
Narrowing Down the Debugging Space of

Slow Search Response Time

Dapeng Liu†, Youjian Zhao†, Dan Pei†⇤ , Chengbin Quan†

Qingqian Tao‡, Pei Wang‡, Xiyang Chen‡, Dai Tan‡, Xiaowei Jing§, Mei Feng§

†Tsinghua University ‡Baidu §PetroChina
†Tsinghua National Laboratory for Information Science and Technology (TNList)

Abstract—When using search engines, users often care about search
response time (SRT) in addition to result accuracy. It is thus the
operators’ responsibility to closely monitor and improving SRT. The
first critical step of improving SRT is to pinpoint the root causes of
slow SRT. However, this task is very challenging because SRT can be
impacted by many factors, e.g., networks, data centers, browsers, and
the page content.

In this paper, we propose FOCUS, a systematic framework to narrow
down the debugging space of slow SRT by identifying the bottleneck of
slow SRT regarding various factors. The bottleneck provides operators
more specific direction for further investigation. We deployed FOCUS in
a global top search engine. Based on the output of FOCUS, operators
successfully identified four potential causes which would not have been
easy to find without FOCUS. Our what-if simulation analysis shows that,
the proposed solutions, focusing on these bottlenecks, can improve SRT
significantly, and they are more effective than some ad hoc solutions.

I. INTRODUCTION

Search engine is no doubt one of the most prevalent applications

of the Internet. Billions of queries are launched from all over the

world everyday, and then handled by search engines such as Google,

Baidu, Yahoo, Yandax, and Bing [1]. Operating such a giant search

system is very challenging, and operators have to work very hard to

satisfy dozens of KPIs (key performance indicators). Among them,

search response time (SRT) is one of the biggest concerns for search

providers [2]. SRT refers to the user perceived waiting time between

when a query is submitted and the time when the result page is fully

rendered. As such, SRT has a measurable impact on users’ experience

as well as providers’ profit. [3], [4] found that less than half a second

increase of SRT can lead to 0.6% fewer searches and 1.2% drop in

revenue. As a result, operators are responsible for monitoring and

improving SRT, especially the slow SRT, so that it can satisfy the

growing requirement. For example, the search engine we studied

requires the 80
th percentile of SRT less than 1 second.

Recently, many acceleration solutions have been proposed [5], [6],

[7], [8], [9], [10], [11] . They aim to fix particular problems in the

fourth step. Yet, a key missing part before applying a solution is

to identify the bottleneck of slow SRT. In particular, we want to

answer the following two questions: Under which conditions queries

are slow? Which components of SRT is slow? These two questions

can help operators debug slow SRT.

In this paper, we propose a novel systematic framework, called

FOCUS, to systematically answer the above two questions. FOCUS

intends to automatically identify the bottleneck conditions, and the

bottleneck SRT components. The results, outputted by FOCUS,

provide operators specific investigation directions and enable them

to further identify the root causes. For example, if we find that many

queries triggering ad are responded slowly, and their DOM (document

⇤ Dan Pei is the corresponding author.

object model) load time is long, operators should investigate whether

the modual regarding ad is inefficient, or contains some bugs.

The task of FOCUS in practice is challenging due to the following

aspects. First, SRT can be affected by many factors such as servers,

networks, browsers, and users’ devices. Second, since these factors

inherently overlap each other, it is difficult to identify which factor

is responsible for the slow SRT. For example, a condition that

Chrome runs on a less powerful device. Third, the output should be

specific and straightforward for operators. For example, the output

of traditional clustering methods like k-means do not have clear

boundaries, thus unintuitive.

To tackle these challenges, we first develop a multi-dimensional

hierarchy clustering to provide clear and meaningful boundaries of

the bottlenecks. This ensures that the clusters we find out are specific

for operators. Then we leverage a technique called hierarchical heavy

hitter (HHH) [12], that has been commonly used to locate iceberg

in network traffic. This technique can help identify in the multi-

dimensional hierarchy which clusters are the real bottlenecks and

which ones are redundant. Once bottleneck clusters have been found,

we design a method based on Occam’s razor to further determine

which SRT components can best explain the slow SRT.

We deploy FOCUS in one of the global top search engines.

Based on the bottlenecks identified by FOCUS, operators successfully

locate four causes of slow SRT and propose solutions. Our what-if

simulation further demonstrates that, the solutions focusing on the

bottlenecks by FOCUS are much more effective than ad hoc solutions

in improving SRT. Some of these ad hoc solutions were actually being

considered by the operators for deployment in the studied search

engine before using FOCUS. These results highlight the value of

FOCUS in the field of debugging slow SRT.

The remainder of the paper is organized as follows. Section II

provides the basic background of SRT and our problems. Section III

describes the details of FOCUS. Section IV shows the results of

FOCUS over real data and the simulation. Section V reviews the

related work, and Section VI concludes the paper.

II. BACKGROUND AND PROBLEM

A. About SRT and Requirement

To better understand SRT, we first introduce the events happened

after submitting a query. Instead of discussing the details, we here

only provide a simplified view to build high level intuitions. Fig. 1

shows five steps. (1) When query is submitted (if the result is not

cached by the client), the host name of the search engine will be

resolved by the the provider’s DNS. The DNS responds the IP address

of a close data center. (2) Then the browser sends a query to the search

data center. The data center conducts a series of complex processes,

such as results ranking, ad strategies, and page constructing, before

sending the result page to the browser. (3) The browser starts parsing

the page and loading DOM. (4) Embedded images of the page are

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

