
PATHA: Performance Analysis Tool for HPC

Applications

Wucherl Yoo∗, Michelle Koo†, Yi Cao‡, Alex Sim∗, Peter Nugent∗†, Kesheng Wu∗

∗Lawrence Berkeley National Laboratory, Berkeley, CA, USA
†University of California at Berkeley, Berkeley, CA, USA
‡California Institute of Technology, Pasadena, CA, USA

Abstract—Large science projects rely on complex workflows
to analyze terabytes or petabytes of data. These jobs are
often running over thousands of CPU cores and simultaneously
performing data accesses, data movements, and computation. It
is difficult to identify bottlenecks or to debug the performance
issues in these large workflows. To address these challenges, we
have developed Performance Analysis Tool for HPC Applications
(PATHA) using the state-of-art open source big data processing
tools. Our framework can ingest system logs to extract key
performance measures, and apply the most sophisticated sta-
tistical tools and data mining methods on the performance data.
It utilizes an efficient data processing engine to allow users to
interactively analyze a large amount of different types of logs
and measurements. To illustrate the functionality of PATHA,
we conduct a case study on the workflows from an astronomy
project known as the Palomar Transient Factory (PTF). Our
study processed 1.6 TB of system logs collected on the NERSC
supercomputer Edison. Using PATHA, we were able to identify
performance bottlenecks, which reside in three tasks of PTF
workflow with the dependency on the density of celestial objects.

Index Terms—Performance analysis, Performance evaluation,
High performance computing

I. INTRODUCTION

Large science projects are increasingly relying on thousands

of CPUs to produce and analyze petabytes of data [12][20].

These jobs usually have thousands of concurrent operations

of data accesses, data movement, and computation. Under-

standing the performance characteristics of these complex

workflows and debugging their performance issues are chal-

lenging for various reasons. The concurrent data accesses may

compete with each other and with other jobs for accessing to

shared data storage and networking resources. The storage and

memory hierarchies on the current generation of hardware are

very complex, and therefore have performance characteristics

that are sometimes unexpected. Modern CPUs usually have

temperature-based throttling mechanisms that could be acti-

vated to reduce the clock rate to decrease heat production,

which can introduce unexpected delays. It is difficult for

the application developers to anticipate all such conditions

and dynamically to adjust the data processing workflows.

Therefore, it is common for large parallel jobs to experience

mysterious performance fluctuations. To help understand these

performance fluctuations and diagnose performance bottle-

necks, we have developed PATHA (Performance Analysis Tool

for HPC Applications).

There have been various performance modeling works for

scientific workflows under various conditions, for example, on

a CPU node [24], in the Grid environment [9][11], and in

the cloud environment [17][16]. However, the large scientific

workflows are frequently running on a large computer with

sophisticated storage and networking resources that are not

easily captured by the existing models. There are a large

number of other jobs competing for the same resources.

For example, the computer center, NERSC Edison [1] where

our tests run has about 5,000 users, and at any given time,

hundreds, sometimes even thousands of parallel jobs are

waiting in the batch queue to be executed. After dispatch-

ing, jobs all access the same file systems and networking

hardware for I/O and communication needs. In some cases,

different tasks even share the same computer node, where the

computations from different jobs can affect the performance

of each other. Additionally, most of the existing performance

models are based on simplified models of how the underlying

hardware functions. For example, the roofline model [24] is

based on theoretical maximum performance of CPUs, and

various I/O performance models are similarly based on the

maximum performance numbers that manufacturers provide.

In most cases, the observed performance is far from what

could be achieved according to these simplified models. One

may choose to develop more refined mathematical models,

however, in this work, we choose instead to pursue empirical

models based on the observed performance measurements.

The queuing system captures performance information in-

cluding memory usage, CPU time, and elapsed time. However,

such information is generally about the whole job, and more

fine-grained information is needed to understand the individual

steps of a large parallel workflow. Alternatively, the workflow

management system could record the performance information

of each step of a workflow [15], a profiler may be used to

automatically capture detailed performance information [19],

or the user may instrument selected operations with some

library functions [22]. In these cases, the performance data

is typically captured into log files, which require additional

processing to extract the timing measurements. Once the

timing measurements are available, we can apply statistical

and data mining tools to study the performance characteristics.

To make the maximal use of the user’s knowledge about

their own applications, we enable interactive exploration of the

performance data. To process a large amounts of performance

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

data, we use Apache Spark [27] in the backend to distribute

and parallelize computational work loads. The extensive anal-

ysis capability of Spark also means that PATHA can identify

performance bottlenecks through outlier detection and other

data mining techniques. PATHA further invokes popular infor-

mation from its visualization framework to provide interactive

visualization of these bottlenecks and their dependencies. In

addition, the efficient data handling capability of Spark allows

PATHA to quickly integrate new performance information as

it gathers from the log files.

We used the Palomar Transient Factory (PTF) [14][18]

application to evaluate PATHA by analyzing performance

measurement data collected on the NERSC Edison clus-

ter. The PTF application is a wide-field automated survey

that records images of variable and transient objects in the

sky [14][18]. Images from these cameras are sent and stored

to the NERSC Edison for processing through the near real-

time image subtraction data analysis pipeline. The timestamps

of the execution of each processing step in the pipeline

were recorded in the database. As the performance of the

PTF analysis pipeline has been optimized, its performance

analysis to find hidden performance bottlenecks is particularly

challenging. This difficulties is due to the manual efforts and

required expertise to generate queries on the database with

the requirements to avoid severe overhead on the production

database shared by many users. The PTF application has been

optimized to remove bottlenecks and inefficient operations by

developers. Through our study, we were able to verify that the

optimized versions were mostly efficient and the obvious bot-

tlenecks were removed. Using PATHA, we identified hidden

performance bottlenecks and their causes without incurring

large database overhead.

The contributions are:

• Develop PATHA to handle different types of measure-

ments from scientific applications,

• Design bottleneck detection methods in PATHA, e.g.,

execution time analysis and data dependency performance

analysis

• Evaluate PATHA using a big data application known as

PTF.

The rest of paper is organized as follows. Sec. II presents

related work. Sec. III demonstrates the design and implemen-

tation of PATHA. Sec. IV presents experimental evaluations,

and the conclusion and future work are in Sec. V.

II. RELATED WORK

Several performance tools have been proposed to improve

the performance of HPC applications. Shende et al. [19]

designed Tau to support monitoring parallel applications by

automatically inserting instrumentation routines. Böhme et

al. [5] presented an automatic mechanism which performs

instrumentation during compilation in order to identify the

causes of waiting periods for MPI applications. Burtscher

et al. [8] designed Perfexpert to automate identifying the

performance bottlenecks of HPC applications with predefined

rules. Adhianto et al. [2] designed HPCToolkit to measure

hardware events and to correlate the events with source code to

identify performance bottlenecks of parallel applications. The

detection mechanisms of these tools were heavily dependent

on manually created metrics and rules. Vampir [7] uses MPI

workers to parallelize performance analysis computations.

However, it lacks supporting distributing the computations

to multiple nodes. These performance tools lack distributing

and parallelizing the computations of the analysis to large

number of machines. Some tools such as Tau [19] and

Vampir [7] can parallelize computational loads MPI processes,

and potentially these MPI processes can be extended to

distribute multiple loads. However, this extension involve

significant implementation challenges due to synchronization

and inter-process communication comlexities and lack of

fault tolerance support. Instead, PATHA can interactively

analyze the large size application and system logs of scientific

workflows requiring large computation within user-tolerable

latency. Furthermore, PATHA can complement these tools

by providing mechanisms to distribute and parallelize the

computational loads in addition to fault tolerance feature from

read-only characteristics of RDDs.

There has been several performance modeling works for sci-

entific workflows. Williams at al. [24] proposed the Roofline

model about a theoretical model for analyzing upper bounds

of performance with given computational bottlenecks and

memory bottlenecks. Tikir et al. [23] proposed to use genetic

algorithms to predict achievable bandwidth from cache hit

rates for memory-bound HPC applications. Duan et al. [11]

proposed to use a hybrid Bayesian-neural network to predict

the execution time of scientific workflow in the Grid environ-

ment. In addition, performance models have been proposed

in other domains. Cohen et al. [10] proposed to learn an

ensemble of models using a tree-augmented Bayesian network

on a system trace, and cluster the signatures to identify

different regions of normality as well as recurrent performance

problems. Ironmodel [21] employed a decision tree to build the

performance model based on the queuing theory of expected

behavior from end-to-end traces. These performance models

are based on the simplified models or assumptions about

the executions on the underlying hardwares and cluster. Our

performance analysis is based on the empirical model without

sacrificing the complex interactions in the executions.

Researchers have proposed mechanisms to identify perfor-

mance problems in the cluster environment. Barham et al. [3]

proposed to use clustering to identify anomalous requests. Xu

et al. [25] proposed to find erroneous execution paths using

the PCA [13] on console logs. Bod et al. [4] used logistic

regression with L1 regularization on the vector of metric

quantiles to fingerprint performance crisis. They used online

sampling to estimate quantiles from hundreds of machines.

Yoo et al. [26] adapted machine learning mechanisms to

identify performance bottlenecks using fingerprints generated

from micro-benchmarks. These work can help our work

differentiate performance bottlenecks at cluster level and those

at application level. However, they also lack support to analyze

large size logs from scientific workflows.

Logs

Parser
Application
Log Parser

File System
Log Parser

Job Log
Parser

Application
Logs

File System
Logs

Job
Logs

Analyzer Execution
Time Analysis

Data dependency
Analysis

Interactive
Visualization

Distributed
parallel

Executions

Cluster Monitoring
Log Parser

Cluster
Monitoring Logs

...

...

...

RDDsRDDsRDDsRDDs

Fig. 1: The overview of PATHA.

Fig. 2: The interactive visualization framework.

III. DESIGN AND IMPLEMENTATION

Fig. 1 illustrates the overview of PATHA. PATHA is

implemented with a fast and general framework for big-

data processing, Apache Spark. It is used to distribute and

parallelize computational work loads at the parser and the

analyzer levels. The analyzer of PATHA supports:

• execution time analysis to find performance bottlenecks

and time consuming routines in applications,

• data dependency analysis to find possible causes of

performance bottlenecks

• interactive visualization synched with performance mea-

surements

PATHA consist of parser and analyzer that are implemented

with Apache Spark. At the parser level, the different types of

logs stored in parallel file system or database can be loaded

into distributed memory of the multiple nodes. Each parser is

implemented to parse different type of logs (application logs,

file system logs, job logs, and cluster monitoring logs) and

load them as a form of Resilient Distributed Datasets (RDDs).

The computations for parsing and loading multiple files or

separate partitions in each file are distributed and computed

in parallel in multiple cores and multiple nodes. Then, parsed

results are loaded into memories in multiple nodes or saved

in multiple files. By combining the functional programming

operators, PATHA provides performance analyses on different

types of logs and measurements in scientific cluster.

At the analyzer level, we provide the components of exe-

cution time analysis, data dependency performance analysis,

and interactive visualization framework as shown in Fig. 2.

The framework provides predefined set of functions to enable

users to conduct the performance analysis. RDDs loaded as

a form of rows of tuples can be computed in parallel by

using the functional programming operators such as map,

reduce, ‘group by key’, or ‘and sort by key’. In addition,

computations between RDDs such as join are supported. Users

can interactively conduct performance analysis either querying

results or generating graphs by combining with grouping,

aggregation, filtering operations with the interesting fields

or variables. This is to pinpoint the bottleneck locations in

the execution time analysis and identify the most significant

field in the data dependency analysis. In addition, it provides

the platform that users can use existing libraries of machine

learning and statistics in popular programming languages,

Java and Python, so that they can easily conduct feature

selection, clustering, classification, or regression analysis. Not

only conducting our predefined performance analysis, users

can implement their customized analysis by combining the

libraries on the loaded RDDs without consuming much time

on implementation of distributed and parallel programming.

The computations at the analyzer level are distributed and

computed in parallel in multiple cores and multiple nodes

similarly at the parser level. Apache Spark is deployed in a

separate cluster with several hundred nodes so that users can

interactively execute analyses after connecting to the cluster.
1 The crucial point is that underlying parallel execution of

PATHA is dispatched in multiple nodes and multiple cores in

each node without the user intervention. Therefore, PATHA

can handle large scale performance logs and measurements.

As for the example of the PTF application, the PTF

application logs are stored in the database. They are queried

with simple conditions such as dates that can reduce the size

of the query results. For execution time analysis, timestamps,

job id, task id and checkpoint id are loaded into RDDs.

The execution time at each checkpoint is computed for each

job and task. Then, the execution times are grouped by

different keys, e.g., job or task, and the average execution

times are computed with the keys. For this grouping, RDDs

are needed to include columns with distintive values to be used

as keys such as job id, task id and checkpoint id. During the

computation for the average, missing timestamps or unordered

timestamps are filtered out. These irregularities are caused by

various reasons, e.g., failures in the executions at application

level or system level. Filtering out these would be challenging

and costly to implement using database query or customized

user application. For data dependency performance analysis,

the execution times are computed with multiple associated

1The current version of Apache Spark is optimized for local file system
instead of parallel file system in scientific clusters. However, the most
performance analysis of PATHA is compute bound since most data movement
happens in parsing and loading time.

variables or fields that are potentially related to the identified

performance bottlenecks. With the interactive visualization

support, PATHA can identify key variables directly related to

the performance bottlenecks.

The performance analysis in Sec. IV was conducted with

our interactive visualization framework of PATHA, shown in

Fig. 8. It provides the visualization tools and figure outputs by

allowing users to integrate performance analysis with iPython

and web browser. Users can conduct execution time analysis

by querying different types of graphs such as histogram, bar

graph, box plot and scatter plot. This analysis framework

not only allows users to uncover performance bottlenecks

in terms of execution time, but also allows them to further

query and research possible sources of additional performance

bottlenecks related to the data dependency. The development

of this tool will continue to advance future research of

performance behavior characteristics.

IV. PTF CASE STUDY

A. Test Setup

To evaluate PATHA, we used the PTF logs collected on

NERSC Edison supercomputer from Mar. 19, 2015 to Jul.

18, 2015 (PST). The PTF application was executed on the

compute node with two 12-core CPUs, Intel xeon E5-2695

and 64 GB memory. We also used Apache Spark [27] to

distribute and parallelize computational loads for PATHA. It

allows more thorough investigation on the PTF application

measurements and derived values from the measurements such

as the average execution time by averaging differences of the

measured timestamps in multiple tasks in each job. PATHA for

the experiments was running on a cluster with several hundred

machines with two 8-core CPUs, Intel Xeon E5-2670 and 64

GB memory.

B. PTF Application

Astrophysics is transforming from a data-starved to a data-

swamped discipline, fundamentally changing the nature of

scientific inquiry and discovery. Currently there are four large-

scale photometric and spectroscopic surveys which generate

and/or utilize hundreds of gigabytes of data per day. One of

them is the Palomar Transient Factory (PTF) which focuses

on expanding our knowledge of transient phenomena, such

as supernova explosions and massive star eruptions [14]. The

transient detection survey component of PTF is performed

at the automated Palomar Samuel Oschin 48-inch Schmidt

telescope equipped with a camera that covers a sky area of

7.3 square degrees in a single snapshot. Data taken with the

camera are transferred to NERSC Edison where a realtime

reduction pipeline is run. The pipeline matches images taken

at different nights under different observing conditions and

performs image subtraction to search for transients. The

transient candidates out of this pipeline then pass through

machine-learning classifiers to be prioritized for real transients

over artifacts. The final output is then displayed through a

web portal for visual inspection by human. This pipeline

Fig. 3: The average amount of time in seconds that each oper-

ation takes. Each color represents one of the 38 checkpoints.

has achieved the goal of identifying optical transients within

minutes of images being taken.

To evaluate PATHA, we used the PTF Application for the

experiments. The execution of PTF application involves the

executions of multiple jobs. Each job computes different areas,

and it consists of 10 tasks whose checkpoints are stored in

database when each processing step is conducted. As shown

in Fig. 3, the PTF analysis pipeline consists of 38 checkpoints,

with each color representing a different checkpoint. Fig. 3

depicts the average amount of time in seconds that the PTF

analysis pipeline took on each day to execute all jobs and tasks.

From Fig. 3, it is evident that the top five checkpoints with the

longest execution time in the PTF pipeline are checkpoints 8,

25, 29, 31, and 36. The average daily percentage calculations

taken over a span of 64 days reveal that checkpoint 8 takes on

average 7.29%, checkpoint 25 takes 11.16%, checkpoint 29

takes 6.22%, checkpoint 31 takes 14.79%, and most notably,

checkpoint 36 takes 23.72% on average. The three checkpoints

that took the longest average execution times were further

investigated for a potential bottleneck where performance

could be improved.

C. Execution Time Analysis

Next, we dive into the time measurements of checkpoint

36, the Transients in the Local Universe (TILU) query - a

geometric query that correlates the incoming candidates with

the table of known galaxies with their elliptical shapes and

orientations. Fig. 4 shows the box plot of average execution

time of this query together with the performance outliers as red

dots. We see that many jobs took much longer time than the

average. From Fig. 4, we note that certain days, such as March

20, 2015, have larger variance and many outliers. However,

the day with the largest number of outliers, March 26, 2015,

actually does not have extremely high average execution time,

nor even necessarily high variances either. This piqued our

interest and we will next examine the execution time on this

day more carefully.

Fig. 5 shows a scatter plot of the amount of time in seconds

for each job throughout the day, starting at approximately

Fig. 4: The amount of time in seconds of each job of

checkpoint 36, where each vertical line is for one day, the light

green line marks the median time, the blue brackets mark the

IQR, the high whisker is at Q3+1.5× IQR, and the red dots

mark the instances with extra long execution time.

Fig. 5: The amount of time in seconds per day for each job

of checkpoint 36, highlighting the average amount of time.

03:00 when the first task of checkpoint 36 was executed on

that day. It shows that an execution time spikes during the

time period from 12:20 to 13:06 on March 26, 2015. Next,

we look more carefully into this time window.

By focusing on the executions in specific time showing

significantly more execution times, we can discern whether

bottlenecks are caused by cluster load competing system

resources or caused by application-specific reasons Fig. 6

shows the time spent by each instance of TILU query in

the time window of 12:20 to 13:06. The length of each bar

in Fig. 6 reveals the total execution time of each job and

its corresponding PTF field. The jobs with longest execution

time have job ID 3182, 3189 and 3193 corresponding to

PTF fields 3292, 3291 and 14984 respectively. Interestingly,

the other PTF fields executed in the similar time window

with these PTF fields show much smaller execution times.

Since these instances of long execution time are interspersed

with very normal looking instances, we speculate that their

long execution times are not caused by system loads due to

Fig. 6: The execution times of all jobs with their corresponding

PTF field during the time period 12:20 to 13:06 on March 26,

2015.

Fig. 7: The average execution times of all PTF fields from

March 19, 2015 to July 18, 2015 for checkpoint 36.

competing shared resources. Next, we examine the possibility

that these long execution times are caused by differences in

user data involved in these queries.

D. Data Dependency Performance Analysis

Based on the suggestions from application scientists, we

next examine three PTF attributes to see how they affect the

execution time. These three attributes are: PTF field, number

of saved objects, and the galactic latitude.

PTF Field: Fig. 7 shows the average time of TILU queries

plotted against PTF fields, from March 19, 2015 to July 18,

2015. From Fig. 7, it is apparent that PTF field 2049 had the

longest average execution time.

To supplement the analysis of checkpoint 36 and to deter-

mine if other factors were correlated with the long execution

time of checkpoint 36, the two checkpoints (31 and 25) with

the 2nd and the 3rd longest execution times were further

observed in Fig. 8 and Fig. 9. Checkpoint 25 involves running

a program called hotpants that performs image subtraction,

and checkpoint 31 consists of running a machine learning

classifier, the Random forests [6]. Fig. 8 compares all three

checkpoints 36, 31, and 25 for execution times of all jobs on

March 26, 2015. It shows that the performance outliers exist

in checkpoint 25 and 36, while Fig. 9 displays the PTF fields

Fig. 8: The execution times of all jobs of checkpoints 36, 31,

and 25 on March 26, 2015.

Fig. 9: The execution times of all jobs of checkpoints 36, 31,

and 25 during the time 03:00 to 13:00 on March 26, 2015.

shared between all three checkpoints that have the longest

average execution time on the same date.

The total execution times of checkpoint 36, 31, and 25

are all shown in Fig. 8 and 9 for March 26, 2015, to

allow an easier execution time comparison among the three

checkpoints. Using results from Fig. 8 and 9, checkpoints 36,

31, and 25 were further researched by the shared PTF fields,

and the PTF fields with the longest execution times on March

26, 2015 are shown in Fig. 8.

Fig. 10: The average execution times in seconds for PTF fields

of checkpoints 36, 31, and 25 on March 26, 2015.

Fig. 11: The top PTF fields that have the longest execution

time of checkpoints 36, 31, and 25 from March 19, 2105 to

July 18, 2015.

Fig. 12: The average execution times of checkpoints 36, 31,

and 25 for each day of PTF field 2049 with the number of

measured tasks above each bar.

In addition to the results and calculations shown in Fig. 8

and 9, Fig. 10 was illustrated to find whether any correlations

exist between the execution times of the three checkpoints and

PTF fields. The executions with PTF field 22568 was shown

to have the longest shared average execution time due to the

longest execution time in checkpoint 36. Fig. 10 shows that

the weak correlation exists, and the execution times of the

three checkpoints are not always correlated each other.

In order to further analyze the correlations in these check-

points, the average execution times associated with the PTF

fields from March 19, 2015 to July 18, 2015 were illustrated

in Fig. 11 with the number of measured tasks above each

bar. This is to compare all three checkpoints with the shared

PTF fields that have the longest average execution times. It

is important to note that Fig. 11 shows that The executions

with PTF field 2049 was calculated to take the longest average

execution time of checkpoints 36, 31, and 25 combined. Since

the executions with PTF field 22568 showing the longest

execution time in Fig. 10 is not shown in this top PTF

fields during the 4 months, we further analyzed whether any

variances exist in the execution times associated with the PTF

fields.

(a) Checkpoint 31

(b) Checkpoint 36

Fig. 13: The average execution time of checkpoints 31 and 36

for each number of saved objects.

The executions with PTF field 2049 is illustrated in more

details in Fig. 12 with the dates when this field was observed.

While the performance bottleneck is related to the PTF fields,

the existing variances in the execution times of the particular

field confirms that the performance bottleneck is not directly

associated with the PTF fields.

Saved Objects: In order to find out other directly related

variables or fields, we used PATHA to plot more variables

with the average execution time depending on the variables.

Fig. 13 illustrates the average execution time of checkpoints 31

and 36 for each number of saved objects. While omitted from

this Fig., the checkpoint 25 shows the similar pattern as that of

31 and 36. In the PTF application, a fragmentation algorithm

is performed on the subtraction images to identify variable

stars and transient candidates over the noisy background and

to measure their shape parameters such as the length and angle

of its major axis and ellipticity. Then, a simple shape cut is

applied to remove elongated candidates which are probably

artifacts. The candidates that pass the shape cut are saved

for further examination, i.e., checkpoints after the checkpoint

25. The reason of different numbers of saved objects is

that the total number of candidates for further examination

is determined by the number of variable stars (since real

transients are rare), which in turn correlates with the total

number of stars in a given field. Fig. 13 shows the linear

relation between the average execution time and the number of

(a) Checkpoint 31

(b) Checkpoint 36

Fig. 14: The average execution times of checkpoints 31 and

36 for each absolute galactic latitude.

saved objects. 2 It shows the performance bottleneck in these

checkpoints when computed with the large number of stored

objects. This is because the large number of saved objects

requires more comparisons and computation. This identified

bottleneck would lead to reduce the computation time when

computing with the large number of stored objects.

Galactic Latitude: Fig. 14 illustrates a correlation between

the execution times of checkpoints 31 and 36 and the abso-

lute galactic latitude (zero degree corresponds to the Milky

Way plane). It shows the performance bottlenecks in these

checkpoints at low galactic latitudes (checkpoint 25 shows the

same performance bottleneck). The physical reason behind it

is that the closer a field is to the Milky Way, the more celestial

objects, the more transient/variable candidates, and the longer

execution time for these checkpoints. At low galactic latitudes,

i.e., close to the Milky Way plane, the stellar density is higher,

and so is the density of variable stars. Therefore, images taken

at low galactic latitudes in general generate more candidates

than those at high galactic latitudes.

V. CONCLUSION

We developed PATHA (Performance analysis Tool for HPC

Applications) using open source big data processing tools.

It provides the execution time analysis and data dependency

2The linear regression coefficients are 8.515×10
−4 for checkpoint 35 and

5.673× 10
−3 for checkpoint 31.

performance analysis on different types of performance mea-

surements from scientific clusters. With the tool, users can

identify performance characteristics and performance bottle-

necks in their science applications and scientific clusters.

As the computations for the analysis are distributed and

parallelized in multiple nodes, the framework can handle the

measurements from large applications in exa-scale clusters.

In a case study involving the PTF application, we iden-

tified performance bottlenecks in checkpoints 25, 31, and

36. We also identified their direct data dependencies on the

number of saved objects and the absolute galactic latitude.

Developers of the PTF application have been working on

optimizing identified performance bottlenecks. As the future

work, we will extend PATHA to combine the measurements

of hardware executions in clusters and the measurements

from the applications. In addition, we will automate the

process of bottleneck identification. These will help identify

the performance bottlenecks due to the system related issues

along with the application related issues.

VI. ACKNOWLEDGMENTS

This work was supported by the Office of Advanced

Scientific Computing Research, Office of Science, the U.S.

Dept. of Energy, under Contract No. DE-AC02-05CH11231.

This work used resources of NERSC.

REFERENCES

[1] “Nersc edison,” https://www.nersc.gov/users/computational-systems/
edison/, 2015.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCTOOLKIT: tools for performance
analysis of optimized parallel programs,” Concurr. Comput. : Pract.

Exper., vol. 22, no. 6, pp. 685–701, 2010.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for
request extraction and workload modelling,” in OSDI’04: Proceedings

of the 6th conference on Symposium on Opearting Systems Design &

Implementation. USENIX, Dec. 2004, pp. 259–272.

[4] P. Bod, U. C. Berkeley, M. Goldszmidt, A. Fox, U. C. Berkeley,
D. B. Woodard, H. Andersen, P. Bodik, M. Goldszmidt, A. Fox,
D. B. Woodard, and H. Andersen, “Fingerprinting the datacenter,” in
EuroSys’10: Proceedings of the 5th European conference on Computer

systems. New York, New York, USA: ACM, Apr. 2010, pp. 111–124.

[5] D. Bohme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the
Root Causes of Wait States in Large-Scale Parallel Applications,” in
Proceedings of the 2010 39th International Conference on Parallel

Processing. IEEE, 2010, pp. 90–100.

[6] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

[7] H. Brunst, M. Winkler, W. E. Nagel, and H.-C. Hoppe, “Performance
optimization for large scale computing: The scalable vampir approach,”
in Computational Science-ICCS 2001. Springer, 2001, pp. 751–760.

[8] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications,” in Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis, 2010, pp. 1–11.

[9] J. Cao, D. Kerbyson, E. Papaefstathiou, and G. R. Nudd, “Performance
modeling of parallel and distributed computing using pace,” in Perfor-

mance, Computing, and Communications Conference, 2000. IPCCC ’00.

Conference Proceeding of the IEEE International, Feb 2000, pp. 485–
492.

[10] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons,
“Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control.” in OSDI, vol. 6. USENIX,
2004, pp. 231–244.

[11] R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan, and T. Fahringer, “A
hybrid intelligent method for performance modeling and prediction of
workflow activities in grids,” in Proceedings of the 2009 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid, ser.
CCGRID ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 339–347.

[12] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft, Oct. 2009.
[13] I. Jolliffe, “Principal Component Analysis,” in Wiley StatsRef: Statistics

Reference Online. John Wiley & Sons, Ltd, 2014.
[14] N. M. Law, S. R. Kulkarni, R. G. Dekany, E. O. Ofek, R. M.

Quimby, P. E. Nugent, J. Surace, C. C. Grillmair, J. S. Bloom,
M. M. Kasliwal, L. Bildsten, T. Brown, S. B. Cenko, D. Ciardi,
E. Croner, S. G. Djorgovski, J. v. Eyken, A. V. Filippenko, D. B.
Fox, A. Gal-Yam, D. Hale, N. Hamam, G. Helou, J. Henning, D. A.
Howell, J. Jacobsen, R. Laher, S. Mattingly, D. McKenna, A. Pickles,
D. Poznanski, G. Rahmer, A. Rau, W. Rosing, M. Shara, R. Smith,
D. Starr, M. Sullivan, V. Velur, R. Walters, and J. Zolkower, “The
palomar transient factory: System overview, performance, and first
results,” Publications of the Astronomical Society of the Pacific, vol.
121, no. 886, pp. pp. 1395–1408, 2009.

[15] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B.
Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the kepler system,” Concurrency and Computation: Practice and

Experience, vol. 18, no. 10, pp. 1039–1065, 2006.
[16] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and

deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds,” in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, ser. SC ’12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 22:1–
22:11.

[17] A. Matsunaga and J. A. B. Fortes, “On the use of machine learning
to predict the time and resources consumed by applications,” in
Proceedings of the 2010 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, ser. CCGRID ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 495–504.

[18] F. Rusu, P. Nugent, and K. Wu, “Implementing the palomar transient fac-
tory real-time detection pipeline in GLADE: Results and observations,”
in Databases in Networked Information Systems, ser. Lecture Notes in
Computer Science, vol. 8381, 2014, pp. 53–66.

[19] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[20] A. Shoshani and D. Rotem, Eds., Scientific Data Management:

Challenges, Technology, and Deployment. Chapman & Hall/CRC Press,
2010.

[21] E. Thereska and G. R. Ganger, “Ironmodel: robust performance models
in the wild,” ACM SIGMETRICS Performance Evaluation Review,
vol. 36, no. 1, pp. 253–264, Jun. 2008.

[22] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter,
“The netlogger methodology for high performance distributed systems
performance analysis,” in High Performance Distributed Computing,

1998. Proceedings. The Seventh International Symposium on, Jul 1998,
pp. 260–267.

[23] M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely, “A genetic
algorithms approach to modeling the performance of memory-bound
computations,” in Proceedings of the 2007 ACM/IEEE conference on

Supercomputing. ACM, 2007, p. 47.
[24] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful

visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[25] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP’09:

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles. ACM, Oct. 2009, pp. 117–131.
[26] W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H. Campbell, “ADP:

automated diagnosis of performance pathologies using hardware events,”
in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE,
vol. 40. New York, New York, USA: ACM, Jun. 2012, pp. 283–294.

[27] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX, 2010.

