, to detect and prevent intrusions in

network traffic, administrators usually have to deploy multiple

intrusion detectors at different locations in a network and then

analyze collected network traffic locally or at a centralized

node. Unfortunately, the widely applied IDS/IPS architecture

meets a lot of barriers to manage the distributed nodes

efficiently. Firstly, the distributed intrusion detection nodes

have to support different configurations. As configurations de-

pend on the network topology, manual and frequent-changing

configurations are inevitable to make policies in distributed

nodes effective and consistent. Secondly, intrusion detection

and prevention algorithms which determine the protection

accuracy are usually designed for certain attack scenarios.

To make intrusion detection nodes effective, more and more

protection protocols are expected to be implemented in each

node. However, employing multiple protocols and frequent

updating complicate a node and even degrade processing per-

formance. Moreover, network devices in traditional networks

usually have specialized protocol implementations and control

interfaces, which makes automatic management complex.
Considering the inflexibility resulting from the complexity

and proprietary of switches, there are growing interests in

abstracting network functions from dedicated switches to

software-based applications in SDN. With OpenFlow switches

controlled by the centralized controller, applications imple-

mented in the controller communicate with switches through

control messages to manipulate flow tables, while switches do

not need to implement protocol details. Thus, security policies

could be installed as rules in flow tables by the controller, in-

stead of manual and independent configurations depending on

the network topology and infrastructures. Additionally, SDN

has natural statistics features which are useful for intrusion

detection analysis, so that the centralized controller gains more

visibility of the global network traffic. Therefore, SDN seems

to provide a more suitable architecture for IDS and IPS.

Recently, there are a lot of intrusion detection schemes

[1], [2], [3] designed for SDN. However, these applications

running on the controller pose critical bottleneck challenges

for the centralized computation and communication. As the

separation of control plane and data plane abstracts the func-

tionalities of switches to controller, these applications usually

require to collect a great quantity of traffic information from

switches to the controller for further analysis. Therefore, there

are large overheads for the centralized computation and the

communication between the two planes. What’s worse, if

connections between the switches and the controller are lost,

these security applications also fail.

The root of the heavy overhead for the centralized con-

troller is the complete functionality abstraction. In SDN,

switches do not implement any network protocol detail, and

only process packets as flow tables instruct. However, the

simple match-action processing oversimplifies flow tables in

switches, as actions in flow tables are only to forward, drop

or modify packets. Thus, switches are incapable to implement

and execute complex programs to perform intrusion detection

and prevention, e.g., deep packet inspection. Even though a

lot of researches [4] install security policies as flow entries

in flow tables, the flow table only provides coarse-grained

packets filtering according to the simple action field. To make

switches powerful to support more sophisticated functions

while maintaining the flexibility of SDN, switches should

support programmable actions besides the simple flow table.

To enable programmable actions of switches while man-

aging distributed nodes of IDS and IPS efficiently, in this

paper, we propose a middlebox management architecture with
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SDN, by extending OpenFlow to support more sophisticated

actions with ClickOS [5] VMs. These programs in VMs serve

as middleboxes and are constructed with elements provided by

ClickOS. Thus, a middlebox could be defined by the controller

with a configuration file and then executed distributedly in

VMs of switches. Each switch detects and prevents malicious

activities with middleboxes locally, and reports suspicious

alerts to the controller. The centralized controller is only

responsible for planning the middlebox deployment, coordinat-

ing the alert reports, and updating expired middleboxes. The

evaluation shows this architecture is able to manage middle-

boxes in switches efficiently, and the centralized collaboration

and middlebox updating mechanisms improve the network

intrusion detection and prevention accuracy.

The rest of the paper is organized as follows. Section II

looks at the existing IDS/IPS applications and middleboxes in

SDN. Section III describes the OpenMiddlebox management

architecture in SDN. Section IV designs automatic detection

and prevention middleboxes deployment and update schemes.

Section V evaluates the proposed architecture and approaches.

Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Network IDS and IPS In SDN

Traditional IDS and IPS primarily focus on static networks

with certain topology and manual policy configuration. How-

ever, the rapid evolving network attacks require the detection

and prevention approaches keeping updating in real time.

To make the management of network infrastructures more

flexible, SDN shatters the proprietary implementations and

independent configurations of network infrastructures. A lot of

researches have been carried out for network monitoring and

protection with the centralized control. [6], [7], [8] provides

traffic monitoring with flow statistics polled by a central-

ized controller for anomaly detection. Security enhancement

applications [3], [9], [10], [11], [12] are also deployed on

the controller with modular components or extra tools (e.g.,

sFlow [13]). As OpenFlow switches simply process pack-

ets according to action field of flow tables, the abstraction

leaves all control logic to the centralized controller. Increasing

centralized applications in the controller not only creates

communication and computation overheads on the controller

but also may be a single point of failure.

With the increasing volume of network traffic, it is im-

possible for centralized IDS approaches to get detailed traffic

information to a centralized node for analysis due to the great

overhead. Even though sampling is a widely applied approach,

it decreases the accuracy because of missing a lot of traffic

details. Unfortunately, OpenFlow switches are incapable to

implement and execute programmable actions. [14] notes that

OpenFlow offers very limited support for fine-grained network

monitoring applications at the data plane.

B. Middlebox In SDN

To support middleboxes in SDN, [15], [16] steer traffic

through the desired sequence of middleboxes including fire-

walls and IDS without mandating any placement or imple-

mentation constraints on middleboxes. In spite of the desired

forwarding sequence of middleboxes, policies in middleboxes

should also be carefully considered to be consistent and

effective. OpenNF [17] managed both network forwarding

state and internal NF state to coordinate race conditions.

Even though the SDN controller is able to direct packets

through middleboxes with desired sequence and consistency,

switches provide little capability for middlebox functions. [18]

notes that even if an OpenFlow device is now rich of function-

alities and primitives, it remains completely “dumb”, with all

the “smartness” placed at the controller side. Therefore, [18]

proposes a viable abstraction to formally describe a desired

stateful processing of flows inside the device with XFSM. [19]

describes a reconfigurable match tables model which allows

match tables in the data plane to be reconfigured. [20] enables

end-hosts to coordinate with switches to implement a wide-

range of network tasks, by embedding tiny programs into

packets that execute directly in the dataplane. ClickOS [21]

makes the data plane programmable with a tiny Xen-based

virtual machine that can run a wide range of middleboxes.

III. SYSTEM ARCHITECTURE

A. Middlebox In Switch

Fig. 1: OpenMiddleBox Architecture

To reduce the computation and communication overhead on

the centralized controller, we use OpenFlow switches as dis-

tributed nodes for intrusion detection and prevention. As pack-

ets always have to go through a series of switches along their

routing paths, switches are able to capture traffic variation and

throttle malware spreading, which are essential for intrusion

detection and prevention. To make switches more powerful and

flexible, despite the simple match-action processing with the

OpenFlow flow table, we extend switches to support IDS and

IPS middleboxes with ClickOS [5]. ClickOS is a Xen-based

tiny virtual machine that runs Click [22], and it can be quickly

instantiated in 30ms with a compressed 5MB image. As Click

equips with over 300 stock elements, these elements make

it possible to construct middleboxes with minimal efforts.

Moreover, we can easily extend this framework and construct

new elements to support more middleboxes [21]. To set up a

middlebox in ClickOS VM, the controller dispatches a Click

configuration to related switches, which is essentially a text

file specifying elements. Upon receiving the configuration

file, the switch boots a VM for the middlebox based on the

defined configurations. Therefore, middleboxes in VMs enable



switches to perform more complicated actions in addition to

simple forwarding, modifying or dropping actions of flow

tables. Meanwhile, middleboxes are isolated into multiple fast

booted VMs, so that they do not interfere with each other

during processing.

B. Middlebox Control

To support middlebox configuration, we design OpenMid-

dlebox control messages to manage middleboxes in switches

with the controller. For the setup of a middlebox, the controller

sends the Click configuration request to a switch with the

OpenMiddlebox control message, so that the configuration is

used to instantiate a middlebox VM. A middlebox entry is

installed in the middlebox table at the setup of middlebox as

Figure 1 shows. The entry in the middlebox table records the

corresponding ClickOS VM and middlebox configuration. For

the configuration changes, e.g., inserting rules in an IDS, as

ClickOS can change configurations at runtime, the controller

just needs to send new configurations to switches. The deletion

of middleboxes is more straightforward by shutting down

the corresponding VMs and removing the related middlebox

entries. Middleboxes are isolated into VMs with restricted

memory and CPU resources, and ClickOS accesses packets

with a direct pipe between NIC and VMs [5]. Therefore,

middleboxes in VMs do not affect the basic efficiency of data

plane packet processing, while the OpenFlow protocol handles

regular requests to manipulate the flow table as usual. In addi-

tion to the control of middleboxes at the centralized controller,

middleboxes in switches may also require to communicate

with the centralized controller for specific reports, e.g., an

IDS middlebox would report alerts for detected intrusions

to the controller for further analysis. The OpenMiddlebox

protocol also supports this communication requirement by

sending middlebox ID with the report which is understandable

for the middlebox manager in the controller.

C. Middlebox Authorization

Fig. 2: Middlebox Authorization

1) Application Authorization: The main idea of SDN is

to create a network abstraction layer, enabling applications

running on top of the controller. With the open APIs for third-

party applications, it makes the network more programmable

and flexible. However, it also increases the risks of malware

to compromise the network. The absence of the northbound

API fails to decide the access permissions granted to network

applications. As applications are able to manipulate switches,

poorly implemented, misconfigured or malicious applications

may modify flows erroneously. Especially for middleboxes in

switches, abused configurations would totally collapse a switch

and mess the network. Therefore, we should limit authority of

applications to access middleboxes in switches. With a white

list of authorized applications, only the middlebox configu-

rations issued by the authorized application are processed,

otherwise requests will be rejected to send any control message

to manipulate middlebox tables.

2) Switch Authorization: Middleboxes run in switches inde-

pendently and communicate with the controller occasionally.

However, a malicious switch may alter the middlebox con-

figuration to evade detection or send false reports to confuse

the controller. Therefore, there is a need to check whether the

switches are legitimate and remove the compromised. Initially,

we treat all newly connected switches equally to be legitimate.

When an OpenFlow switch tries to set up a connection with

the controller, the controller checks its identity to decide

whether it could be granted the permission for implementing

middleboxes and records it in the granted list. If a middlebox

in the switch always sends false reports conflicting with other

middleboxes of the same type, it will be kicked out from

the granted list based on the middlebox report accuracy in

Section IV-B, and the corresponding middlebox in the switch

are also destroyed.

IV. INTRUSION DETECTION AND PREVENTION

MIDDLEBOX MANAGEMENT

With the OpenMiddlebox architecture, various middleboxes

(e.g., IDS, firewall, NAT) could be constructed with elements

in ClickOS. In this section, we show how to manage dis-

tributed network intrusion detection and prevention middle-

boxes with a centralized view.

A. Middlebox Deployment Distribution

To detect anomalous activities in the network, intrusion

detection middleboxes composed of Click elements (e.g.,

IPRateMonitor, TCPCollector, Classifier) should be installed

in multiple switches at different locations. In contrasted with

IDS deployed at core switches in traditional networks, as the

controller is aware of network topology and flow forwarding

paths, the middlebox deployment distribution in SDN could

be dynamically planned. Therefore, instead of installing and

configuring middleboxes manually and independently in each

switch, the controller could automatically install middleboxes

in concerned switches for the designated network traffic. As

packet processing in SDN is flow-based, the controller plans

middleboxes distribution based on the flow matching criteria,

such as middlebox detecting anomalies in flows with the same

source IP address or destination port of flows. A middlebox

m is installed in switches to detect abnormal activities of a

subclass of flows F (m) = {f1, f2, ...}. A flow f always trav-

els through several switches S(f) = {sf1 , s
f
2 , ..., s

f
d} along the

routing path to reach the destination. Thus, the switches in the



routing paths are able to capture flows’ activities and used for

intrusion detection. To avoid high false positive due to a single

detection node, we install middlebox instances in multiple

switches for m and then compare the detection results from the

multiple switches to make a final decision. S = {s1, s2, .., sn}
is the set of switches which are in the routing paths of flows in

subclass F (m). Therefore, the intrusion detection middlebox

instances of m should be installed in a subset of S to capture

most of flows in F (m).
As switches always query the controller about the routing

path of a new flow with PACKET IN , the controller is able

to get each flow’s routing path and the traffic distribution of

the monitored flow class. Meanwhile, the controller is notified

with FLOW REMOV ED messages when flow entries are

deleted from flow tables in switches. Thus, the controller

always has the knowledge of ongoing flows F (si,m) related

to middlebox m in switch si. Upon the arrival and removal

of a flow f (f ∈ F (m)), the ongoing flow set F (si,m) is

updated if si is on f ’s forwarding path S(f).

F (si,m) =

{

F (si,m) ∪ {f} newflow(f) ∧ si ∈ S(f)
F (si,m)− {f} delf low(f) ∧ si ∈ S(f)

Intuitively, we would like to install middleboxes in the

switches which are able to capture a large number of flows

other than those processing only a small amount in the mon-

itored subclass, as a small percentage may lead to subjective

view. By sorting switches si (i = 1, 2, ..., n) in S as the

descending sequence of monitored flow numbers |F (si)|, the

first switches of sorted S cover most of flows in the subclass.

We choose the first k switches S(m) = {sm1 , sm2 , .., smk } which

cover at least p percent of flows in subclass F (m) to install

intrusion detection middlebox instances for middlebox m.

min
k

|

k
⋃

i=1

F (smi ,m)| > p · |F (m)| (0 ≤ p ≤ 1)

The p controls the monitoring accuracy and the intrusion

detection overhead, as the larger p is, the more switches

are involved in intrusion detection, but the more flows are

monitored for intrusion detection.

B. Collaborative Network Intrusion Detection

With multiple middleboxes instances running in multiple

switches for each intrusion detection middlebox, switches

perform intrusion detection in real time, and then report

suspicious alerts to the centralized controller. The controller

collaborates these alerts to make an intrusion decision, as

collaboration usually achieves more accurate results.

Intuitively, if the majority of instances of middlebox m

report the same alert, we are more confident that there is an

abnormal activity, otherwise it is probably a false alert and we

will ignore it. However, the middlebox instances in different

switches process with different ongoing flow sets, and alerts

generated by these switches also vary because of different

monitored flows. To reflect the differences in monitored flows,

we assign weights to alerts from different switches. The

alert ami of middlebox m in switch smi is assigned with a

Algorithm 1 Alert Collaboration

1: Calculate am with wm
i (0), wm

i (1), ami (i = 1, ..., k)
2: if am == 1 then

3: decide a true alert

4: end if

5: update wm
i (0), wm

i (1), nami (0), nami (1) (i = 1, ..., k)
6: for each switch smi ∈ S(m) do

7: accuracy(t) =
nam

i
(t)

nam(t) (t = 0, 1)

8: if accuracy(1) < 0.5 ∧ accuracy(0) < 0.5 then

9: S(m) = S(m)− smi , remove middlebox m in smi
10: end if

11: end for

12: Update middlebox instance set of m

weight wm
i (1), and the non-alert report (none report) also

equips with a weight wm
i (0). The alert and non-alert weights

wm
i (t)(t = 0, 1) of the switch smi are defined as the product of

alert/none-alert accuracy
nam

i
(t)

nam(t) and the percentage of moni-

tored flows in the monitored subclass
|F (sm

i
,m)|

|F (m)| . The alert/non-

alert accuracy
nam

i
(t)

nam(t) indicates the accuracy confidence of

the alert or none-alert, in which nam(t) is collaboratively

decided alert(t = 1)/non-alert(t = 0) count and nami (t) is

the count that alert/non-alert reports of middlebox m in switch

smi are consistent with collaborative decisions. The percentage

of monitored flows
|F (sm

i
,m)|

|F (m)| means the flow set coverage

confidence of switch smi in the monitored subclass F (m). We

compare the confidence of true-intrusion
∑k

i=1 w
m
i (1)·ami and

non-intrusion
∑k

i=1 w
m
i (0) · (1− ami ) to decide whether it is

a true intrusion am. If the true-intrusion confidence is larger,

it indicates a probable true intrusion.

ami =

{

1 middlebox m in switch smi reports an alert

0 else : no alert

am =

{

1
∑k

i=1 w
m
i (1) · ami >

∑k

i=1 w
m
i (0) · (1− ami )

0 else : no intrusion

nami (t) =

{

nami (t) + 1 ami = t
∧

am = t

nami (t) else
(t = 0, 1)

nam(t) =

{

nam(t) + 1 am = t

nam(t) else
(t = 0, 1)

wm
i (t) =

nami (t)

nam(t)
·
|F (smi ,m)|

|F (m)|
(t = 0, 1)

We design Algorithm 1 to collaborate alerts. Lines 1-

4 calculate collaborative alert with weights and alerts from

multiple instances of middlebox m. In spite of reducing false

positive, the centralized collaboration also bring another merit

to identify abnormal reporting activity of switches. As the

controller has no idea about whether the switches report

a truely detected intrusion or a false alert deliberately, the

collaboration helps to identify the anomalous behaviors of

switches. If a compromised switch always sends different

alerts conflicting with others, it will result in low weight



wm
i (t)(t = 0, 1) due to the low accuracy of alert report, so that

it has little impact on alerts collaboration. When the accuracy

is lower than 50% (Lines 8-10) which means it is even worse

than random alert report, the controller would remove the

switch from S(m) and stop the middlebox instance in the

switch by shutting down the corresponding ClickOS VM.

The centralized collaboration ignores insignificant alerts

with low confidence. However, as middlebox instances in

multiple switches process different flows going through them,

a switch may report a alert for a true small-regional anomaly

which is invisible to other switches, especially at the beginning

stage of malware explosion during which only a small part

of a network is infected. To perform fine-grained monitoring,

administrators could divide the monitored class F (m) into

multiple fine-grained classes and increase the monitored flow

percentage p to avoid false negative.

C. Intrusion Prevention Management

1) Intrusion Prevention In SDN: When the controller de-

termines a true intrusion with collaborative reports, it should

take actions to install prevention approaches in switches to stop

the abnormal activities. The prevention approaches could be

security policies installed in flow tables, e.g., setting the action

field of the flow entry as dropping. Although a flow entry

could act as a security policy and drop packets of a malicious

flow to throttle the propagation of malware, dropping an entire

flow may lead to high false positive, because only a portion of

packets contain the malicious pattern. Thus, the coarse flow

prevention with the flow table is not an advisable choice.

Moreover, the flow matching capability with the flow table

is limited, so that it is unable to identify packets containing

certain patterns in their payloads or malicious activities at

session level. It is not preferred to extend the flow table with

more security fields as matching with more field against a flow

entry will decrease processing efficiency. Due to the limitation

of the flow table, OpenFlow is not capable to perform fine-

grained intrusion filtering.

The OpenMiddlebox remedies the prevention functions of

the flow table. With middleboxes composed of Click elements

(e.g., IPClassifier, IPFilter) to filter abnormal traffic matching

the malicious pattern, these intrusion prevention middleboxes

could be triggered by more complicated conditions defined by

the programmable elements in addition to the simple matching

field in flow entry. Thus, middleboxes are able to act against

anomalies that evade defenses of the simple security policies

in flow tables.

To avoid high false alarm rate of intrusion preventions, we

distribute multiple preventions P = {p1, p2, ..., pt} at multiple

locations L(P ) for intrusions detected by middlebox m. L(P )
is composed of switches that are able to capture malicious

flows of the intrusion detected by middlebox m.

L(P ) = {smi |smi ∈ S(m), f ∈ F (smi ,m)∧f ∈ Malicious(m)}

2) Intrusion Prevention Updating: When an intrusion is

detected, experts analyze the intrusion pattern to generate the

prevention solutions and then install preventions in switches

to stop malicious activities. However, intrusion patterns al-

ways change as time goes and evolve to be new types of

anomalies, so that previously installed prevention solutions

may fail to detect the latest anomalies. Therefore, switches

should be aware of the changes in intrusion patterns to update

preventions. If a prevention solution does not detect any

intrusion for a long time, the cases may divide. Optimistically,

it means there is no intrusion threat at all. On the other

hand, the intrusion pattern changes such that the malicious

pattern previously defined in the prevention fails. For both

these cases, the preventions require to be removed or updated

in switches. Hence, only effective middlebox instances are

kept and updated in switches, while redundant and expired

preventions are removed to relieve the processing overhead.

According to the anomaly-based and signature-based IDS,

the updates of preventions could be divided into two cate-

gories. As the anomaly-based intrusion detection learns normal

traffic patterns and distinguishes anomalies from the normal,

the normal model may vary as time goes, such that preventions

may fail to capture and stop anomalies. Thus, the baseline

models in anomaly-based prevention require to be updated.

For the signature-based intrusion prevention, signatures used

in prevention middleboxes may fail due to the changes of

malicious signatures, especially for the polymorphic malware

which keeps evolving to evade intrusion prevention. Therefore,

the applied signatures in prevention middleboxes should be

updated. As the controller maintains the global control of

detection and prevention middleboxes, it compares the de-

tection and prevention results to decide whether preventions

fail to stop malicious activities. Intuitively, if a prevention pj
always fails to capture anomalies which trigger alerts of the

corresponding intrusion detection middlebox, this prevention

is ineffective due to the low prevention accuracy. Therefore,

the update of intrusion prevention pj depends on the defense

accuracy compared with the alerts generated by the intrusion

detection middlebox m.

Accuracy is the key factor to evaluate the effectiveness of

an intrusion detection and prevention system. For a prevention

p (p ∈ P ), we compare the defense result d(p) of the

prevention with alerts a(m) generated by the corresponding

detection middlebox m to determine the accuracy

accuracy(p) =
N(d(p) ∧ a(m))

N(d(p) ∧ a(m)) +N(¬d(p) ∧ a(m))

in which N(d(p) ∧ a(m)) and N(¬d(p) ∧ a(m)) are the true

positive count and false negative count compared with the de-

tection middlebox m. To ensure the efficiency of preventions,

we would like to retain preventions with high accuracy, and

the ineffective preventions with low accuracy are reported to

the controller to require update.

V. SYSTEM EVALUATION

With the centralized control and management of middle-

boxes, we evaluate the performance of middlebox distribution

and accuracy of the intrusion detection and prevention. As

the controller plans middlebox distribution management and



70% 75% 80% 85% 90% 95% 100%
0

0.2

0.4

0.6

0.8

1

percentage of monitored flows

p
e

rc
e

n
ta

g
e

 o
f 

s
w

it
c
h

e
s
 w

it
h

 M
B

o
x

 

 

50 switches

100 switches

200 switches

(a) Fat-tree

70% 75% 80% 85% 90% 95% 100%
0

0.2

0.4

0.6

0.8

1

percentage of monitored flows

p
e

rc
e

n
ta

g
e

 o
f 

s
w

it
c
h

e
s
 w

it
h

 M
B

o
x

 

 

50 switches

100 switches

200 switches

(b) 2D mesh

70% 75% 80% 85% 90% 95% 100%
0

0.2

0.4

0.6

0.8

1

percentage of monitored flows

p
e

rc
e

n
ta

g
e

 o
f 

s
w

it
c
h

e
s
 w

it
h

 M
B

o
x

 

 

50 switches

100 switches

200 switches

(c) 3D torus

Fig. 3: The percentage of switches used for monitoring
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Fig. 4: The percentage of monitored flows in hybrid SDN

collaborates middlebox reports according to network topology

and traffic distribution, we evaluate the proposed approaches

with three kinds of topologies: fat-tree, 2-D mesh, 3-D torus.

The node location and link interconnection are different in

these three topologies, so that the distribution and collabo-

ration of intrusion detection and prevention middleboxes are

also different.

A. Distribution Of Middleboxes

Intuitively, to capture details of network traffic, more mid-

dleboxes should be deployed in different locations of the

network. Meanwhile, these middleboxes are required to be

able to monitor most of network traffic. Figure 3 shows

the percentage of switches running middlebox instances to

monitor the entire network when the traffic is equally dis-

tributed among hosts. In the three kinds of network topologies,

with less than a half number of switches running middlebox

VMs, these middleboxes are able to monitor most of traffic

(95%) in the network. Especially for the fat-tree topology, the

entire network traffic could be monitored with middleboxes

in 20% switches in the network. It means the controller only

needs to manage a few number of middleboxes to monitor

the entire network traffic. The 3-D torus topology has more

redundant routing paths, so that network traffic is probably

routed through various different paths and evenly distributed

among switches. Therefore, 3-D torus employs larger number

of switches to monitor a certain percentage of network traffic

compared with fat-tree and 2-D mesh in Figure 3c. We also

note that, the larger the network is, the number of switches

running middlebox instances accounts for less proportion of

the network infrastructures, e.g., the network composed of 200

switches employs a less percentage of switches to monitor

the entire network than a small network with 50 switches.

Compared with the fairly distributed network traffic among

nodes, when traffic concentrates on a small number of nodes,

the switches on the critical routes to these nodes are able to

capture most of the traffic. Thus, there will be less switches

running middleboxes with the concentrated traffic.

The evolving of enterprise networks and data center net-

works from traditional networks to software defined networks

is usually an incremental process. It is inevitable that hybrid

networks operate with partial OpenFlow switches while others

still run as non-OpenFlow switches. Fortunately, these partial

OpenFlow switches are still able to capture most of network

traffics. In Figure 4, when OpenFlow switches are randomly

deployed in the network, at least 75% of traffic could be mon-

itored with 30% OpenFlow switches in these three topologies.

Due to the routing path diversity, the OpenFlow switches in

3D torus network capture less amount of traffic in Figure 4c

compared with fat-tree and 2-D mesh topologies. The larger

the network is, a certain percentage of OpenFlow switches

could monitor more network traffic than small networks.

B. Scalability

The middleboxes in switches not only reduce the com-

munication overhead between the controller and switches, it

also relieves administrators from heavy labour workload by

deploying and controlling these middleboxes automatically

with the centralized controller. To show the efficiency of

managing these middleboxes, we evaluate the performance

of the OpenMiddlebox architecture with the scaling of the

configuration file size and the network size respectively. As

switches are connected directly to the controller, the middle-

box management with the controller is independent from the
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Fig. 6: Alert collaboration accuracy with compromised switches
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Fig. 5: Scalability with file and network size

network topology. We test a 2-D mesh network with Mininet

[23], and each switch in the network connects to the controller

with a 1Gb/s link.

As the configuration file only needs to define the element

names and rules with integrated elements in ClickOS, the size

of configuration file is usually small at the level of kilobytes.

However, with the increasing number of security policies

defined with elements IPFilter, IPClassifier, the configuration

file could be as large as several megabytes. In Figure 5a,

when the size of configuration file grows, the distribution

latency also increases, and it takes over 20ms to send a

10MB file to a switch. Nevertheless, it is still acceptable for

the overall lifetime of a middlebox, as the configuration file

is only transferred at the beginning. In the OpenMiddlebox

architecture, when a switch sets up a middlebox, it inserts a

corresponding entry in the middlebox table and records the

configuration on the disk, and then boots the middlebox in

ClickOS VM. We notice that the middlebox VM booting takes

about 30ms and does not increase a lot when the configuration

file size grows. The overall middlebox setting up time is less

than 100ms for a 10MB configuration file, thus the setting up

latency is quite acceptable to relieve the centralized controller

from frequent traffic information fetching.

Meanwhile, when the network size scales, the number of

switches running middleboxes to monitor the network also

grows, so that the overhead to distribute and manage mid-

dleboxes in switches is also expected to increase as Figrue 5b

shows. It takes about 250ms to distribute a 100KB middlebox

configuration file to 100 switches at once, which is still much

shorter than the collecting and sampling frequency in central-

TABLE I: Collaboration accuracy

Topology
Switch alert accuracy

0.70 0.75 0.80 0.85 0.90 0.95 1

Fat-tree
FP 2.636% 0.645% 0.102% 0.007% 0 0 0

FN 2.655% 0.649% 0.100% 0.007% 0 0 0

2D mesh
FP 0.291% 0.022% 0 0 0 0 0

FN 0.294% 0.019% 0 0 0 0 0

3D torus
FP 0.036% 0.001% 0 0 0 0 0

FN 0.035% 0.001% 0 0 0 0 0

ized approaches which usually perform intrusion detection at

the level of several seconds. Therefore, the distribution and

management overhead of middleboxes is considerably accept-

able. As Figure 3 and Figure 4 show that partial switches in the

network are able to monitor most of the entire network traffic,

the middlebox management architecture could be deployed in

a large network with a part of switches running middlebox

VMs to monitor and protect the entire network.

C. Alert Accuracy

Accuracy is usually a key criteria to evaluate IDS and IPS.

In this section, we evaluate the accuracy of collaborative alert

reports. We have to note that the detection and prevention

accuracy greatly depends on the algorithms in middleboxes.

We do not evaluate certain algorithms here as most algorithms

could be adapted to be middleboxes in switches, and we only

focus on the collaboration of multiple middlebox instances.

For networks composed of 100 switches, Table I shows that

the centralized alert collaboration significantly improves the

overall alert accuracy than intrusion detection accuracy of mid-

dleboxes in a single switch when the accuracy of each switch

ranges from 0.70 to 1. As the network traffic distribution varies

in different network topologies, the weights of switches are

also different. Compared with 2D mesh and 3D torus networks,

in the fat-tree topology, the core and aggregation switches

usually process more traffic than access switches, which results

in larger weights for higher layer switches. Therefore, core and

aggregation switches have heavier impact in alert collaboration

and lead the collaboration results. On the other hand, the

collaboration results are likely to be mislead by the false

positive and false negative of these switches. In 2D mesh and

3D torus topologies, the traffic distribution is much more fair

among switches, especially for the 3D torus in which there
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Fig. 7: Prevention accuracy

are more redundant routing paths for load balancing. The fair

traffic distribution makes the weights of switches similar, thus

the collaborative decision is more objective and impartial with

lower false positive and false negative.
Furthermore, switches may be compromised and report false

alerts deliberately to confuse the controller. Although the alert

collaboration has reduced the impact of false alerts to some

extent, the compromise elimination of switches further gets rid

of compromised switches to bring down the false positive and

false negative of alert collaboration in Figure 6. Therefore,

the compromise elimination helps to improve the overall

protection accuracy. Especially for the 2D mesh and 3D torus

networks, switches have similar weights in these topologies

compared with fat-tree network, such that the compromised

switches are more easier to be recognized. For the fat-tree

network, the core and aggregate switches have larger weights

and tend to lead the alert collaboration results, so that it

is difficult to identify compromise in these switches. The

collaboration results also show that the false positive and false

negative are quite similar and both stay at low level, because

we have taken both the alerts and none alerts accuracy of each

middlebox into the collaboration.

D. Prevention Updating

To test the validity of prevention updating, we simulate

the process of malware evolving while the patterns defined in

prevention middleboxes stay. As prevention updating depends

on the accuracy of alerts reported by switches, we assume

that middleboxes detect intrusions with accuracy 80% in the

simulation. With malicious patterns changing as time goes,

intrusion detection middleboxes learn the abnormal pattern in

real time while the predefined patterns in prevention are static.

Hence, the accuracy of prevention decreases with the evolving

of the malicious in Figure 7, because the static patterns in

prevention fail to match the evolved malicious. When the

accuracy decreases as the malicious patterns change, if we

do not update the prevention scheme, the accuracy keeps

dropping. However, if we update or replace the prevention

when the estimated accuracy is less than 50%, it is able to

achieve high accuracy again at about 3500s in Figure 7.

VI. CONCLUSIONS

Considering the inflexibility of IDS and IPS architecture in

traditional networks, we note that SDN provides a flexible

architecture to control distributed nodes. However, the ab-

stracted SDN data plane provides little support for complicated

middlebox processing. To enable programmable middleboxes

in OpenFlow switches, we propose a middlebox management

architecture to control distributed intrusion detection and pre-

vention middleboxes in switches. Middleboxes run as isolated

ClickOS VMs in switches and are constructed with elements

provided by ClickOS. The controller manages middleboxes

with configuration files. We further design deployment and

update approaches for intrusion detection and prevention mid-

dleboxes with the proposed architecture. The evaluation shows

that the middlebox management architecture is able to deploy

and control middleboxes in switches effectively and is well

scalable to large networks.
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