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Abstract—Network traffic data consists of Traffic Matrix (T-
M), which represents the volumes of traffic between Origin and
Destination (OD) pairs in the network. It is a key input param-
eter of network engineering tasks. However, direct measurement
of the OD pairs traffic is usually not feasible. Even good traffic
measurement systems can suffer from errors, missing data.
So obtaining the ODs traffic precisely is a challenge. Existing
completion methods often perform poorly for network traffic
estimation. Their recovery accuracy tends to be significantly
worse when the data loss rate is high. Taking into account
network traffic lower-dimensional latent structure and traffic
hidden characteristic, a tensor (multi-way array) is introduced to
model a time series of pure spatial traffic matrices in this paper.
To recover the missing entries in tensors of traffic data, a novel
spatio-temporal tensor completion method has been proposed.
This approach not only takes advantage of tensor decomposition
and its lower-dimensional representation, but also well takes
into account traffic spatio-temporal properties. The extensive
experiments with the real-world traffic trace data show that the
proposed method can significantly reduce the missing traffic data
recovery errors and achieve satisfactory completion accuracy
comparing with the state-of-the-art completion methods.

I. INTRODUCTION

The traffic data of network is essential to carry out better

network management. These data consists of Traffic Matrix

(TM), which represents the volumes of traffic between Origin

and Destination (OD) pairs in the network [1]. As an overview

of the whole network, it is a key input parameter of many

networks engineering tasks, such as traffic engineering, ca-

pacity planning and anomaly detection [2]. Unfortunately the

complete measurement of the OD traffic is usually difficult

or even impossible (but expensive). Traffic data collection

systems are affected by hardware and network transport

protocol. Unreliable links and transport protocol (i.e., UDP)

cause traffic data structural loss in the collection process [3].

How to cope with missing data that frequently arise in TMs is

still a main challenge. Since many network engineering tasks

are sensitive to missing values, it is important to accurately

recover missing values from the partial direct measured OD

pairs traffic data.

To infer the missing data, some research works have been

developed. Non-negative Matrix Factorization (NMF) [4] use

matrix decomposition technique to recover the missing entries

in a matrix. Sparsity Regularized SVD (SRSVD) [5] utilizes

matrix singular value decomposition to estimate the missing

traffic data. Compressive Sensing (CS) [6] takes advantage

of the sparsity of data to infer the missing values, such as

spatio-temporal compressive sensing framework for traffic

interpolation [5] and power laws and compressive sensing

reconstruction approach to network traffic [7]. Following CS,

matrix completion (MC) [8] exploits the low-rank structure

of matrix to recover the missing entries, such as the Singular

Value Thresholding algorithm (SVT) [9] and Low-rank Matrix

Fitting algorithm (LMaFit) [10], etc.

Besides above research work, there are other studies which

formulate data being processed as a form of tensor to estimate

the missing values. A tensor is a multidimensional or N-way

array, which preserve the multi-way nature of the data and

extract the underlying factors in each dimension of tensor.

J. Liu et al. [11] propose a high accuracy low rank tensor

completion algorithm (HaLRTC) to estimate missing values in

tensors of visual data. E. Acar et al. [12] develop an algorithm

called CP-WOPT (CP Weighted OPTimization) to recover

missing entries of a tensor. H. Tan et al. [13] propose a tensor

decomposition based imputation method (TDI) to estimate the

missing value in transportation traffic.

Despite much recent progress in these area, our extensive

evaluation of the existing completion algorithms on real-

world network traffic trace data shows that they do not

perform well for the missing data estimation. Specifically,

their recovery accuracy are still low when large amounts

of data is missing. To overcome the shortcomings of these

methods, we exploit traffic lower-dimensional latent space

and traffic hidden characteristic to improve the quality of the

missing data recovery.

In this paper, we model network traffic data as tensor pat-

tern. Inspired by spatio-temporal compressive sensing [5], we

propose a novel spatio-temporal tensor completion method to

recover the missing entries in tensors of traffic data. We utilize

spatio-temporal properties information to regularize the tensor

decomposition procedure, resulting in a unified framework for

traffic tensor completion. The main contributions of this paper

include:

• A tensor is introduced to model a time series of pure

spatial traffic matrices, which preserve the multi-way

nature of the network traffic data and extract the latent

structure of traffic via tensor factorization.

• By taking advantage of tensor decomposition, which

project instances into a lower-dimensional latent space,

and spatio-temporal information within-mode regulariza-

tion, we propose a novel spatio-temporal tensor comple-

tion method to estimate the missing traffic data.

• Through extensive experiments with real-world traffic

trace data, the evaluations show that our method can

accurately recover the missing values with very low
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estimation error. Even when 95% of the data is missing,

the proposed approach can still reconstruct the tensor

with about 20% errors.

The remaining of this paper is structured as follows. Section

II outlines the notation used in this paper. Section III intro-

duces the related work. We formulate the problem in Section

IV. Section V presents our proposed approach. Numerical

results are given in Section VI. Conclusion and future work

are discussed in Section VII.

II. NOTATIONS AND TENSOR BASICS

In this section, we partially adopt the notations of Kolda and

Bader’s review on tensor [14]. A tensor is a multidimensional

array, whose essence is a mapping from a linear space to

another. The order of a tensor is the number of dimensions,

also known as ways or modes. Tensors of order n ≥ 3 are

denoted by Euler script letters (X ,Y ,Z), matrices by capital

letters (A, B, C), vectors by lowercase letters (a, b, c). An

nth-order tensor is represented by X ∈ RI1×I2×···×In and its

entries are denoted by xi1i2···in . The Frobenius norm of X

is defined by ‖X‖ =
(
∑

i1

∑

i2
...

∑

in
x2
i1i2...in

)
1

2 . The L1-

norm of X is defined by ‖X‖1 =
∑

i1

∑

i2
...

∑

in
|xi1i2...in |.

The Hadamard product is the elementwise product of two

vectors, matrices, or tensors of the same sizes. For instance,

two tensors X ∈ RI1×I2×···×In and Y ∈ RI1×I2×···×In ,

their Hadamard product is denoted by X ∗ Y and defined as

(X ∗ Y)i1i2···in = xi1i2···inyi1i2···in .

The Kronecker product of matrices A ∈ RI×J and B ∈
RK×L, denoted by A⊗B, is a (IK)× (JL) matrix defined

by A⊗B = [aijB] IK×KL.

The Khatri-Rao product of matrices A ∈ RI×J and B ∈
RK×L, denoted by A ⊙ B, is a (IJ) × (K) matrix defined

by A⊙B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ](IJ)×K .

The mode-n unfolding, also known as matricization, of an

nth-order tensor X is denoted by X(n) and arranges the mode-

n one-dimensional fibers to be the columns of the resulting

matrix (see Fig. 3).

An nth-order tensor X ∈ RI1×I2×···×In is rank one if it

consists of the outer product of N vectors, i.e., X = a(1) ◦
a(2) ◦ · · · ◦ a(N). The symbol ”◦” represents the vector outer

product.

The standard CANDECOMP/PARAFAC (CP) tensor de-

composition factorizes a tensor into a sum of component rank-

one tensors, which is expressed by

X =
R
∑

r=1

a
(1)
r ◦ · · · ◦ a

(N)
r = JA(1), . . . , A(N)K (1)

where J· · ·K is a shorthand notation of CP decomposition.
{

A(n) |n = 1, . . . , N
}

are latent factor matrices and can

be thought of as the principal components in each mod-

e. The mode-n factor matrix can be denoted by A(n) =
[

a
(n)
1 , . . . , a

(n)
R

]

∈ RIn×R. An illustration of CP decompo-

sition for third-order tensor is given in Fig.1.

The rank of a tensor is the smallest R for which the above

(1) holds, denoted by R = rank(X).

Fig. 1. CP decomposition of a third-order tensor.

III. RELATED WORK

We review the related work on the recovery of the missing

data. Interpolation is the mathematical term for filling in

missing values. There are many work devoted to interpolate

missing data. From the view of data organizational structure,

these interpolation methods can be divided into two cate-

gories, i.e., matrix-based interpolation methods and tensor-

based interpolation methods.

A. Matrix-based Interpolation Methods

Matrix-based methods exploit two-dimensional global in-

formation to estimate the missing data. For instance, Non-

negative Matrix Factorization (NMF) [4] in the presence

of missing entries is formulated as alternating nonnegative

least squares problem for recovering the missing values.

Sparsity Regularized SVD (SRSVD) [5] creates a SVD-like

factorization of matrix, and applies regularization method to

optimize the estimation of the missing data.

Compressive Sensing (CS) is a technique that can accurate-

ly recover a vector from a subset of samples given that the vec-

tor is sparse [6]. CS can be used to recover the missing values

with only a few sampled data. M. Roughan et al. [5] propose

a novel spatio-temporal compressive sensing framework for

TM interpolation, traffic prediction and anomaly detection,

in which Sparsity Regularized Matrix Factorization (SRMF)

is presented. SRMF leverages low-rank nature of traffic data

and their spatio-temporal properties to estimate the missing

traffic data. L. Nie et al. [7] propose a power laws-based

and compressive sensing method to reconstruct end-to-end

network traffic.

Matrix Completion (MC) [8] is closely related to CS. It

takes advantage of the low-rank structure of matrix to recover

the missing entries. The Singular Value Thresholding algorith-

m (SVT) [9] is an iterative algorithm for solving the convex

relaxation of the approximate matrix completion problem. The

Low-rank Matrix Fitting algorithm (LMaFit) [10] is a low-

rank factorization model and constructs a nonlinear successive

over-relaxation. LMaFit can provide multi-fold accelerations

over nuclear-norm minimization on a wide range of matrix

completion or low-rank approximation problems.

Matrix-based interpolation methods simply formulate the

traffic data into two-dimensional matrix pattern by stacking

the columns of TM. The muti-way nature of TM is naively

discarded, which cause an unfaithful representation of struc-

tural properties for traffic data. Therefore, a matrix is still

not enough to capture the comprehensive lower-dimensional

latent space in the traffic data, and the data recovery accuracy

based on matrix-based approaches is still low.



B. Tensor-based Interpolation Methods

Tensor-based interpolation methods can capture more glob-

al information than matrix-based methods due to the intrinsic

multidimensional characteristics of tensor model. J. Liu et al.

[11] first proposed a tensor completion method based on trace

norm minimization and applied it on image completion, in

which a high accuracy low rank tensor completion algorithm

(HaLRTC) is used for estimating missing visual data. E. Acar

et al. [12] develop a CP weighted optimization algorithm (CP-

WOPT) that uses a first-order optimization approach to solve

the weighted least squares problem and apply to estimate

the missing network traffic data. H. Tan et al. [13] construct

transportation traffic data as a tensor model and propose a

Tucker decomposition based imputation algorithm (TDI) to

impute the missing volumes.

A tensor is higher dimensional extension of matrix, which

can preserve inherent structural properties in the data. Tensor-

based methods exploit the multidimensional structure corre-

lation properties of tensor to estimate the missing entries.

The regular tenor completion methods minimize the trace

norm of a tensor, i.e. the average of the trace norms of all

matrices unfolded along each mode. However, their recovery

performance degrades significantly in traffic tensor when the

data missing ratio is high. On the other hand, there is no

straightforward algorithm to determine the tensor rank of a

specific given tensor. The problem is NP-hard [15]. A low-

rank tensor decomposition based completion method can not

achieve satisfactory prediction accuracy.

To improve the accuracy of the estimation results, we ex-

ploit the lower-dimensional latent structure in tensors of traffic

data and traffic spatio-temporal properties for the missing data

recovery. Based on low-rank tensor CP-decomposition and

spatio-temporal information within-mode regularization, we

propose to a novel spatio-temporal tensor completion method

for recovering the missing traffic data.

IV. PROBLEM FORMULATION

A TM is a representation of the traffic volume flowing

between a source i and a destination j. Considering a network

with N nodes (computer, routers, etc.), the TM is an N ×N

matrix. Since TM evolves over time, a time series of pure

spatial traffic matrices can be regarded as 3-dimensional array,

i.e., X ∈ RN×N×T (where there are T time intervals). For

instance, the Abilene data [16] contains the traffic exchanged

between 11 routers over 6 months collected using 10-minute

intervals. This dataset forms a third-order tensor with source

routers, destination routers and time modes (see Fig.2). Its

each entry, xijt(1 ≤ i, j ≤ N, 0 ≤ t ≤ T ), denotes the

amount of traffic sent from a source i to a destination j during

a particular time interval t.

Definition 1. Binary Index Tensor W ∈ RN×N×T is a 0-1

tensor, which indicates whether entries of X are missing,

wijt =

{

0 if xijt is missing

1 otherwise
(2)

Our goal is to estimate the missing traffic data based on

the partial direct measurements. To simplify the discussion,

Fig. 2. A third-order tensor of traffic data.

we use the following system of linear equations to formulate

the missing value estimation problem:

Y = W ∗X (3)

where ∗ denote Hadamard product, the tensor Y contains

the measurements. Note that the presence of missing data is

implicit in (3).

We seek an estimated tensor X̂ that satisfies the conditions

imposed by the set of measurements. However, it is an un-

derconstrained linear-inverse problem. To solve such problem,

one possible approach is to introduce some constraints or prior

knowledge about tensor X, i.e., the tensor low-rank model and

domain knowledge about relationship among data [17], i.e.,

spatio-temporal properties.

V. OUR SCHEME: SPATIO-TEMPORAL TENSOR

COMPLETION

In this section, we propose a tensor completion method for

estimating the missing traffic data. The proposed approach,

namely spatio-temporal tensor completion (STTC), utilizes

tensor CP-decomposition for completion. In addition, taking

advantage of lower-dimensional representation in each mode

of tensor, spatio-temporal within-mode regularization is used

to improve the completion accuracy.

A. CP-decomposition for Completion

Given a third-order traffic tensor X ∈ RN×N×T , and its

rank is R, the CP model can be express as X ≈ [[A,B,C]] =
R
∑

r=1
ar ◦ br ◦ cr, A = [a1, a2, · · · , aR] and likewise for B

and C, [see Fig.1]. We look for a factorization that satisfies

the measurement (3). In the case of incomplete data, the

interpolation model based on CP decomposition for missing

traffic data can be formulated as,

minimize f(A,B,C) = ‖W ∗ (X− [[A,B,C]])‖2

+λ
(

‖A‖2 + ‖B‖2 + ‖C‖2
) (4)

where ∗ denote Hadamard product. This solution regularizes

towards the tensor low-rank approximation but does not strict-

ly enforce the measurement (3). The regularization parameter



λ allows a tunable tradeoff between fitting error and achieving

tensor low-rank.

By seeking accuracy in the factors, i.e., A, B and C, it can

be used to reconstruct the missing values. The objective of (4)

is to find global low-rank structure in the tensor. In addition,

we have a priori knowledge that the traffic data has intrinsical

spatio-temporal structure.

B. Improvement with Spatio-Temporal

In real-world network, most of traffic data usually change

slowly over time, that is, there is little mutation on measured

value between adjacent time slots [18]–[21]. These traffic data

exhibit temporal stability feature in time dimension. On the

other hand, the OD pairs traffic is a combination of different

classes of network traffic, which are not independent. At

a single measurement interval, the traffic data are close or

similar to each other, which exhibit spatial correlation feature

[3], [19], [22].

We seek to exploit this insight to improve completion

accuracy. Taking advantage of the CP factor matrices as the

lower-dimensional representation in each mode of tensor and

spatio-temporal within-mode regularization, we propose to

combine with (4) and solve the following

minimize f(A,B,C) = ‖W ∗ (X− JA,B,CK)‖2

+ λ
(

‖A‖2 + ‖B‖2 + ‖C‖2
)

+ α(‖JFA,B,CK‖2

+ ‖JA,GB,CK‖2

+ ‖JA,B,HCK‖2)

(5)

where F and G are the spatial constraint matrices and H is the

temporal constraint matrix, which expresses our knowledge

about the traffic spatio-temporal properties.

To find F , G and H , we estimate an initial tensor X̃

by interpolating three-dimensional means of known entries

into the missing locations in the tensor X. Unfolding third-

order estimation tensor X̃, the mode-1, mode-2 and mode-3

matricization are shown in Fig.3, denoted by X(1), X(2) and

X(3) respectively.

The temporal constraint H captures temporal stability

feature, i.e., the traffic data is similar at adjacent time slots

in the tensor. Based on X(3), we set H = Toeplitz(0, 1,−1)
of the size (T − 1) × T , which denotes the Toeplitz matrix

with central diagonal given by 1, the first upper diagonal

given by -1, and the others given by 0, i.e.,

H =















1 −1 0 · · ·

0 1 −1
. . .

0 0 1
. . .

...
. . .

. . .
. . .















The factor matrix C is the principal components in time

dimension of tensor, i.e., temporal lower-dimensional rep-

resentation. By minimizing ‖JA,B,HCK‖2, the temporal

constraint H functions on the latent space of time dimension

of traffic tensor, which approximate the property of having

similar values at adjacent time slots.

Fig. 3. Unfolding of the (N ×N × T ) tensor to the (N ×NT ) matrix
X(1), the (N ×NT ) matrix X(2) and the (T ×NN) matrix X(3).

The spatial constraint F and G capture spatial correlation

feature, i.e., the traffic data is similar in spatial dimension of

tensor. Using X(1) and X(2), we chose F and G based on the

similarity between rows of X(1) and X(2) respectively. For

each row i of X(1), we perform linear regression to find a set

of weights w(n)(n = 1, 2, ..., N − 1) such that the linear

combination of rows jn best approximates the row i, i.e.,

X(1)(i, ∗) ≈
∑

w(n)X(1)(jn, ∗). Then we set F (i, i) = 1
and F (i, jn) = −w(n). For choosing G, the entire procedure

is repeated using X(2).

The matrices F and G express spatial similar relation-

ship of traffic. As the factor matrices A and B are lower-

dimensional representation of the spatial dimension, by min-

imizing ‖JFA,B,CK‖
2

and ‖JA,GB,CK‖
2
, the spatial con-

straint F and G function on the underlying latent structure

of spatial dimension, which approximate spatial correlation

feature.

C. STTC Algorithm

We propose an efficient STTC algorithm for estimating the

missing entries in the traffic tensor. In order to reconstruct

the missing data, we derive A, B and C from (5) using an

alternating least squares (ALS) procedure. The detail pseudo

code is described in Algorithm 1.

The ALS approach fixes B and C to solve for A, then fixes

A and C to solve for B, then fixes A and B to solve for

C, and continues to repeat the entire procedure until some

convergence criterion is satisfied [14].

Having fixed all but one matrix, the problem reduces to

a linear least-squares problem. For example, suppose that A

and B are fixed. Then, from (5), we can rewrite the above

minimization problem for C in matrix form as










W(3) ∗
(

(A⊙B)× C
′
)

√
α [(F ×A)⊙B;A⊙ (G×B)]× C

′

√
α (A⊙B)× C

′

×H
′

√
λC

′











=







W(3) ∗X(3)

0
0
0







(6)



(6) is inconsistent equation, which can be solved by numerical

approaches such as the invMinL2 function in MATLAB. The

subfunction myInverse in the pseudo code implement solving

(6).

Algorithm 1 STTC Algorithm

Input:

X ∈ RN×N×T : input tensor

W ∈ RN×N×T : binary tensor

F , G: spatial constraint matrices

H: temporal constraint matrix

r: tensor rank

α: weight for constraints

λ: regularization parameter

MaxIter: max number of iterations

Initialize:

A ∈ RN×r, B ∈ RN×r, C ∈ RT×r;

fval0=f(A, B, C); // compute (5)

1: for 1 to MaxIter do

2: A = myInverse(X(1),W(1), B ⊙ C, [(G × B) ⊙
C;B ⊙ (H ×C)], F, A, α, λ);

3: B = myInverse(X(2),W(2), C ⊙ A, [(H × C) ⊙
A;C ⊙ (F ×A)], G,B, α, λ);

4: C = myInverse(X(3),W(3), A ⊙ B, [(F × A) ⊙
B;A⊙ (G×B)], H,C, α, λ);

5: fval = f(A,B,C); // update compute (5)

6: if (fval ≤ fval0) then

7: fval0 = fval;

8: Â = A; B̂ = B; Ĉ = C;

9: end if

10: end for

11: X̂ = JÂ, B̂, ĈK;

Output: X̂

VI. EXPERIMENT RESULTS

We conduct extensive simulation experiments to evaluate

the performance of the proposed STTC algorithm. We set

up a series of missing scenarios, from low loss to high

loss probability, and from random loss to highly structured

loss patterns. Compared with the state-of-the-art interpolation

methods including matrix-based and tensor-based methods,

experiment results demonstrate the proposed method achieve

significantly better performance.

A. Data Set

Our experiments are performed on two real-world traffic

dataset. The first is the Abilene traffic data [16], which

consists of 11 nodes in cities all over the United States. So

there are total of 11 × 11 = 121 OD pairs flows. We use

a complete one week traffic data collected using 10-minute

intervals, i.e., 6 × 24 × 7 = 1008 time intervals. This data

set is used to build a tensor of size 11× 11× 1008. The first

mode stands for 11 source routers, the second mode for 11

destination routers, and the third mode for 1008 time intervals.

The second is the GÉANT traffic dataset [23], which is the

pan-European research network and composed of 23 routers.

We also use a complete one week traffic data collected using
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Fig. 4. Random Loss in Abilene data

15-minute intervals. This data set forms a tensor of size

23 × 23 × 672, corresponding to source mode, destination

mode and time mode respectively.

B. Performance Metrics

The completion performance is evaluated by a popular

metric Normalized Mean Absolute Error (NMAE), which

measure errors only on the missing values. It is defined as

follows,

NMAE =
‖(1−W)∗(X−X̂)‖

1

‖(1−W)∗X‖
1

(7)

where X̂ is the reconstructed tensor, ‖·‖1 denote L1-norm.

As Definition 1, W indicate the missing locations of entries.

The NMAE is the relative error in the missing entries. The

smaller the value, the better the performance.

C. Performance on Random Loss Patterns

To demonstrate the effectiveness of our proposed STTC, we

compare the completion performance with two tensor-based

methods (CP-WOPT and HaLRTC) and three matrix-based

methods (SRSVD, LMaFit and SRMF). For the parameter

settings of these method, best performance can be achieved

according to the corresponding literature [5], [10]–[12]. We

randomly drop the data independently with probability Pr

ranging from 0.05 to 0.95 to evaluate the completion per-

formance.

Fig.4 shows the comparison results in Abilene dataset.

The X-axis presents the data loss probability, and the Y-axis

presents the values of NMAE. There is an increase tendency

to NMAE with the higher data loss probability.

Among the six interpolation methods, the proposed STTC

achieves the best performance. Even when 95% data have

been lost (that is, sampling rate is 5%), STTC still can

reconstruct the missing data with about 20% errors. SRMF

fall behind STTC a little, and perform well in a whole

range. LMaFit achieves robust performance over the whole

loss range. SRSVD, CP-WOPT, and HaLRTC have nearly

the same performance under low loss probability, but the

performance becomes worse for high loss probability. CP-

WOPT, HaLRTC are not as good as we expected. The possible
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Fig. 5. Random Loss in GÉANT data

reason is that traffic data tensor is approximation low rank

and its rank varies in temporal or spatial domain while

tensor-based methods are sensitive to the rank parameter.

When the data loss rate is low, sufficient information is

available. It is easy to reconstruct the missing data. With

the increase of loss data, there is little available auxiliary

information. Therefore, reconstructing the missing data be-

come difficult. STTC and SRMF hold very good performance,

which illustrate traffic spatio-temporal properties are effective

in recovering the missing traffic data. More importantly, STTC

outperforms SRMF, which demonstrate tensor can provide a

faithful multidimensional structure correlation representation

in traffic data and preserve spatio-temporal properties better

than the stacked TM.

In Fig.5, we visit GÉANT dataset. It shows that the per-

formance of STTC still outperforms all the other algorithms.

Compared with Fig.4, the values of NMAE are larger as a

whole. For low loss probability, CP-WOPT and HaLRTC ex-

ceed LMaFit and resemble SRSVD. Its performance degrades

significantly when the missing ratio is higher than 50%. To a

large extent, real-world traffic often exhibit multidimensional

characteristics that violate the mathematical conditions under

which existing tensor-based algorithms are designed to op-

erate and are provably optimal. Since the scale of GÉANT

network is larger, the intrinsic structure nature of the traffic

data is weakened. More data are lost, more difficult it is

to reconstruct. The best performance of STTC indicates the

power of spatio-temporal properties and the multi-dimensional

inherent correlation for the missing data recovery.

D. Performance on Structural Loss Patterns

We carry out simulation experiments on structural loss pat-

terns. In practice, network traffic often shows highly structure

loss due to software or hardware reasons. We simulate two

typical data structure loss patterns.

• Time-mode Loss (TL): this pattern emulates random

losses during certain times, which models that mon-

itoring apparatus overloading cause data loss at time

dimension of tensor. We randomly chose a certain pro-
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portion sampling time intervals, and drop data points

with probability Pr from them.

• Spatial-mode Loss (SL): this pattern emulates certain

nodes lose data, which models that unreliable transport

protocol (i.e., UDP) cause data loss. In traffic tensor, a

certain proportion OD pairs are randomly chosen, and

data points are dropped with probability Pr from them.

Fig.6 shows the TL pattern, where 50% sampling time

intervals are randomly chosen. In each interval, loss prob-

ability Pr is from 0.05 to 0.95. In this case, STTC is very

robust with superior performance to the other algorithms.

When loss rate is less than 0.5, CP-WOPT and HaLRTC

performs well. However, their NMAE increase rapidly for

high loss. LMaFit show good performance. SRMF is close to

STTC, which further prove that the importance of the spatio-

temporal feature. While taking advantage of traffic intrinsic

multidimensional structure and traffic characteristic, STTC

achieve best performance.

Fig.7 plots the three dimensional histogram of six algo-

rithms with SL pattern when Pr is 0.95. The X-axis presents

the proportion of selected OD pairs, from 10% to 90%,



and the Z-axis presents the values of NMAE. Our STTC

algorithm still outperforms CP-WOPT, HaLRTC, LMaFit,

SRSVD and SRMF. In general, NMAE increases with the

more chosen OD pairs. Specifically, when the loss rate is high,

the performance degrades significantly except for SRMF and

STTC. The reasons, like what has been analyzed previously,

are that our proposed approach combine traffic data tensor

model and traffic spatio-temporal feature for estimating the

missing data.

In summary, STTC outperforms CP-WOPT, HaLRTC, L-

MaFit, SRSVD and SRMF over a wide range loss rates and

various loss patterns. These results clearly demonstrate that

tensor can provide an efficient and faithful representation

of structural properties for multidimensional traffic data and

spatio-temporal is an important feature for the missing traffic

data recovery.

VII. CONCLUSION

In this paper, we studied the inference of the missing

network traffic data. To reduce data estimation error, we model

network traffic data as tensor pattern. By taking advantage

of tensor CP-decomposition and its factor matrices lower-

dimensional representation combined with spatio-temporal

within-mode regularization, we propose a spatio-temporal

tensor completion method (i.e., STTC) to recover the missing

traffic data. The extensive simulation experiments show that

our proposed method can achieve promising completion ac-

curacy over a wide range of loss scenarios and various loss

probabilities.

As part of our future work, we plan to apply traffic spatio-

temporal properties to investigate robust low-rank tensor re-

covery in the presence of missing traffic data, measurement

errors, and anomalies.
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