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Abstract—Software Defined Networking (SDN) has been
emerging to be a new paradigm of datacenter network architec-
ture. As SDN in the datacenter environment continues to grow in
scale and complexity, one of the challenges to the SDN researchers
and developers is to verify a SDN design before deployment.
Although there are several existing tools developed with the goal
to fill this need, they are unfortunately either lacking the seamless
porting ability from a simulated environment to a real deployment
(simulation-based approach) or suffering from the scalability issue
(emulation-based approach).

In this paper, we propose ScalaSEM, a system leveraging the
advantages of both simulation and emulation methods to valid
the SDN design. ScalaSEM establishes a high-fidelity environment
with the real-world OpenFlow-based communication channel
and abstracts networks with higher yet accurate-enough level.
Through two usage scenarios and the comparison with the state-
of-the-art solutions, we demonstrate that ScalaSEM provides
the validating solution to the SDN design which can scale to
the network with the scale of tens of thousands hosts and
thousands of machines, and imposes no necessary to modify the
implementation of the SDN design to move between validation
and deployment environment.

I. INTRODUCTION

Software Defined Networking (SDN) has been emerging
to be a new paradigm of networking. With SDN, networks
no longer require the labor-cost, error-prone and switch-to-
switch configuration [18]. Instead, networks are transformed
into an open and programmable component in a large cloud
infrastructure, leading to more efficient and automatic network
management and provisioning. Hence, SDN technologies have
been adopted in a wide range of applications especially in data
center environments, including load balancing, flow scheduling
[2], energy-efficient network design [10], etc. According to the
CRN report [16], the SDN market is expected to be valued
at about USD $3.7 billion by 2016, compared to USD $360
million in 2013.

As SDN continues to grow in scale and complexity, it is
important and challenging to test and verify a SDN design
before the deployment for datacenter environment. The ideal
validation tool is expected to have the two following features:
1) Offering the facilitates to validate SDN design targeting
to the large-scale datacenter network consisting of thousands
of routers and tens of thousands of servers; 2) Minimizing
the gap between validation and production environment, which
requires not only the high-fidelity simulation/emulation results
but also the minimum overhead for porting the SDN imple-
mentation used in validation to real production environment.

Unfortunately, none of the state-of-the-art methods address
both of the aforementioned challenges very well. 1) The
physical-device-based testbed are less practical regarding the
scalability though they have the best fidelity; 2) Emulators,
like Mininet [17], model each server/switch in the network
with an independent process, which is less expensive than
testbed but does not scale either when the network size is very
large; 3) The simulation-based approaches [9] fail to capture all
possible cases which happen in real-world SDN environment
as it replaces the real network component, e.g. SDN controller
with the simulated one; additionally, it requires further efforts,
e.g. modify the implementation with the risk of changing the
program behavior, to port the SDN implementation between
simulation and deployment environment.

In this paper, we propose ScalaSEM1, a scalable approach
for validating SDN design with the deployable code. To
reproduce the real-world SDN behavior with the high fidelity,
we implement OpenFlow protocol in ScalaSEM and conduct
validation with real OpenFlow messages. Hence, the commu-
nication between the OpenFlow switches and SDN controller
is exactly the same as that in real-world deployment. The
standard-OpenFlow-based communication enables the SDN
controller implementation running smoothly in ScalaSEM
environment to run in real production environment directly
without any modification. Instead of focusing on each packet
traveling through networks, which usually brings unnecessary
overhead in most of the packet-level simulators, we abstract
network at flow level, so that we focus on the flow routing,
rate control, etc. which are the major research problem in
the published network research works [2] [10]. To further
improve the scalability of ScalaSEM, the communication of
the simulated/emulated network components in ScalaSEM are
following by multi-threaded and asynchronous pattern, which
enables us to handle the network consisting of as many as
27000+ servers and 2800+ switches.

The validation environment for ScalaSEM is shown in
Figure 1. We design the OpenFlow switches in ScalaSEM
with a hybrid model of emulation and simulation. Though the
switches are essentially the in-memory objects of ScalaSEM
process, they are equipped with an emulated OpenFlow mod-
ule which communicates with the real-world OpenFlow con-
trollers via TCP connections. The emulated OpenFlow module
sends, receives and reacts to the real standard OpenFlow
messages. With this design, ScalaSEM works with the real-

1Source code of ScalaSEM is available at
https://github.com/CodingCat/scalasem.
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world OpenFlow-based control applications seamlessly. The
traffic is simulated at flow level with the critical attributes,
e.g. source/destination address in L2/L3, flow rate, total bytes,
remaining bytes to send, etc.
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Fig. 1: ScalaSEM Environment: ScalaSEM implements OpenFlow
protocol on simulated OpenFlow switches to communicate with the
real-world OpenFlow control platform. In this way, ScalaSEM pro-
vides the seamless portability for the control applications migrating
from ScalaSEM to testbed deployment and vice versa directly.

We evaluate ScalaSEM performance in terms of efficiency,
scalability, and correctness. We compare the length of em-
ulation/simulation duration of ScalaSEM and Mininet under
the topologies with varying sizes and under different traffic
patterns. It demonstrates that ScalaSEM is 200x faster than
Mininet in a network with moderate size. Also, ScalaSEM
is scalable to an extremely large scale network with 27000
servers. We implement Hedera [2] and DevoFlow [6] in
ScalaSEM. These two use cases show that ScalaSEM provides
seamless portability for control applications and enables us to
evaluate the customized designs of OpenFlow switches. We
compare the results generated by ScalaSEM with the ones
measured by the authors of Hedera and DevoFlow papers
respectively [2][6], proving that ScalaSEM reproduced the
results with high fidelity.

The remainder of this paper is organized as follows. In
Section II, we show the limitations of the existing solutions
in simulating/emulating OpenFlow networks. We describe the
design rationale of ScalaSEM in Section III and detailize
the multi-threaded asynchronous OpenFlow communication
module in Section IV. In Section V we show two use cases
of ScalaSEM. In section VI, we compare ScalaSEM with
Mininet in different experiment scales and compare the results
generated by ScalaSEM with those generated in the testbed
environment, proving the accuracy of ScalaSEM. We make
conclusions and discuss the future work in Section VII.

II. RELATED WORK

While the tools to validate Software Defined Network
have been advancing in the past three years, they still have
various limitations. In this section, we analyze the scalability,
flexibility and the realism of these solutions, highlighting the
points which drive the design of ScalaSEM.

Emulation-based Tools Mininet [17] is the most widely
used emulator of SDN. It yields the emulation results close to
the deployed system and seamless portability for the controller
applications from Mininet environment to the testbed deploy-
ment and in reverse. Each host in Mininet is implemented

as an independent process in the Linux network namespace,
and all hosts are connected by fully functional virtual Ethernet
devices. This design compromises the scalability of the tool.
As shown in Section VI, Mininet can support emulated net-
works with at most hundreds of servers. DOT [20] distributes
the emulation workload to a cluster of machines, however, it
brings much more deployment complexity to the user, because
it requires user to deploy the virtual machines, guest OSes as
well as the virtual switches on each physical machine and
additionally, install the control node for the emulation task.
Hence, it still cannot scale to the size of datacenter networks.

Simulation-based Tools fs-sdn [9] is a SDN simulator which
provides good scalability by adopting a higher-level abstraction
called flowlet. It only calculates the volume of a flow emitted
over a given period so as to avoid simulating the arrival and
departure of every packet. fs-sdn is developed based on POX
[5], a Python-based SDN control platform. fs-sdn simulates the
traffic between the OpenFlow switches and the controller by
modifying POX classes at runtime to eliminate the network
dependency of POX. The feasibility of this approach relies on
the fact that both POX and fs-sdn are developed in Python; in
another word, fs-sdn cannot be used with any other controllers
developed in other programming languages, e.g. NOX [8] in
C++, Floodlight [4] in Java. The simulator sts [21] focuses
on simulating the OpenFlow switch behaviour to facilitate the
debugging for control applications.

The above methods fail to provide either enough scalability
or seamless portability from validation environment to the
deployment. The goal of ScalaSEM is to overcome these issues
and offer an environment supporting the scalable validation of
SDN design with the directly deployable code.

III. DESIGN OF SCALASEM

We describe the design rationale of ScalaSEM in this
section. Specifically, we introduce the architecture and the
working mechanism of ScalaSEM in Section III-A; In Section
III-B, we illustrate why ScalaSEM’s design can capture those
hard-to-find bugs in SDN controller design and why conven-
tional simulation-based approaches fail; Finally, we describe
the effective flow-level abstraction in ScalaSEM in Section
III-C.

A. Overview

ScalaSEM validates SDN design by creating and replaying
the discrete events in networks. These events can be the flow
start/end and the interaction between the OpenFlow switches
and the controllers, e.g. the controller install flow entries in
the flow table of the switches or the switch inquires the
controller for the action to be applied to a particular flow. The
events involve simulated components like flow, links, servers,
simulation module in the switch as well as the emulated
ones like controller, OpenFlow module in the switch, etc. The
validation is essentially to test the components’ behavior under
the various composition of the events.

Figure 2 shows the layered architecture of ScalaSEM:

• Infrastructure Layer serves as a discrete event sim-
ulation engine. The Infrastructure layer provides API
for other components of ScalaSEM to generate new



events and pushes forward the validation process in
ScalaSEM by consuming these events.

• Logic Layer consists of flow simulation, topology
simulation and the switch simulation/emulation. This
layer creates and updates the state of the involved
components in the discrete events, e.g. the remaining
amount of bytes to transfer of a particular flow will be
updated in this layer with the progress of validation
process. Flow simulation module abstracts the network
at flow level and maintains the status of the flows,
e.g. routing path, amount, acquired bandwidth, etc.
Topology simulation builds the interested network
topology with the simulated switches/servers/links.
The essence of ScalaSEM design, the integration of
emulation and simulation, is reflected by the Switch
design. Switch Emulation contains SwitchManager
which manages the connection with the controller. Al-
though OpenFlow switches in ScalaSEM are simulated
with the in-memory objects in the heap space of the
program, the connection with the OpenFlow controller
is the real TCP connection through which the standard
OpenFlow packets are transferred just like in real-
world networks. For better, we implement a Multi-
threaded and Asynchronous network communication
module to handle the OpenFlow connections initial-
ized by ScalaManagers. We will detailize the design in
Section IV. Switch simulation defines the functionality
about the flow forwarding and the bandwidth resource
allocation among the flows.

• API Layer provides THE interfaces for the user
to reproduce/validate SDN system behaviour under
different workload, topology, etc. The examples in
Section V are the use cases of the APIs in this layer.
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Fig. 2: Layered Architecture of ScalaSEM, consisting of Infrastruc-
ture, Logic and API Layer. ScalaSEM validates the SDN design by
creating and replaying the discrete events in network.

From the architectural point of view, ScalaSEM distin-
guishes itself with the existing solutions in three aspects:
1) The integration of emulation and simulation design in
ScalaSEM brings good scalability to handle large scale net-
work while keep the trustable fidelity; 2) The communication
between the OpenFlow switches and the controller is through
real OpenFlow messages, enabling more fidelity validation
process and seamless porting ability from validation to de-
ployment environment; 3) Multi-threaded and asynchronous
communication module further improves the performance in
terms of scalability.

B. OpenFlow-based Communication

In this section, we explain why we implement OpenFlow
protocol in ScalaSEM instead of converting OpenFlow-based
interaction between the switches and the controller into the
function calls in the simulator.

Though the simulation-based approaches are lightweight
and scalable, they usually do not deal with the implementation
details on real world devices, thus the simulation results are
less trustable than emulation-based approaches. In a SDN
design, since control application plays a critical role in the
network performance, the pure simulation approach may not
capture the subtlety in control policies, hereby may not yield
trustable results.

One of the examples is that the simulation-based approach
like fs-sdn ignores the network dependency in control applica-
tions, and replaces it with sequential function calls. However,
in real world, the controller usually starts concurrent threads
to handle concurrent OpenFlow messages sent from different
switches, so that the sequential functions in simulation-based
approaches cannot test the concurrency control policy in the
implementation of control applications.

Figure 3 illustrates a typical case in which a simulation-
based approach can not accurately reproduce the OpenFlow
controller behavior in the real world. The presented architec-
ture is exactly the same as the distributed controller architec-
ture in Floodlight [4], a mature SDN control platform product.
In the example, multiple controllers (C1, C2, C3) coexist in
an OpenFlow network to eliminate the single point of failures.
Each controller is multi-threaded for higher throughput. These
controllers are organized in a master-slaves manner, i.e. one of
the controllers is actively managing all the connected switches
while others are running as the backups. Certain election
algorithm is applied to ensure that one of the backups (C2,
C3) is taking the role of the original active master (C1) once
C1 is out of service. Both the old and the newly elected master
send “RoleChange” message to the switches to direct them to
initialize the new connections to the new master and discard
the connection with the old one.

Under the scenario of Figure 3, some of switches are likely
to be out of service without the careful SDN controller design.
Suppose a newly connected switch (S4) is handshaking with
the old master controller (C1) with OpenFlow messages just at
the moment when the new master is elected. In this case, C1
starts a thread (T1) to handle the handshake request. Before T1
is scheduled, C1 receives the notification that C2 is the new
master controller. Upon receiving the notification, C1 starts
thread T2 to notify the already-connected switches S1, S2
and S3 to switch to C2. If T2 is scheduled before T1, S4
cannot successfully connected to C2 since it is not taken as
the “already-connected” switch by C1 before C1 sends the
notification about the new master. The complete process is
detailed as timestamp 1 - 8 in the Figure. The figure illustrate
a race condition bug existing on the controller side. To resolve
the bug, we need to ensure that T1 always runs before T2.

The simulation-based approaches cannot capture this bug,
because the simulators converts the communication between
the switches and the controllers converts into sequential func-
tion calls. With simulation-based approach, the action hap-
pened in timestamp 5 and 8 in Figure 3 would always be an



atomic process (executed in the same function call), thus the
issue described above will never happen in a SDN simulator.
In summary, it is hard for researchers and developers to catch
the bug and correctly validate their controller design with
the simulation-based approaches. With ScalaSEM, multiple
switches send OpenFlow messages to the controller concur-
rently, and the controllers run in the same way as they are in
deployment envrionment. Thus the race condition bug existing
in controller would be exposed eventually.
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Fig. 3: An example of race condition at controller side: newly joined
switch S4 will get lost with the new master if the election of the
master controller occurs at the same time with his joining.

C. Flow-level Traffic Simulation

Despite the advantages of the emulation-based approaches,
scalability is the major concern on emulation, as we stated in
Section II.

To simulate/emulate the real network behaviour, the ex-
isting approaches usually abstract the network behaviour in
either packet or flow level. At the packet level, the simulator
has to capture the arrival and departure of every packet on each
network device (hosts and routers/switches). Given the MTU
(Maximum Transmission Unit) as 1500 bytes, to simulate the
1Mbps traffic on a single router, we need to generate more than
1200 discrete events in every second in virtual time, which is
obviously an intolerable overhead when simulating a typical
datacenter network containing thousands of routers/switches
and hosts.

In ScalaSEM, we simulate the network behavior at flow
level. 1) Instead of focusing on the arrival and departure of
every packet, tracking the path and the volume of a flow
enables us to only keep the relevant information of the flows in
the in-memory data structure and update them when necessary,
which is much more lightweight than capturing each packet;
2) OpenFlow [7] itself is a flow-level network management
protocol, which suggests that the per-packet information does
not bring much impact when we validate the OpenFlow
network design.

When we create a new flow in the simulated network
topology, we divide the process into two phases: Routing
and Resource Allocation. ScalaSEM first decides the path for
each flow by querying the controller or forward according to
the flow table entry on each switch (Routing). In Resource
Allocation, we traverse each link along the path and allocates
the bandwidth according to the rules specified by the controller.
By default, ScalaSEM simulates the max-min fair sharing rule
in TCP.

The issue in flow-level simulation is “ripple effect”. In the
“ripple effect”, the status update of a certain flow triggers the
status update of other flows. Hence, a large amount of events
are generated and processed in the simulator. For example,
allocate the bandwidth to a new flow in certain link requires the
update of allocated bandwidth of all flows passing through the
same link. According to max-min fair sharing rule, this update
has to be propogated to the other flows and link. We cannot
eliminate this case in a flow-level simulator but the results in
section VI show that ScalaSEM tolerates “ripple effect” well
and keeps good performance even the paths of many flows are
overlapped.

IV. PARALLEL OPENFLOW EMULATION

In this section, we discuss how we apply the concurrent de-
sign in OpenFlow module in ScalaSEM and how we overcome
the challenges brought by this concurrent design.

A. Asynchronous and Multi-Threaded Communication

ScalaSEM maintains a thread pool to handle the con-
nection request sent from the SwitchManagers in Figure 2,
i.e. ScalaSEM concurrently establishes connections between
OpenFlow switches and the controller. The benefit of this de-
sign is two-folded: 1) In the real world, OpenFlow controllers
do handle concurrent connections from multiple switches at the
same time. With the concurrent connection functionality, we
can closely reproduce the behavior of the OpenFlow controller
thus facilitates to find problems in SDN design. 2) Multi-
threaded connection handler accelerates the validation process.

To further improve the performance of ScalaSEM, the es-
tablishment and I/O operation in the connections in ScalaSEM
are all asynchronous. Asynchronous design maximumly uti-
lizes the CPU cycles to push forward the validation. When one
of the switches invokes connection request to the controller,
the thread performing the operation does not need to block
to wait for the response from controller, instead, it returns
immediately to perform other tasks, e.g. handling the response
returned to another switch.

B. Preventing Partial Execution of Events

Though the aforementioned multi-threaded design boost
the performance, the correctness of ScalaSEM would be influ-
enced without the careful consideration in the implementation.
We refer to this problem as “Partial Execution of Events”.

As shown in the top half of Figure 4, Flow A and
B sharing the same path start at the 0th second and 10th
second respectively. Straightforwardly, Flow A should use the
bandwidth of the links exclusively until B starts. The ingress
switch sends two PACKET IN messages to the controller
when the flows arrive 2. Two concurrent threads are started
to handle two PACKET OUT returned from the controller.
Recalling that each flow in ScalaSEM decides the path at
first before the bandwidth allocation, the thread handling the

2PACKET IN and PACKET OUT are two messages defined in
OpenFlow protocol, PACKET IN is sent from the switch to the controller
when a new flow arrives, it contains the flow identification for the controller
to generate the proper action to be applied to the flow; PACKET OUT is
sent from the controller to the switch to indicate the port from which the flow
should be forwarded.



PACKET OUT for flow A may be interrupted by the thread
of flow B before flow A’s bandwidth is allocated. If the thread
for flow B returns after the bandwidth allocation finishes, the
bandwidth would have been “contaminated” by flow B when
A’s thread is scheduled by the OS again.

We resolve the issue by making the two stages of a flow,
Routing and Resource Allocation, as an atomic process. In the
example, the “PACKET IN” message of flow B is not sent
until flow A gets its initial bandwidth. The means, the flows
without the overlapped path can be handled concurrently while
atomic process is applied for the correctness when there is
shared resource.
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Fig. 4: Split of Event Processing: In the top half of the graph, thread
handling the processing of Flow A is interrupted and the thread
processing Flow B is scheduled, so the event involved Flow A is
partially executed; In the bottom half, the events will not be partially
executed since routing and resource allocation are organized as an
atomic process.

V. CASE STUDY

In this section, we study two usage cases to illustrate how
ScalaSEM validates the design of OpenFlow controller as well
as customized OpenFlow switch design. The first scenario is
to show how we validate the design of a Software Defined
“centralized routing controller”. The centralized controllers
[13] [22] [2] take the global network info as the input and
usually makes the more effective routing decision than the
distributed routing control plane (e.g. the conventional routing
schema). In the first scenario, we choose to implement Hedera
[2], an OpenFlow control application dynamically scheduling
large flows to minimize the collisions in bandwidth allocation,
in ScalaSEM. The second scenario is to simulate show how
we validate the customized switch design in ScalaSEM. The
sophisticated switch design [6] [19] [11] plays important role
in SDN. In this scenario, we implement DevoFlow [6], which
introduces “Local Actions” in OpenFlow switches to devolve
the workload for the controllers. To prove the correctness of
ScalaSEM, we compared the result from ScalaSEM and that
measured in the original papers.

A. Validate Centralized Routing Controller in ScalaSEM

Hedera [2] was proposed to solve the flow collisions
caused by the default Multi-Path routing mechanism in today’s
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Fig. 5: Comparison between ScalaSEM and Testbed Results of
Hedera: the total finish time of shuffle and average completion time
of flows in ScalaSEM and Testbed are close.

datacenter networks. Hedera utilizes the global OpenFlow
controller to estimate the bandwidth demand of each flow,
and replace the flows with the demand larger than the preset
threshold to a near-optimal or optimal path to avoid the
collisions.

ECMP (Equal Cost Multi Path) [12] is a random-hash-
based strategy executed in the switches where the packet
header of the flow is hashed and mapped to one of the possible
outgoing paths. This strategy may forward two flows to the
same link causing the collision in bandwidth allocation, thus
fails to maximize the throughput even though the bisection
bandwidth does exist. Hedera utilizes the global OpenFlow
controller to estimate the bandwidth demand of each flow, and
the flow which has the demand larger than the preset threshold
is replaced to a near-optimal or optimal path to avoid the
collisions with others.

To verify the accuracy of ScalaSEM-emulated Hedera, we
implemented the Hedera controller based on POX [5], and used
the same topology in the original paper. The Hedera authors
compared the total finish time and the average flow completion
time of all flows with ECMP and Hedera algorithm (Global-
First-Fit) under Shuffle, a many-to-many traffic pattern. We
followed the same traffic pattern and evaluate with the same
metric. Figure 5 shows that the measured metrics in ScalaSEM
are close to those measured in the paper [2]. In addition, when
we compared the total finish and average completion time in
ECMP and GFF, we found that GFF improves the performance
by 31% in average finish time and 24% in total finish time,
which is consistent with the value from testbed experiments,
28% in average and 23% in total. The result is shown in Table
I.

ScalaSEM Testbed
Total Completion Time 24% 23%

Average Completion Time 31% 28%

TABLE I: Comparison of Hedera speedup under ScalaSEM and
testbed (with GFF algorithm): we can see that the speedup generated
by ScalaSEM-emulated Hedera is close to that in physical testbed.

B. Validate Switch Design in ScalaSEM

The centralized OpenFlow controller is a potential perfor-
mance bottleneck in OpenFlow-based network. DevoFlow [6]
devolves the flow management workload from the controller to
the switches. One of the most important strategies adopted by
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DevoFlow is “Local Action”, which refers to that a switch can
make decision for a certain flow by itself instead of inquiring
the controller.

These actions do not impose overhead on the controller
side. One of the typical local actions is the Multi-Path support.
Existing mutlipath routing protocols, such as ECMP [12],
focuses on using equal cost multipath for load balancing.
However, the “equal cost” assumption does not always hold
due to the dynamic workload. DevoFlow solves this problem
by selecting an output port for a microflow according to
a certain probability distribution, which is called Oblivious
Routing [15].

We emulated DevoFlow switch with ScalaSEM to forward
the flows with oblivious routing algorithm [15]. In the com-
parison, we used the Shuffle traffic pattern. We compared the
aggregate throughput of flows with DevoFlow and ECMP. We
can see that the DevoFlow improves the throughput by 30%,
when the concurrent connection number is changed. Mean-
while, the throughput did not change. Both of the measured
metrics in ScalaSEM are consistent with the measurement in
the original paper. The result is shown in Figure 6, c is the
number of simultaneous connection/server number.

VI. EVALUATION

In this section, we evaluate the performance of ScalaSEM
in terms of scalability, correctness, and efficiency. We describe
the setup of the experiments in Section VI-A. After that, we
test the scalability of ScalaSEM with increasing amount of
workload and under different traffic patterns in Section VI-B.
Finally, we go through the results which were presented in
Section V to show the fidelity of the results generated by
ScalaSEM.

A. Evaluation Setup

The baseline of the experiments in this section is Mininet,
one of the most popular emulation tools. In our experiments,
ScalaSEM and Mininet were run on a desktop with Intel(R)
Core(TM) i3-2120 CPU @ 3.30GHz, 4 cores and 4 GB
memory and the controller was run on a server with Intel(R)
Core(TM) i3-3220 CPU @ 3.30GHz, 4 cores and 16 GB
memory. The evaluation results shown in this section were
generated under a typical fat-tree topology [1]. The topology
consists of k pods (the larger the k, the more dense the

network), each with two layers: edge switches (lower layer)
and aggregation switches (upper layer), each layer contains
k/2 switches. Each edge switch is attached with k/2 hosts.
The pods are interconnected by (k/2)2 core switches. Table II
shows the server and switch numbers with different k. Figure 7
shows the topology when k = 4. The capacity of all the links is
1Gbps. For the experiment with k = 48, we ran ScalaSEM in
the server with Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz,
4 cores and 16 GB memory.

Pod 0Pod 0 Pod 1Pod 1 Pod 2Pod 2 Pod 3PPPPPPoooooodddddd 333333Pod 3

Fig. 7: Example Topology when k = 4

switch degree (k) server number switch number
4 16 20
8 128 80

16 1024 320
24 3456 720
48 27648 2880

TABLE II: Simulated Network Scale: this table shows the machine
and switch number against different k in the topology we simulated
in ScalaSEM

B. Scalability

We first compared the performance of Mininet and
ScalaSEM in terms of simulation speed, which is a good
measurement of scalability. We used Permutation Matrix
to model end-to-end traffic pattern, where each host sends a
flow to a single destination chosen uniformly at random. In
our experiments, after we increased k to 16, i.e. the network
contains 1024 servers and 320 switches, Mininet spent more
than 6 hours to create the network and no packets can be
forwarded to the right location afterward. We believe that the
limited scalability was caused by the creation of a large number
of virtual Ethernet (veth) device pairs in Mininet and virtual
bridges in OpenvSwitch. As a result, in the figures of this
subsection, we did not show the simulation duration of Mininet
for k = 16 and 24 due to the crashing of the Mininet.

From Figure 8, we can see that in Mininet, scalability
declined when the network size increased. When k was 4
and 8, ScalaSEM performed at least 19x better than Mininet,
because in ScalaSEM the hosts and switches are implemented
as in-memory objects while Mininet has to create veth pairs
bringing much overhead. Even when the network size was as
large as k = 24, i.e. 3456 servers and 720 switches, ScalaSEM
finished the emulation within 9 minutes. The Y axis in Figure
8 is drawn in logarithm for comparison convenience. We show
the absolute value of simulation duration in Table III.

One interesting observation in our experiments is that,
when we increased k to 24, POX cannot handle so many
simultaneous connections, this bottleneck remains even we
changed the POX source code to use epoll instead of default
select to handle network connections. ScalaSEM scaled be-
yond POX capacity easily. To simulate extremely large-scale
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Fig. 8: The simulation duration of Mininet and ScalaSEM under simulated network with different sizes and flow sizes.

scenario based on POX, we slowed down the connection speed
sent to POX at the cost of extended simulation duration.

Figure 9 shows the sensitivity of Mininet and ScalaSEM
to the flow size. We found that the change on the simulation
duration of ScalaSEM is ignorable when we increased the flow
size from 100MB to 200MB and then to 1000MB, however,
the performance of Mininet degraded a lot with the increasing
of flow size. The reason is that Mininet generates real packets
for each flow while ScalaSEM adopts a flow-level abstraction
so that the large flows do not impose much overhead to
ScalaSEM.
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Fig. 9: Simulation Time Change of ScalaSEM and Mininet under
Different Flow Size (Permutation Matrix): the performance of Mininet
degrades a lot with the increasing of flow size.

k ScalaSEM Mininet
100 200 1000 100 200 1000

4 1.6 1.7 5.2 19.4 46 201
8 2.7 2.029 6.12 254.7 468 1289

16 88.606 90 99 N/A N/A N/A
24 500.087 528 540 N/A N/A N/A

TABLE III: Simulation duration of ScalaSEM and Mininet under
different topology size and flow size (In MB).

Shuffle Shuffle is usually generated by distributed comput-
ing system, e.g. Hadoop, to transfer data between computing
phases. From Figure 10, we can see that the performance of
Mininet degraded further under shuffle, it took as long as 23
minutes to finish when k = 8, comparing to 4.2 minutes in
permutation matrix. ScalaSEM performed much better, it takes
only 2 minutes in Shuffle when k = 8 and only 25 minutes in
a large network when k = 24.

Broadcast Next, we evaluated ScalaSEM and Mininet with
Broadcast traffic patterns. As we stated above, the fluid-model-
based ScalaSEM may suffer from the “ripple effect”. In our
Broadcast pattern, a single machine can send as many as 10
simultaneous flows to others, i.e. the rate change of a single
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Fig. 10: Simulation Time of ScalaSEM and Mininet on logarithmic
scale under Shuffle. The simulation time for Mininet and ScalaSEM
are 43 seconds and 5.4 seconds respectively when k = 4; and are
1404 seconds and 119 seconds respectively when k = 8. When
k = 16 and k = 24, Mininet crashes, while the simulation time
for ScalaSEM is 459 and 1504 seconds, respectively.

flow can lead to the status change of at least 9 other flows,
bringing more chances of happening of “ripple effect”.

Broadcast traffic is usually generated by the distributed
computing jobs. Researchers from Berkeley analyzed the trace
of production Hadoop cluster and stated that as many as 87%
jobs in the production cluster has no more than 10 tasks [3].
To be close to the real-world case, we started “broadcast”
jobs, each of which generated flows from 1 to 10 servers,
and we adapted the number of jobs according to the size
of simulated network. Table IV describes the broadcast job
number and arrival interval in the simulated topology with
different sizes. In each broadcast job, the sender sent 1GB
data to each receiver.

switch degree
(k)

broadcast job
number

arrival interval
(sec)

4 10 1
8 100 1

16 500 1
24 1000 1

TABLE IV: Broadcast job number and arrival pattern under different
network size

As shown in Figure 11, Mininet still works with limited
scalability and it crashed after the simulated topology was with
1024 servers and 320 switches. When k = 8, Mininet had to
spend 5 minutes to finish all jobs while ScalaSEM took as
short as 31 seconds. Comparing the simulation duration of
ScalaSEM under broadcast and permutation matrix in Figure
8c, we found that the “ripple effect” indeed introduced negative
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Fig. 11: Simulation Time of ScalaSEM and Mininet on logarithmic
scale under Broadcast. The simulation time for Mininet is 32 seconds,
for ScalaSEM is 7.4 seconds when k = 4, and are 298 seconds and
31 seconds respectively when k = 8. When k = 16 and 24, Mininet
crashes, while ScalaSEM spends 252 and 842 seconds respectively.

influence to the simulation speed, e.g. when k = 24, ScalaSEM
took 540 seconds to finish permutation matrix but 842 seconds
to finish broadcast. However, the length of the simulation
duration is acceptable considering the limited scalability and
performance of the other solutions.

Extreme Large Permutation Matrix In the case when the
developers or researchers need to test the controller behavior or
new switch design in an extremely large scale, the validation
platform like ScalaSEM is expected to support the extreme
large scale simulation/emulation. To evaluate ScalaSEM under
this scenario, we simulated the topology with k = 48 (includ-
ing 27468 servers) and generated permutation matrix traffic.
ScalaSEM takes 4 hours to finish all flows. When k = 48, we
had to slow down the connection speed to 1 connection per
second, otherwise POX would close some connections to the
ScalaSEM switches for the reason stated earlier.

C. Correctness

As shown in Section V, Figure 5 6 represent the results
generated by ScalaSEM for Hedera and DevoFlow, respec-
tively. Both results are close to the measurements from the
original papers. Since the routines of Hedera and DevoFlow
cover different flow conditions and deal with different pat-
terns of controller-and-switch interactions, we believe that the
experiments with ScalaSEM will generate trustable results in
general.

VII. CONCLUSION

In this paper, we introduced ScalaSEM, a system providing
scalable solution to validate the SDN design before the real
deployment. Additionally, ScalaSEM eliminates the necessary
to modify the controller implementation to fit to the simulation
environment, thus, we can use deployable code to validate
the design without the risk of changing the behavior of the
program expectedly during the test. Comparing to the existing
solutions, ScalaSEM emulates the communication between the
switches and the SDN controller with real OpenFlow messages
while providing the high-level network abstraction to achieve
both scalability and high fidelity.

In future work, we plan to improve the usability of
ScalaSEM by providing more reusable components and popu-
larize ScalaSEM as a widely accepted tool for SDN research.
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