
Incremental Deployment for Traffic Engineering in
Hybrid SDN Network

Yingya Guo∗‡, Zhiliang Wang†‡, Xia Yin∗‡, Xingang Shi†‡, Jianping Wu∗‡, and Han Zhang∗‡
∗Department of Computer Science and Technology, Tsinghua University
†Institute for Network Sciences and Cyberspace, Tsinghua University

‡Tsinghua National Laboratory for Information Science and Technology (TNLIST)

Email:{guoyingya, wzl, zhanghan}@csnet1.cs.tsinghua.edu.cn, yxia@tsinghua.edu.cn,{shixg, jianping}@cernet.edu.cn

Abstract—Traffic engineering is a method to balance the flows
and optimize the routing in the network. Software defined
networking is a new network architecture and we can gain great
benefit by migrating the traditional IP network to the SDN-
enabled network from the perspective of traffic engineering.
However, due to the economical, organizational and technical
challenges, migrating to the network with a full deployment of
SDN routers is impractical in the short term. It is a desirable
choice to deploy SDN incrementally.

In this paper, we seek to search for an optimal migration
sequence of the legacy routers to SDN-enabled routers so that
we can decide where and how many routers to migrate firstly.
Our main contribution is that we propose a heuristic algorithm,
i.e., genetic algorithm, to seek a migration sequence of the routers
that obtains the most of the benefit from the perspective of traffic
engineering. We evaluate the algorithm by conducting simula-
tion experiments, making comparison to the greedy migration
algorithm and static migration algorithms that we propose. The
experiments exhibit that the genetic algorithm, outperforms the
other migration algorithms in searching for a migration sequence.
When properly deployed, about a migration of 40% of routers
reaps most of the benefit.

Index Terms—traffic engineering; software defined network-
ing; migration sequence; genetic algorithm

I. INTRODUCTION

Traffic engineering has been extensively studied for a few

decades. The goal of traffic engineering is to make the most

of network resources to balance the flows and optimize the

routing for traffic delivery. Generally speaking, minimizing the

maximum link utilization and the cost are the two common

objective functions to optimize in traffic engineering. In tra-

ditional IP network, all the routers run distributed protocols,

such as Open Shortest Path First (OSPF) protocol. The traffic

is routed along the shortest (least cost) path with each link

assigned a weight (or cost). However, the link weight setting

of OSPF protocol in the network cannot be changed constantly

for stability. Therefore, the network resource is not fully

utilized and the performance of traffic engineering is limited

under this circumstance.

The emergence of software defined networking provides an

efficient method to route the traffic flexibly in the network

regardless of the weight setting of the links. Software Defined

Networking (SDN) is a new network architecture that exerts a

centralized control of the entire network. In this new architec-

ture, the control plane is decoupled from the packet forwarding

devices and located on the external controller. We can flexibly

split arbitrary ratio of the flow to the outgoing links of the

SDN-enabled routers through the centralized controllers. In

this method, we can easily improve the performance of traffic

engineering to a great extent and achieve the optimal routing

with the integration of SDN in the legacy network. Google [1]

and Microsoft [2] have already built the inter-connecting data

centers which are fully SDN-enabled networks. They improve

the network utilization on a large scale by migrating the legacy

network to the fully SDN-enabled network.

Unlike data center (DC) networks or Inter-DC WAN (Wide

Area Networks) in a large ICP (Internet Content Provider) like

Google and Microsoft, migrating to the fully SDN-enabled

network is by no means an easy task for Internet Service

Provider (ISP) network. There will exist economical, organi-

zational and technical challenges [3]. We should consider the

incremental deployment of SDN routers in an ISP network.

Hence, it is a wise choice to migrate some legacy routers

to SDN-enabled routers firstly. On one hand, we cannot fully

utilize the potential of network resources in traffic engineering

with too few routers migrated; on the other hand, we have

to invest more budgets to migrate more routers, which may

make little gain for traffic engineering. Due to the resources

and budgets constraints, we should make a trade off between

the performance of traffic engineering and the investment.

Therefore, it is necessary to solve the optimization problem

of determining both the locations and the number of routers

to migrate. We get down to solving this problem by searching

for an optimal migration sequence, so that we can keep the

migrated routers unchanged in the following migration periods

and maintain the stability of the network.

In this paper, we focus on the hybrid SDN network scenario

and discuss about the migration algorithms from the perspec-

tive of traffic engineering in an ISP network. Our work mainly

concentrates on searching for an optimized migration sequence

of the routers in the traditional IP network to minimize the

maximum link utilization. To the best of our knowledge,

we are original in searching for a migration sequence that

minimizes the maximum link utilization exploiting the genetic

algorithm, which outperforms other greedy and static migra-

tion algorithms. What’s more, we come up with a determined

ratio of nodes to be deployed SDN in a traditional network.
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Our contributions are three-fold:

• First, we are novel in formulating the deployment prob-

lem as a migration sequence searching problem from

the perspective of traffic engineering in SDN hybrid

networks. Different from the previous work, the weight

setting and splitting ratio of the SDN nodes are undeter-

mined in our model.

• Second, we demonstrate that the optimization problem

is NP-complete and leverage some heuristic algorithms,

i.e., a genetic algorithm, a greedy algorithm, and some

static migration algorithms, to seek a migration sequence.

We are novel in exploiting a genetic algorithm to seek a

migration sequence, which outperforms greedy algorithm

and the static migration algorithms.

• Third, we carry on the experiments and make evaluations

of various algorithms. We come to a conclusion that the

migration sequence that we exploit the genetic algorithm

to seek can achieve a maximum link utilization less than

the other algorithms during the migration and we can reap

the most of benefit with 40% of the nodes migrated.

The rest of the paper is organized as follows. Section II is

the related work. Section III depicts the problem formulation

of the migration. We propose a genetic algorithm GAS, a

greedy algorithm GDS and other static migration algorithms

for seeking optimal migration sequence in section IV. In

section V, we conduct the experiments and make evaluation of

various migration algorithms on different network topologies.

Finally, we make conclusion in section VI.

II. RELATED WORK

In this section, we present some related work on traffic

engineering and routing optimization .

OSPF protocol is a distributed IP routing protocol and

has been proven to be reliable for decades. In traditional IP

network, we route the network flows on the shortest paths

under OSPF protocol and we can optimize the routing of flows

by adjusting OSPF link weights. However, seeking for the

optimized weight setting under OSPF protocol is a NP-hard

problem. Therefore, various heuristic algorithms ( [4] [5] [6])

have been proposed to adjust the link weights and balance

the flows so that we can optimize the network performance.

However, the performance of traffic engineering is limited

when the flows are routed on the shortest path. In [7] and [8],

the authors propose novel routing protocols that the flows can

route on the longer path with an exponential penalty, which

achieves optimal traffic engineering. However, the traditional

routers need to support the proposed protocols, which poses a

practical limitation.

With the rise of SDN, many more approaches are emerging

to facilitate traffic engineering. Google [1] and Microsoft [2]

achieve a high network utilization in a fully SDN-enabled

inter-DC WAN by taking advantage of the flexibility of the

SDN. The traffic engineering problem can be reduced to a

multi-commodity problem with the full deployment of SDN

and solved in polynomial time. [9] introduces a two-layer

architecture and a centralized optimizer DEFO to control the

optimization layer. The new architecture combines segment

routing with IGP protocol to achieve scalability and flexibility

of traffic engineering in the carrier-grade network. In [10], the

authors conduct a survey about traffic engineering in SDN-

enabled network from the aspects of reliability, scalability

and availability. However, the challenges of SDN network lie

in that it is not easy nor practical to migrate a traditional

network to a fully SDN-enabled network. The routers should

be deployed SDN incrementally.

As a transition from the traditional network to the SDN

network, it is of great significance to study the hybrid SDN

network. In [11] and [12], the authors study the coexistence

of centralized routing and distributed routing and propose a

new architecture called Fibbing. It combines the flexibility of

the centralized routing with the robustness of the distributed

routing to balance the load and manage the network more

easily. In [13], the authors discuss about the classification

of multiple control-planes and provide a framework to study

the anomalies under coexistence of multiple control-planes.

The hybrid SDN network routing optimization algorithms

are shown in [14] and [15]. The SDN-enabled routers and

traditional routers coexist in a network and the traffic splitting

ratio of the SDN-enabled routers can be arbitrary. Both of them

formulate the routing problems as Linear Programming (LP)

problems. They are proven to be NP-hard and are solved with

polynomial time heuristic algorithms. Our work concentrates

on a problem which is different from [15]. In [15], we mainly

focus on the traffic engineering algorithm in hybrid SDN

network. The greedy algorithm is just exploited to determine

the nodes to deploy before evaluating algorithms. However, in

our work, we mainly concerned about the migration algorithm

of SDN nodes. It is of great significance to know the number

and the position of SDN nodes in the network before routing

in the hybrid network. The traffic engineering algorithm is

determined and the same as the algorithm in [15].

The research on incremental deployment schemes in hybrid

SDN network is in a primitive state and deserves our attention.

There are a few studies in recent years and we now have a

review on their works. As prior work [14] has shown, they

exploit the greedy algorithm and select a node that gains

the most of the network utilization each time to deploy.

In the studies of [16], the authors also develop a greedy

algorithm to derive a solution to the deployment schemes

of SDN-enabled routers. They choose to deploy the node

that provides the maximum number of alternative paths to

be used in traffic engineering. However, the prior work do

not discuss the number or the ratio of the nodes to deploy

that reap the most of the benefit in hybrid network. What’s

more, they do not make a comparison with other heuristic

algorithms and the performance of the migration algorithms

is limited in minimizing the maximum link utilization. The

migration algorithms are static algorithms and the authors do

not consider the weight optimization and the computation of

the optimal splitting ratio in determining the performance of

migration algorithms.

There are also some related work on facility location



problems. For instance, the problem of the placement of SDN

controllers, is also an interesting research topic in SDN net-

work and gives us some hints on the incremental deployment

schemes in hybrid SDN network. The authors discuss about

the number and the location of the controllers in [17] and

[18], which can be reduced to a minimum k-median problem.

They discuss the placement of the multi-controllers from the

perspective of minimizing the average latency and the worst-

case latency, which is also a NP-hard problem.

III. PROBLEM FORMULATION

In this section, we firstly depict the hybrid scenario, and

then we formulate the problem as an optimization problem.

Finally, we analyze the complexity of the problem.

A. Hybrid Scenario

A SDN/OSPF hybrid network scenario is depicted in Fig.1.

In this topology, nodes 3,4,9,11 are SDN routers in hybrid

mode and are controlled by an external controller. The routers

in hybrid mode are both SDN-enabled and OSPF-enabled

routers, so that these routers support OSPF protocol and at the

same time we can arbitrarily split the outgoing flows of the

SDN routers through the external centralized controllers. The

others are legacy routers that in OSPF mode, which support

OSPF routing protocol only.
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Fig. 1. A hybrid network scenario

B. Optimization Problem Formulation

We are given an undirected network graph G = (V,A)
(V is the vertexes set, A is the arcs set), capacity matrix C
(Cij denotes the capacity of link (i, j) ∈ A,i ∈ V ,j ∈ V )

and traffic matrix TM (TMij denotes the estimated traffic

demands from node i ∈ V to node j ∈ V ). ω denotes the link

weight setting matrix under OSPF protocol (ωij denotes the

weight of link (i, j) ∈ A,i ∈ V ,j ∈ V ). In(v), v ∈ V denotes

the edge sets on which there are traffic flowing into the node

v. Out(v), v ∈ V represents the edge sets on which there are

traffic flowing out of the node v. Z is the integer set. xe(ω)
denotes the splitting flow on the edge e ∈ Out(c) with the

weight setting ω. fe(ω) denotes the flow on the edge e with

the weight setting ω. gvte (ω) denotes the flow on the edge e
from v to t with the weight setting ω. We use N = |V | to

represent the number of the nodes in the network. We intend to

obtain a migrating sequence S = (v1, v2, ......vN ) of the nodes

so that the total maximum link utilization is minimized. We

deploy each node as the sequence in S. We refer φ to be the

objective function. CN is the present SDN nodes set. UCN is

the maximum link utilization with the nodes in CN migrated.

The migrating sequence, weight setting and the splitting ratio

are all variables in our formulation.

To measure the performance of the migrating sequence, we

add up the maximum link utilization with the migration of

each node. Our goal is to find the migration sequence S with

the least total maximum link utilization. We can formulate

the objective function as follows, which is subjected to the

constraints from (2)-(5).

φ = minimize

N∑

s=1

U{v1,v2,......vs} (1)

∑

e∈In(c)

fe(ω)+TMct =
∑

e∈Out(c)

xe(ω) c ∈ CN, t ∈ V (2)

∑

v,t∈V

gvte (ω) ≤ U{v1,v2,......vs}C(e) e ∈ A (3)

ωij ∈ Z i ∈ V, j ∈ V (4)

xe(ω) ≥ 0 e ∈ A (5)

(2) denotes that the flows flow into the node plus the flows

originate from this node equals the flows that flow out of this

node, which is the flow conservation. At the same time, the

equation implies the demand is meet. (3) denotes that the total

flows on an edge cannot exceed its capacity, which is the

capacity constraint. (4)-(5) denote that the weights are integers

and the flow on a link must be non-negative.

In the problem formulation, we should firstly determine

a migration sequence and then we can exploit the proposed

traffic engineering algorithm in [15] to evaluate the migration

sequence.

C. Problem Complexity

Searching for an optimal migration sequence is harder than a

Travelling Salesman Problem (TSP) problem, which traverses

each city once and returns to the origin city with the least

distance. In TSP problem, the cost of every edge is fixed and

independent on the other edges. While in our problem, the

maximum link utilization is dependent on the nodes migrated

before. If the maximum link utilization after the migration of

each node is determined and independent on the other nodes,

then our problem can be reduced to a TSP problem, which is

a NP-complete problem. Our problem is proved to be harder

than a NP-complete problem. So the complexity of optimal

migration sequence searching is a NP-complete problem.



IV. MIGRATION ALGORITHM

It is computation intensive to search an optimized migration

sequence, for the space of the solution is N !. The search

is exhaustive if we exploit the brute force algorithm, which

is unacceptable. Given the NP-completeness of the problem,

we resort to heuristic algorithms for optimized migration

sequence. In this section, we firstly propose two heuristic

algorithms, i.e., genetic algorithm searching (GAS) and greedy

algorithm searching (GDS), to solve the problem in section III

and analyze the complexity of the algorithm. Then, we propose

some simple and novel static migration algorithms for seeking

migration sequences, which are used to conduct comparison

experiments in the next section.

Algorithm 1: GAS

Input: G = (V,A) , CN , C , TM , ω
Output: S

1 i = j = k = 0;

2 for i < RS do

3 chroms[i].s =Rand initial();

4 chroms[i].φ =compute util();

5 i++;

6 for j < I do

7 (top chrom,mid chrom,low chrom)=sort chrom();

8 for k < number of chromosomes in mid chroms do

9 par ch 1 = one parent from top chroms;

10 par ch 2 = one parent from mid chroms;

11 new chrom.s =cross over

(par ch 1, par ch 2);

12 t = mutation(new chrom.s);

13 new chrom.s = t;
14 new chrom.φ =compute util();

15 k ++;

16 chroms =generation updates(top chrom,new chrom);

17 j ++;

18 S = top chroms[0].s;

A. Genetic Algorithm

The genetic algorithm belongs to the evolutionary algo-

rithms (EA). It generates solutions to the optimization prob-

lems exploiting techniques inspired by natural evolution, such

as inheritance, mutation, selection, and crossover. Algorithm 1

depicts the genetic algorithm that we propose in searching for

the optimized migration sequence. We now show the algorithm

in details. RS denotes maximum number of random solution

and I denotes maximum number of iteration. Both of them

are constant numbers.

1) Initialize population: We firstly initialize the population

by randomly generating some arrays with a permutation of

N nodes and also exploiting the solutions generated by the

static algorithms in the IV-C(line 3). For example, a random

sequence of four nodes can be [3, 2, 0, 1]. Given the migration

sequence, we can obtain the value of φ by computing the

maximum link utilization with each node deployed (line 4).

Each chromosome has two attributes, with chroms.s denoting

the migration sequence and chroms.φ representing the value

of φ corresponding to chroms.s. Then we can begin the

process of propagation with the initial population.

2) Sort chromosomes: We exploit bubble sort method to

sort the chromosomes in increasing order of value φ (line

7). According to its value of φ, we divide the solutions into

three classes: top class, middle class and low class (line 7).

Through extensive experiments, we choose the percentage of

three classes to be 10%, 80%, 10% of the total population,

respectively.

3) Parent selection: We then carry on parent selection. We

select one parent from the top class (top chrom), and the

other parent from the middle class (mid chrom) (line 9-10).

The size of the parents we select is set to be the same as the

middle class population. Then we can begin the crossover and

mutation.

4) Crossover and mutation: Then we crossover the two

parents to generate a new solution and mutate the new solution

according to a pre-set probability (line 11-13). The method

we employ to crossover is to inherit first half of array from

the sorted nodes of father and then the remaining half from

the sorted nodes of mother which do not appear in the first

half of the father. For example, if the sequence of one parent

chromosome is [3, 2, 1, 0] and the other parent chromosome

is [2, 0, 1, 3], then the generated chromosome is [3, 2, 0, 1].
In mutation, we randomly generate two integer numbers

ranging from 0 to N as the indexes and exchange the nodes

in the corresponding array positions according to the given

possibility.

Algorithm 2: Compute util

Input: G = (V,A) , CN , C , TM
Output: φ

1 Initialize φCN = ∅; for choose each node s as the

sequence in S do

2 util =SOTE(V,A,CN,C, TM);
3 φ = +util;

4 return φ;

5) Generation update: Finally, we update the present popu-

lation (line 16). The top chrom are put in the next generation.

Then, the new solutions through crossover and mutation are

inherited to the next generation. Finally, some randomly gen-

erated chromosomes also join in the next generation to escape

local optimum. We exploit the new generation to continue the

propagation until the terminal conditions.

At the last of the iteration, the sequence at the top of the

sorted population is the best solution that we are seeking (line

18).

Algorithm 2 shows the process of computing φ. We resort

to the algorithms (Algorithm 3 and 4) in [15] to compute the

utilization after the migration of one node. It illustrates how



Algorithm 3: SOTE

Input: G = (V,A) , CN , C , TM
Output: U

1 Initial weight setting matrix W , U ;

2 currutil = floydwarshall (G,W, TM) ;

3 bestutil = currutil ;

4 currweights = W ;

5 bestweights = W ;

6 foreach iteration times increase by one do

7 currweights =neighbour search (G,W );
8 currutil =Splitting ratio

(currweights, CN, TM,C, V,A);
9 if currutil < bestutil then

10 bestutil = currutil ;

11 bestweights = currweights ;

12 U = bestutil ;

Algorithm 4: Splitting ratio

Input: local optimal weight setting currweights, CN ,

TM , C, V , A
Output: U

1 foreach vertex d ∈ V do

2 DAG =Dijkstra Shortest Path(currweights, d) ;

3 foreach arc (i, j) in outgoing links(SDNi) do

4 DAG(i, j) = 1;

5 if check loop(DAG) == 1 DAG(i, j) = 0;

6 foreach vertex v in Topological Sort(V ) do

7 Route Flow (v);

8 expr = Multi Commodity (A, V );
9 cplex solve (expr);

to exploit the local search to determine the weight setting

(Algorithm 3) and how to compute the splitting ratio of

SDN nodes in SDN/OSPF hybrid network (Algorithm 4). The

details are shown in [15]. We then add the utilization and

obtain the total φ.

Now we analyze the complexity of the algorithm. The

complexity of Rand initial and sort chrom are both O(n2).
The complexity of cross over is O(n3) and the complexity of

compute util is O(n4). Therefore, the complexity of the entire

algorithm is O(n5).

B. Greedy Algorithm

We also propose a simple greedy algorithm GDS to search

for the optimized migrating sequence. The details are shown

in Algorithm 5.

In each iteration, we choose the node that we can get

minimum maximum link utilization after its migration and add

it to the end of the present migration sequence. In this method,

we obtain the complete migration sequence eventually. The

complexity of the GDS is O(n5).

Algorithm 5: GDS

1 i = 0;

2 bestutil = 1;

3 D = ∅;

4 while i < N do

5 for every node a ∈ V ,a /∈ D do

6 util = compute util();

7 if util < bestutil then

8 b = a;

9 bestutil = util;

10 D = D
⋃
b;

11 i++;

12 return D;

C. Other Static Migration Algorithms

We define the alternative links of a router are the links that

can be used to split the traffic in traffic engineering when the

router has migrated from OSPF mode to hybrid mode.

For example, in Fig.1, the alternative links of node 2 are

the links (2,1), (2,5), (2,3).

1) Alternative links (AL): In this static algorithm, we de-

ploy the router according to its number of alternative links. The

routers with more alternative links have higher priority to be

deployed in this strategy. The intuitive idea behind this strategy

is that, the more alternative links the router has, the more

capability that the router has to split the flows once deployed

and the less likelihood that the alternative links get congested

in traffic engineering. Aij denotes the link from node i to

node j. Aij = 0 if there is no link between node i and node

j, otherwise Aij = 1. Then the number of alternative links of

node i can be calculated as follows:

Ni =
∑

j∈V

Aij (2)

2) Traffic demands (TD): In this static algorithm, we sort

the routers in descending order of the traffic demands. We

choose to deploy the router with more traffic demands origi-

nated from it so that we can deal with “big” flows first and

perhaps obtain a better result in traffic engineering. The traffic

demands originated from node i can be computed as follows:

Ti =
∑

j∈V

TMij (3)

3) Maximum link utilization (MLU): In this static algo-

rithm, in order to decrease the maximum link utilization, we

migrate the routers, whose outgoing link has the maximum

link utilization, to hybrid mode firstly. We first exploit the

Floyd algorithm to find the shortest path between each pair of

nodes and route the traffic demands on the links of the path.

Then we can get the utilization matrix of the network and

sort the nodes according to the maximum link utilization of



its outgoing links. The maximum link utilization is computed

as follows:

Mi = maxj∈V Uij (4)

The aforementioned static migration algorithms are all con-

sidered from the perspective of minimizing the maximum link

utilization. We will evaluate these algorithms in section V.

V. EXPERIMENTS AND EVALUATION

In this section, we carry on the simulation experiments

to evaluate various migration algorithms. We first show the

network topologies that we exploit to conduct experiments.

Then, we plot the curves of the maximum link utilization

varying with different number of migrated nodes. Finally, we

analyze the performance of different migration algorithms. All

of the simulation experiments are done on a personal computer

with 2.6GHz Intel Core 4 CPU and 4GB memory.

A. Topologies

The real topologies that we refer to are shown in TABLE

I. The topologies are inferred by Rocketfuel [19]. We also

employ the synthetic topology generated by BRITE [20] to

conduct the experiments. The parameters are shown in Table

II. The three synthetic network generated by BRITE is shown

in TABLE III.

TABLE I
TOPOLOGIES FROM ROCKETFUEL

Name Nodes Links
Abovenet 17 74
Ebone 18 66
Exodus 21 72

TABLE II
PARAMETERS FOR BRITE

Model N HS LS

Waxman 10/15/20 1000 100

m NodePlacement GrowthTypem alpha

6 Random Incremental 0.15

beta BWDist BwMin BwMax

0.2 Heavy Tail 10.0 1024.0

TABLE III
SYNTHETIC TOPOLOGIES

Name Nodes Links
Synthetic topology1 10 26
Synthetic topology2 15 62
Synthetic topology3 20 118

Fig. 2. B(D
⋃

a) under six different topologies

B. Simulation Experiments

We compare the GAS to GDS and other static algorithms,

which are AL, TD, MLU, respectively. Through extensive

experiments, we choose to set the iteration time to be 50.

The traffic demands matrices are generated randomly. We plot

the curves that the maximum link utilization varies with the

increasing of the migrated nodes under different topologies.

The results are shown in Fig.3 and Fig.4.

From the curves above, we can find that the maximum link

utilization decreases with the increasing of the number of the

migrated nodes. The curves of GAS decrease drastically at

beginning and become flat in the following. GAS algorithm

can seek a better migration sequence compared with other

migration algorithms in minimizing the maximum link uti-

lization.

We define B(D
⋃
a) = UD − U{D

⋃
a} (D is the set of

nodes already migrated and a is a new node to be migrated).

B(D
⋃

a) denotes the benefit of migration of each node a.

In Fig.2, we plot the curves that B(D
⋃

a) varies with the

migration ratio. We can find that B(D
⋃
a) varies drastically

when the migration ratio is less than 40% B(D
⋃
a) and

becomes steady when the migration ratio is more than 40%.

We can draw the conclusion that when the migration ratio is

less than 40%, we can reap a great benefit with the migration

of one more node; when the migration ratio is more than 40%,

there is not much meaning in migrating the nodes. 40% of

migration can be seen as a turning point in the curves. As a

result, we can choose to migrate 40% of the nodes firstly.

In Fig.5 and Fig.6, we draw the Cumulative Distribution

Function (CDF) graphs of the maximum link utilization with

40% of nodes migrated under different algorithms and com-

pare it to the maximum link utilization with 100% of nodes mi-

grated under GAS algorithm. We conduct twenty experiments

with randomly generated traffic matrices for each algorithm.

We compare our algorithm with other static algorithms and

GDS algorithm with a migration of 40%. 100%-GAS denotes

that the migration ratio is 100%. As the figures illustrate,

when 40% of nodes migrated, GAS performs better than the

other static migration algorithms and GDS algorithm. When

strategically deployed, 40% of nodes of migration can reap the

most of benefit and is close to the performance with 100% of

nodes migrated.
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Fig. 3. The migrating curves of three real topologies
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Fig. 4. The migrating curves of three synthetic topologies

VI. CONCLUSION

The SDN/OSPF hybrid network scenario has attracted peo-

ple’s attention recently, while it is still in a primitive period.

Therefore, it is a practical and significant problem to migrate

the traditional IP network to the SDN/OSPF hybrid network

from the perspective of traffic engineering and we should

determine which router to migrate firstly. By studying the

migration sequence, we can better analyze the problem of

migration and determine which node to deploy first. The

goal of traffic engineering is to minimize the maximum link

utilization. In this paper, we consider the migration to the

SDN/OSPF hybrid network in minimizing the maximum link

utilization. We have exploited a genetic algorithm, i.e., GAS,

to seek a sequence that can obtain a better performance

compared to GDS and static algorithms during migration. We

also come to a conclusion that with a migration of 40% of the

nodes, we can reap the most of the benefit.

In the future, we will conduct extensive experiments on real

SDN devices and consider other traffic engineering problems

in SDN/OSPF hybrid network from the perspective of network

operators.
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