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Abstract—Page Views (PVs) are very crucial for search engines due to
their close relationship to the revenue. When PVs change significantly,
operators must be informed so that they can diagnose and fix the problem
quickly, and prevent further loss. In reality, PVs can be counted in
many ways (e.g., PVs originated from different ISPs), and different PVs
are of different interest to operators (e.g., the PVs of a larger ISP
is more important). As a result, different PVs often require different
detection standards, or thresholds. However, attempts to tune a number of
thresholds have been hampered by the cost of the manual effort involved.

To address the above problem, we propose a practical framework,
called PTL (practical threshold learning). Operators only need to
provide a few simple labels about the detection results, then PTL will
automatically tune the thresholds for different PVs. Using 4-month PVs
from a global top search engine, our evaluation demonstrates that PTL
can improve the accuracy of detection dramatically. More importantly, it
introduces very little labeling overhead for operators. For example, when
detecting the PVs of 103 ISPs, PTL can reduce the overall false negative
rate from 96% to 9% using only 29 labels per week on average.

I. INTRODUCTION

Search engine has become one of the most used Internet applica-

tions. According to the data from ComScore [1], each of the global

top search engines, such as Google, Baidu, Yahoo, Yandex, and Bing,

has billions of searches monthly. The display ad and click ad that

immediately follow the search results are the major revenue sources

of search engines. It is thus critical for search engines to detect in

real time any unexpected significant change in the number of searches

served, or called Page Views (PVs), because these symptoms are to

be potentially caused by anomalies, such as DDoS attach, data center

failure, and service upgrade bugs. Those significant changes need to

be timely reported so that operators can troubleshoot the possible

causes, and fix them to prevent unnecessary potential revenue loss.

Our interview with the operators from one of the largest search

engines shows that, both short-time dramatic PV changes and long-

time gradual PV changes should be detected. In other words, the

operators have potential thresholds of two aspects, i.e., change sever-

ity and duration, for deciding whether the PV change significantly

or not. These thresholds are also necessary for different change

detection approaches [2], [3], [4], [5], [6], [7], [8]. However, the

operators cannot easily quantify the thresholds in advance, as [9]

can also attest. On the other hand, the default thresholds, assumed

in literatures, often require onerous manually tuning in practice to

achieve a reasonable detection accuracy. We argue that the threshold

tuning is neither convenient nor scalable for the PV change detection

due to the following challenges:

First, for the purposes such as fine-grained monitoring and revenue

debugging [10], PVs are always counted in many ways (e.g., the

PVs from different ISPs, data centers, devices or advertisers). This

requirement leads to a lot of different PVs for detection. Second,

⇤ Dan Pei is the corresponding author.

operators often have various detection standards for different PVs,

mostly due to their different importance. For instance, a large ISP

is deemed more crucial as it contributes a majority of PVs, thus

deserving more careful detection. On the contrary, operators do not

want to receive frequent alarms from a small ISP, unless its PV

change is very serious. Therefore, the operators have to configure a

number of thresholds to obtain a detection system as they expected.

Third, some change detection approaches adopt complex techniques

to measure the change [2], [3], [4], [5], [7], [6], and it is not

intuitive for the operators to translate their detection standards into

the corresponding thresholds. Last, the concepts of the significant

PV changes in operators’ mind could drift over time [8], so that the

thresholds are often not set once and for all.

As a consequence of the above unaddressed challenges, the PV

change detection in practice is still ad hoc and needs a lot of

manual efforts. The operators we interviewed suggest that this kind

of manually tuning is both inefficient and time-consuming. In this

paper, we propose a novel thresholds learning framework, called

PTL, standing for Practical Threshold Learning, to address the above

challenges. Our contributions are as follows:

• PTL provides a practical way of automatically tuning the

thresholds of an anomaly or change detectors. Operators just

need to label the detection results, e.g., whether the reported

anomalies are true or there are anomalies missed. Given these

operators’ simple labels, PTL can tune the detection thresholds

of a detection approach. More importantly, to be more practical,

PTL does not require strictly precise labels from operators. For

example, PTL tolerates incomplete and inaccurate labels.

• We propose a sharing mechanism to learn a number of thresh-

olds for different ISPs more effectively. First, we identify the

similarities of different ISPs from operators’ labels. Then, PTL

shares the learning outcomes of a single label on a certain ISP

among the similar ISPs. Through this way, the number of labels

required can be reduced obviously, and also the learning can be

more effective.

• We use 4-month real PV data collected from one of the global

top search engines to evaluate PTL. The results demonstrate that

PTL can improve the detection accuracy greatly regardless what

initial thresholds are set. Moreover, PTL introduces very little

labeling overhead for operators. For example, PTL can reduce

the false negative rate from 96% to 9% using only 29 labels per

week on average.

The remainder of the paper is organized as follows. Section II

presents the background of detecting significant PV changes and

summarizes the goals. Section III describes the design details of PTL.

Section IV evaluates PTL with real PV data. Section V reviews the

related work, and Section VI concludes the paper.
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II. BACKGROUND AND PROBLEM

In this section, we first introduce some basic concepts of significant

PV changes. Then we motivate our design by modeling the existing

change detection approaches and characterizing the threshold prob-

lem. Last, we give our goals and observations for solution intuitions.

A. PV

A Page View (PV) is defined as a successful response to a user’s

search request [11]. PVs are one of the most biggest concerns of

search engines as they are very closely related to the ad revenue. In

fact, there are many ways to count PVs, such as the PVs of different

ISPs, devices and advertisers. In this paper, we focus on the ISP

PVs. Specifically, the PVs of a ISP refer to the PVs whose source

IP addresses are originated from that ISP. In the search engine we

studied, there are 103 different ISPs in total.

B. Significant PV Change

To figure out the significant PV changes concerned by operators,

Fig. 1 shows several real examples collected from the search engine

we studied. Three main observations are as follows:
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Fig. 1. Examples of significant PV changes concerned by operators. In
compliance with confidentiality constraints, the PVs are all normalized in
each plot. The shaded areas indicate the significant changes.
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Fig. 2. Average PVs per day of the 103 ISPs. The PVs are normalized by
the maximum value observed in the plot. The Y axis is in log scale.

• ISP PVs more detailed than overall PVs. This is because

the overall PVs are too coarse to capture details. Also, they

cannot help to diagnose the problem, e.g., which ISP should be

blamed for the PV change. As shown in Fig. 1 (a) and (b), while

the overall PVs seem relatively smooth, the PVs of ISP A drop

obviously in the same day due to a failure of the access network

of ISP A. The problem lasts for 46 minutes, yet we see that it

is completely invisible in the overall PVs.

• Two metrics: the change severity and the duration. Fig. 1

(c) shows a dramatic PV change of ISP B at about 11:00.

The operators expect that this event can be detected at its very

beginning. On the other hand, Fig. 1 (d) shows a gradual PV

change of ISP B as well. The dashed line denotes its PVs of

yesterday that is used as a baseline here. We observe that the PVs

of ISP B start dropping slowly at 8:00 when compared to the

baseline. However, the alarm should not be raised immediately.

This is because the changes of such moderate severity are very

common but rarely turn into real problems like Fig. 1 (d).

From these two examples, we found that the operators take the

change severity and the duration into account simultaneously

to determine significant PV changes. Furthermore, these two

metrics are interdependent. For example, in Fig. 1 (c), when

the change severity is high, the threshold for the duration would

be short.

• Different detection standards for different ISPs. Fig. 2

illustrates the average PVs per day of the 103 ISPs, which are

called ISP (PV) scales in the rest of paper. We see that the ISP

scales can differ greatly from each other. As such, those ISPs are

considered differently by the operators. For example, in Fig. 1

(e) and (f), while there happens a PV change of similar shape

for both ISP C and ISP D, the operators are only interested in

the case of ISP D. This is because ISP D is of a large scale but

ISP C is not (see Fig. 1 (f), where the PVs of ISP C in Fig. 1

(e) is plotted with the PVs of ISP D together under the same

Y axis). Therefore, the PV change of ISP C would not affect

enough users to trigger the operators’ further investigation. Note

that, besides the decreases, the abnormal increases of PVs can

also indicate problems such as DDoS attacks and flash crowds,

thus they should also be detected.

The above examples clearly demonstrate the complicated and

flexible demands for PV change detection. To realize such detection,

in addition to change detection approaches, a number of thresholds of

the change severity and the duration for different ISPs are inevitable.

C. Thresholds Tuning: A Missing Puzzle of Existing Change Detec-

tion Approaches

Recently, many change detection approaches have been proposed

and employed in real systems. Table I shows four examples of

approaches and their high level ideas. Typically, the process of a

change detection approach can be divided into several steps as shown

in Fig. 3, which is similar to the detection models given by [9], [12].

• Step 1: When the data arrive, the change detection approach first

quantify the change of each data point using a certain technique.

For example, in Table I, [4] adopts a forecast based method

called Holt-Winters and [5] uses a method of wavelet analysis.

The change measures depend on both the technique used and

its internal parameters, e.g., the three weighted parameters α, β,

and γ in Holt-Winters [4].

• Step 2: The change measures are further normalized, such as

using the mean and the standard deviation of historical data [3],

[2].

• Step 3: Single point change detection is then applied on each

normalized change measure. Specifically, if the measure exceeds

the severity threshold, it is identified as a significant change

point.

• Step 4: To avoid triggering alarms more than necessary, those

significant change points do not individually trigger alarms, but

are filtered by the duration detection. That is, if the continuous

significant change points exceed the duration thresholds, a



TABLE I
A SUMMARY OF FOUR CHANGE DETECTION APPROACHES. THE DEFAULT THRESHOLDS ARE ASSUMED IN THE RELATED LITERATURES.

Detection approaches Change measures Normalization Thresholds

Historical average [3] First, divide the data into hourly intervals, expecting that
each interval avoids capturing the time-of-day effect. In this
way, each data value V itself is directly used to measure
the change of that point.

Based on the Gaussian distribution,
use C = |V − µ|/σ to normalize
change measures, where µ is the
mean and σ is the standard devia-
tion of each interval.

C > 2

Time series decomposition [2] Decompose every data value V into three components: the
trend, the season and the noise. Measure the changes using
noise N .

Also use C = |N − µ|/σ to
normalize the change measure.

C > 1.96

Holt-Winters [4] Predict the data value of the t-th slot, Pt, using exponential
smoothing processes on three components: the baseline, the
linear trend, and the season. Measure the change with the
residual Rt = |Pt −Vt|, where Vt is the real value of the
t-th slot.

Maintain historical residuals HRt

via exponential smoothing and nor-
malize the change measures with
C = Dt/HRt−s, where s is the
season length.

C > 2

Wavelet analysis [5] Deem the data as signals and decompose them into
low, mid, and high frequency parts based on wavelet
analysis.The variances of the high and the mid frequency,
H and M , are used to measure the changes.

Use a weighted sum of H and M
to get the normalized score C.

C > 1.7

significant change is identified and an alarm is triggered.

Here, the severity thresholds and the duration thresholds are

collectively called detection thresholds.

In the above process, the detection thresholds play a very important

role in identifying or defining the significant changes, thus affecting

the detection accuracy greatly. However, how to adjust those thresh-

olds conveniently and effectively has not been explored very much.

A very common solution is to simply assume some default detection

thresholds as shown in Table I. But these empirical thresholds often

cannot meet the detection requirement [2], [13], and thus requiring a

lot of manual tuning. To the best of our knowledge, [14] provides an

automatic way to tune the thresholds according to labeled data. Yet

their method only focuses on single point detection. We will show

later in Section III that when combined with the duration thresholds

together, the problem of threshold tuning becomes more complicated.

Moreover, we are not aware of any prior work that intends to reduce

the labeling overhead when there are a number of thresholds (e.g.,

for different ISPs) to learn.
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Fig. 3. The overview of change detection approaches and the position of
PTL.

In addition to the detection thresholds, the internal parameters

can also affect the detection. Some previous works [15], [16], [17]

have proposed several automatic ways to choose the proper internal

parameters, e.g., multi-pass grid search [16]. In this paper, we focus

on the detection thresholds rather than the internal parameters. Our

focus has not been studied deeply in real systems. Those internal

parameters search methods are complementary to our work.

D. Design Goals

To resolve the above problems, we propose a framework, called

PTL. The goals of PTL are:

• Learning the detection thresholds from operators’ labels on the

detection results, rather than letting operators manually tune the

thresholds directly. This is based on the fact that it is more

straightforward for operators to visually inspect the PVs and

label the significant changes they confirm [2], [6], [8], [5], [18],

[19], [20].

• Being robust to incomplete and inaccurate labels, which always

exist in practice.

• Reducing the labeling overhead, i.e., the number of labels

needed, when learning many thresholds of different ISPs.

The overview of PTL is shown in Fig. 3. It takes as input the

operators’ labels about the detection results, and then learns the

severity thresholds and the duration thresholds accordingly.

E. Key Observations and Solution Intuitions

We have three key observations of significant PV change detection,

and we take advantage of these observations to guide the design of

PTL.

OBSERVATION 1: The change significance monotonically in-

creases with the change severity and the duration. Give two

intervals of PVs m and n, if the change of m is more severe than n

(e.g., m decreases by 50% and n decreases by 10%), and the change

duration of m is longer than that of n, then m is considered more

significant by operators. In other words, if n should be detected, then

m should be detected too.

OBSERVATION 2: The labeling error exists, but can be relative

small. Considering the 46-minute significant PV change in Fig. 1

(b), when let operators label that window, they can seldom label the

boundaries exactly, but often provide a rough and wider window.

However, this extending error can be relatively small. For example,

it is quite easy for the operators to label that 46-minute window via

a 60-minute window (about 30% extension). By taking advantage

of this, we can learn operators’ detection standards from each false

negative label conservatively (Section III-D2).

OBSERVATION 3: Same detection standards for the ISPs of

similar PV scales. Through months of field work with the operators,

we found that despite the operators’ bias on the ISP scales when they

determine significant changes, they always have the same detection

standard for the ISPs of similar PV scales. The only problem is that

they cannot describe this intuition (i.e., which scales are similar)

precisely. This observation motivates our design of sharing learning

outcomes in Section III-E, which can reduce the labeling overhead

and improve the effectiveness of learning.



III. PTL DESIGN

In this section, we first formalize several key concepts in the PV

change detection, and give the assumptions and requirements of the

operators’ labels. Then we describe how PTL learns the detection

thresholds from labels and shares the learning outcomes among

similar ISPs.

A. PVs and Significant PV Changes

PVs can be represented by time series data {p1, p2, ..., pt}, where t

is the slot index and pt is the sum of PVs in the t-th time slot1. Since

the change severity and the duration are considered when determining

significant PV changes, which means the changes should continue for

a period of time before triggering alarms, we first give the definition

of a window, then define significant changes based on it.

DEFINITION 1: Window and window length. Let t0 and t1 be

two time slot indexes, where t0 ≤ t1, then a window w refers to

the time slots between t0 and t1 (including t0 and t1), denoted as

w = t0 ∼ t1. The length (or duration) of w is denoted as lw and

lw = t1 − t0 +1. We say a time slot index i ∈ w if i ≥ t0 ∧ i ≤ t1.

DEFINITION 2: Change severity of a window. Given a window

w, let pi be the PVs of the i-th slot, where i ∈ w. A change detection

approach would measure the change severity of pi, which is denoted

as si and si ≥ 0. The larger si is, the more severe pi changes. Then

the change severity of the window w is denoted as sw, and sw =
min{si | i ∈ w}. Such definition of sw is to satisfy the requirement

of continuous change detection. In particularly, let sThld be the

severity threshold, then sw > sThld ⇔ ∀si, i ∈ w : si > sThld,

which indicates that all the slots in w change significantly.

DEFINITION 3: Detection threshold and significant change. We

define a detection threshold in either of a closed form or a open

form. This is because the labels of false positives and false negatives

have different implications of the threshold boundary (details will

be discussed later in Section III-D). Let lThld be the duration

threshold, then the closed form detection threshold is denoted as τ =
[lThld, sThld]. It means that a window w is called a significant

change if lw ≥ lThld ∧ sw ≥ sThld; the open form detection

threshold is denoted as τ = (lThld, sThld). Similarly, it indicates

that a window w is called a significant change if lw > lThld∧sw >

sThld. For convenience of later discussions, we use F(w, τ) = 1
to represent that w is identified as a significant change under the

detection threshold τ ; on the other hand, F(w, τ) = 0 means that w

is a normal change.

DEFINITION 4: Detection threshold set. Since operators may

have different duration thresholds for different change severities, for

each ISP, we use a detection threshold set T = {τ}, which contains

multiple individual detection thresholds τ , to capture the operators’

detection demands. Then we define F(w, T ) = 1 ⇐⇒ ∃τ ∈
T ,F(w, τ) = 1; otherwise, F(w, T ) = 0. That is, w is a significant

change under the detection threshold set T if w violates any detection

threshold τ in T .

B. Monotonic Increase Property

According to the OBSERVATION 1, for a certain ISP, F(w, T )
monotonically increases with lw and sw. An illustrative example is

shown in Fig. 4. Suppose two windows m and n, the duration and

the change severity of n are both no less than those of m. Naturally

we deem that F(n, T ) ≥ F(m, T ). In particular, as shown in Fig. 4

(a), if m is identified as a significant change, so is n. Generally, the

1We use 1-minute slot in this paper, which is a tradeoff between the
temporal granularity and the computation overhead.

top-right shaded area of m is the significant change area according

to m, and any window falls into this area should be identified as a

significant change. On the other hand, as shown in Fig. 4 (b), if n

is a normal change, then m should be a normal change as well. The

bottom-left shaded area of n is the normal change area according to

n, and any window fall into this area should be identified as a normal

change. Formally, we have: ln ≥ lm ∧ sn ≥ sm ⇒ F(n, T ) ≥
F(m, T ) and ln ≤ lm ∧ sn ≤ sm ⇒ F(n, T ) ≤ F(m, T ).
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length

nsn
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sm m

n

lm ln lm ln

significant change area 
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normal change area 

according to n
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Fig. 4. F(w, T ) monotonically increases with the change severity and the
duration.

C. Definitions, Assumptions and Implications of Labels

By setting an initial threshold set T without any manual tuning,

PTL begins to detect significant PV changes. PTL requires operators

to label what they think about the alarms, so that PTL can learn the

threshold set from the labels.

In actual use, operators have two opportunities to check the

detection results of PTL, one is when they receive alarms raised by

PTL, and they would verify whether the alarms are false positives;

the other is when they conduct some visual inspections upon PV

or are warned by a third party (e.g., user complainants or other

existing monitors), they would check whether PTL has missed those

alarms, called false negatives. Therefore, we consider only two types

of labels: false positive labels and false negative labels. We do not

require, assume or use any true positive or true negative labels.

Furthermore, we do not assume that all the false positives and false

negatives would be labeled by operators. We now introduce a few

definitions and realistic assumptions about operators’ labels.

DEFINITION 5: Label and label period. A label is denoted as

L(P ) = {FP,FN}, where P is the period where operators disagree

with the detection result of PTL, FP means false positive, i.e., the

alarms raised by PTL is false, and FN means false negative, i.e., there

are significant changes missed by PTL. The length of P is denoted

as lP .

For L(P ) = FN, the period P is specified by operators manually,

which can contain multiple continuous significant changes. For

example, if operators label a 20-minute period as FN, every 5-minute

window in the period can still be considered significant if it appears

individually. For L(P ) = FP, the period P is the alarm period given

by PTL. The continuous significant changes detected by PTL will be

merged as one alarm period. Such merging is apparently a design

trade off. On one hand, merging can greatly reduce the overhead of

labeling and increase the operators’ willingness to label. On the other

hand, labeling the merged windows instead of multiple individual

ones gives us coarse information to learn from, which will become

clear later. We choose to be conservative with the hope that we can

continuously get useful labels from operators, although in a slower

way.

DEFINITION 6: Label requirements and implications. Suppose

that TE is the underlying threshold set that most satisfies the detection



requirements of operators, i.e., the significant changes detected by

TE are as desired. Then A false positive label L(P ) = FP indicates

that ∀w ⊂ P : F(w, TE) = 0, and we call {w} the false positive

windows. So operators should label an alarm as false positive only

if they think there is no significant changes (true positives) in the

alarm period P . A false negative label L(P ) = FN indicates that

∃w ⊂ P : F(w, TE) = 1, and we call w the false negative window.

When operators label a period as false negative, they should make

sure there exists at least one window of significant change (false

negative) in P . Also, a labeled false negative period should not have

intersections with any alarm period already detected by PTL.

ASSUMPTION 1: False negative labels. According to the OBSER-

VATION 2, we assume that when operators provide a false negative

label L(P ) = FN, the false negative slots are more than the true

negative slots within P , or the proportion of false negative slots

is more than 50%. It is quite easy for operators to label in such

precision. We do not assume 100% precision because it would

unrealistically require operators to exactly label the beginning and

ending slots each time, and this sensitivity would hurt operators’

willingness to label.

ASSUMPTION 2: Maximum delay of alarms. Obviously, given a

detection threshold τ = [lThld, sThld] or τ = (lThld, sThld),
an alarm must wait for at least lThld or lThld + 1 slots before

raised. In order to detect with less delay, we assume that lThldmax

(the maximum of lThld) should be no more than 30 minutes (slots).

D. Learning from Labels: Toy Examples

Now, we show how PTL learns the threshold set T via two toy

examples. The basic idea is that, for each label L(P ), PTL adjusts T
so that T could detect P as suggested by L(P ), e.g., if L(P ) = FP,

the updated T should also identify P as a normal change instead of a

significant change. As more labels are learned in this way, T would

converge to TE and detect as expected.

1) Learning from a false positive label: First, Fig. 5(a) shows the

change severities of five slots. With the initial threshold set T =
{[1, 2]}, those slots are detected as significant changes and form a

continuous alarm period 1 ∼ 5. The initial threshold set T = {[1, 2]}
is represented by the double circle in Fig. 5(b), and it results in

the significant change area represented by those closed boundaries.

Notice that, since the window length is measured by discrete values,

i.e., the number of slots, the significant change area is also discrete

along the dimension of the window length.

Then the alarm in Fig. 5(a) is labeled as a false positive L(P ) =
FP, where P = 1 ∼ 5. According to the implication of the

false positive label, ∀w ⊂ P : F(w, TE) = 0. Thus we need to

adjust T so that F(w, T ) = 0. The adjustment of T is called the

learning outcome, which will be shared among similar ISPs later in

Section III-E.

We obtain false positive windows {w} like this: first, for lw = 1,

we can get five windows by sliding 1-slot window across P . The

severities of these five windows have three distinct values i.e., 2, 3,

4. These three kinds of windows are illustrated by the three squares

at window length = 1 in Fig. 5(c). Similarly, for lw = 2, 3, 4, 5, we

can obtain another five distinct combinations of change severities and

window lengths, illustrated by other five squares in Fig. 5(c).

The false positive label implies that all those false positive

windows should be identified as normal changes. Then based on

the monotonic increase property (Section III-B), all the bottom-

left areas of those false positive windows are the normal change

areas, and should be eliminated from the original significant change

area. As a result, we can get a new significant change area as

shown in Fig. 5(d), which can be described by a new threshold set

T 0 = {(1, 4), (2, 3), (3, 2), [6, 2]}. T 0 can thus detect as the false

positive label indicates. Note that T 0 does not have to contain all the

boundary points of the significant change area, e.g., τ = (4, 2) and

τ = (5, 2), since τ = (3, 2) can detect what can they detect.

Additionally, in order to satisfy the ASSUMPTION 2, i.e.,

lThldmax ≤ 30 minutes, if lP > 30 minutes, we will only obtain

the positive windows w whose lw ≤ 30 minutes. This also avoids

learning from an excessive number of positive windows in the case

of very a long lP .

2) Learning from a false negative label: The five slots in Fig. 5(e)

are labeled as false negatives, denoted as L(P ) = FN, where P =
1 ∼ 5. The initial threshold set T = {[2, 4]} and its corresponding

significant change area is shown in Fig. 5(f). The false negative label

indicates that ∃w ⊂ P : F(w, TE) = 1. A naive method to obtain

the false negative window w is to deem the entire labeled period

as w. However, as aforementioned, operators can also involve true

negatives in the period. Therefore, learning from the labeled period

directly can lead to an incorrect detection threshold set. For example,

when operators label 1 ∼ 5, they could consider only the period of

2 ∼ 4 as false negatives, implying that TE = {[3, 3]}. However, if

we obtain the false negative window w from 1 ∼ 5, i.e., lw = 5 and

sw = 2, the learned threshold set would be T = {[5, 2]}, which is

wrong as as it can detect significant changes that TE = {[3, 3]} does

not agree with.

To resolve the above problem, we conservatively learn from each

false negative label based on the ASSUMPTION 1. Given a label

L(P ) = FN, we first calculate the median of the change severities

of all the slots in P , denoted as smedian. Then we estimate the

false negative window w as lw = lP and sw = smedian. The

reason of using the median is that we assume that at least 50%
slots in P are false negatives. Since the change severities of false

negative slots are larger than those of true negative ones, smedian

could always be the change severity of a false negative slot. In the

example of Fig. 5(e), we can obtain a false negative window w of

lw = 5 and sw = smedian = 3, which is represented by the cross in

Fig. 5(g). The false negative label indicates that w should be identified

as a significant change. Again, according to the monotonic increase

property, the top-right area of w is the significant change area, and

should be added to the original one. The updated significant change

area is shown in Fig. 5(h), and can be captured by the new threshold

set T 0 = {[2, 4], [5, 3]}. Considering the ASSUMPTION 2, if a false

negative label is longer than 30 minutes, we estimate the length of

the false negative window using 30 minutes to avoid producing a

threshold with lThldmax > 30 minutes.

E. Sharing Learning Outcomes

So far, we have introduced how PTL learns the detection threshold

set for one ISP from its labels. Nevertheless, labeling many ISPs can

cost a lot of time for operators. We resolve this problem through

sharing the learning outcome of each label among the ISPs of similar

PV scales. This solution is based on the OBSERVATION 3. Here, the

learning outcome refers to the adjustment of the threshold set of the

labeled ISP, and sharing means applying the adjustment also to the

threshold sets used for other ISPs that are not labeled directly by

operators, but have similar PV scales with the ISP labeled. However,

except that the ISP scales matters, we do not know exactly which

ISPs are treated as similar. We design PTL to learn the similarities

of ISPs from the operators’ labels as well.

The intuition is that every label on an ISP can reveal the operators’

detection preferences about the ISP. For instance, if an ISP receives
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several false positive labels, learning from which, the threshold set of

the ISP becomes larger (i.e., the normal change area gets larger), then

the ISP is supposed to be concerned less crucial by the operators as

they would like to receive only very serious PV changes of the ISP.

Based on this intuition, our key idea is to find similar ISPs according

to the sizes of their normal change area.

Fig. 6 shows the overview of the method. The first step is to group

similar ISPs. As shown in Fig. 6(a), the labels of an ISP are used

to learn its local threshold set as described in Section III-D. Since

the local threshold set is learned completely from the direct labels of

the ISP, it can reflect the operators’ detection preference regarding

the ISP. We define the size of the normal change area derived from

the local threshold set as nSize. In the calculation of nSize, there

could be some window lengths corresponding to unlimited change

severity. For example, the window length of 1 in Fig. 5(f). It means no

matter how severe PVs change in one slot, it should not be reported.

To calculate nSize in such case, we use a relatively large change

severity, i.e., 10, instead of the unlimited one, since in our data, there

are very few slots whose change severities can exceed 10.

Algorithm 1 GROUP (ispList, θ)

1: µ is the mean and σ is the standard deviation.

2: for ispi in ispList do

3: CALCULATE nSize and sRank of ispi
4: while ispList is not empty do

5: SORT ispList by nSize in ascending order

6: for ispi in ispList (i starts from 1) do

7: CALCULATE the similarity between ispi and isp0:

8: simi = |(ispi.nSize − isp0.nSize) × (ispi.sRank −
isp0.sRank)|

9: CALCULATE µ and σ of {sim1, sim2, ..., simi}
10: if |simi − µ| > θ · σ then

11: // Splitting a group

12: RANK = max{ispk.sRank|k < i}
13: OUTPUT {isp|isp.sRank ≤ RANK} as a group

14: delete the group from ispList

15: break

We group similar ISPs as described in Algorithm 1. sRank denotes

the PV scale ranking of an ISP. First, sRank and nSize of each

ISP are calculated. We sort ISPs by their nSize in ascending order.

The ISP with minimum nSize (i.e., isp0 in ispList) is under the

most strict (smallest) detection threshold set, and is categorized into

the first ISP group. The ISPs belonging to the same group should

have similar nSize and sRank, so we calculate the differences of

nSize and sRank between isp0 and ispi. As nSize and sRank

are not measured by the same unit, we use the absolute product of

their differences to measure how similar isp0 and ispi are. When

the similarity of ispi deviates a lot, a group is split. The similarity

deviation is quantified by the mean and the standard deviation, and

if the similarity of ispi deviates the mean by θ× the standard

deviation, we deem ispi does not belong to the group. We assume



the normal distribution and use θ = 2 to achieve 95% confidence

in statistics [21]. After grouping by nSize, the ISP, whose sRank

is higher than that of at least one ISP already in the group, is also

categorized into the group. This is because though some ISPs are of

similar scales with isp0, they might not be labeled by operators, and

their nSize is not updated. As a result, they could be excluded from

the group by mistake if only considering nSize. We group the ISPs

once a week (a typical season of the PVs).

Fig. 6(b) shows that, in the same group, the learning outcomes are

applied to every ISPs, generating the detection threshold set for the

actual change detection. In this way, one label on a single ISP can

have effect on many ISPs, thus improving the learning effectiveness

and reducing the labels needed.

IV. EVALUATION

In this section, we evaluate PTL through the simulation with 4-

month PV data collected from a top search engine. The PVs are

originated from 103 ISPs.

A. Methodology

1) Change Detection approach: We use a popular change detec-

tion approach to work with PTL, i.e., time series decomposition [2],

which could deal with both the long-term trend and the seasonality of

PVs. The high level idea is described in Table I. It first breaks down

the PVs of each slot into three components: the long-term trend, the

seasonality and the noise. Since the noise does not contain the normal

changes caused by the trend and the seasonality, it is used for the

change detection. Besides, to avoid significant changes contaminating

the mean and the standard deviation, those data are excluded when

calculating the mean and the standard deviation. More details can be

found in [2].

2) Results Validation: Evaluating the accuracy of PTL requires

the ground truth, a complete set of significant changes that should be

detected. The ground truth set is also used to simulate the operators’

labels when the detection results are wrong. One way to obtain

the ground truth is using the real world tickets that record the PV

significant changes verified by operators manually. The advantage of

using the tickets is that they are the real world events and interested

by the operators. However, the tickets are often rare in reality. For

example, the search engine we studied has only maintained the tickets

for the overall PVs rather than the ISP PVs in their database. Also,

the tickets can also introduce errors and disagreement [6], [8]. Thus,

we could not draw strong conclusions about the performance of PTL

based on the tickets.

A second way, commonly used in prior works [22], [6], [2] to

bypass the above issue, is pair-wise validation. The core idea is

to compare the detection results with another approach or different

detection configurations. The advantage of this way is that we can

obtain the ground truth automatically for all the ISPs. Obviously, the

drawback is that the significant changes in such ground truth set have

not been verified by the operators, which will take a huge amount of

efforts to investigate.

In this paper, we adopt both of the above two ways, so that we

can obtain the benefit of each method. There are 24 history tickets

of the overall PV for the 4-month data we used. As for the pair-wise

validation, because different detection approaches can differ in the

change patterns they are designed to detect (e.g., identifying the edge

or the duration of changes), their results cannot be compared fairly.

To avoid those influences and clearly show the threshold learning

performance, we use the detection results of the same detection

approach, i.e., the time series decomposition, but under different

threshold settings as the ground truth. Another advantage of this

choice is that we can compare the thresholds directly since the two

detection approaches are the same and their thresholds are of the

same meaning. Finally, the thresholds used to obtain the ground

truth are set as follows: we divide the 103 ISPs into three groups

by their scales, which are 18 large ISPs, 59 medium ISPs, and

26 small ISPs. The threshold sets for each group are Tlarge =
{[2, 7.84], [5, 5.88], [10, 3.92]}, Tmedium = {[5, 7.84], [10, 5.88]},

and Tsmall = {[10, 7.84]}. Here, the principle is that, in the same

group, the larger the severity thresholds are, the shorter the duration

thresholds should be. The severity thresholds are 4×, 3×, 2× of 1.96
used in [2].

The above validation methods are probably not entirely true in

reality, but give a good approximation and handles to evaluate our

system. In the simulation, we let PTL start with an arbitrary threshold

set for all the ISPs, which can be quite different from the ones used

to generate the ground truth, and see how PTL can learn them from

the “operators’ labels”.

3) Performance metrics: To quantify the performance of PTL,

we adopt four metrics: (a) the false positive rate (FPR), referring

to the percentage of false alarms in all alarms raised by PTL; (b)

the false negative rate (FNR), that is the percentage of significant

changes missed by PTL; (c) the number of the checks of the detection

results and the number of labels; (d) the threshold convergence,

which compares the threshold sets learned by PTL with those used to

generate the ground truth. Since each threshold set contains multiple

combinations of the severity threshold and the duration threshold,

they cannot be quantitatively compared directly. We measure the

difference of two threshold sets of one ISP using the difference

between the nSize derived from them, and averaging the differences

of the 103 ISPs.

4) Labeling Conditions: To be more practical, we will evaluate

PTL under different labeling conditions. There are four aspects of

the simulation of labeling:

• Checking possibility (C%) represents that (a) when PTL raises

an alarm, operators have the chance of C% to check it; (b) when

there are PV significant changes in the ground truth, operators

have the chance of C% to verify whether PTL has raised alarms.

In both of the cases, if the detection result are not as expected,

operators will provide a label.

• Maximum of checks per day (Cmax) indicates that operators

would check PTL for Cmax times at most per day.

• Mislabeling possibility (M%) means that when operators check

PTL, they have the chance of M% to label by mistake, e.g.,

the alarm is correct but they label it as a false positive by

misoperation. Since operators would not check PTL without

any purposes, we do not consider that operators will label false

negatives when they do not believe them.

• Labeling extension (E%) means that when operators label a false

negative, i.e., a certain significant change period missed by PTL,

they could label the truly period by at most E% extension.

We provide two types of representative labeling conditions as

shown in Table II, namely lazy operators and careful operators.

TABLE II
THE SIMULATION OF TWO TYPES OF LABELING CONDITIONS.

Name C% Cmax M% E%
Lazy operators 20% 20 5% 100%

Careful operators 80% 40 1% 10%
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Fig. 7. Detection performance of the 103 ISPs in pair-wise validation. The X axis is the index of weeks in the 4 months. The Y axis represents different
performance metrics, i.e., FPR, FNR, the average nSize difference (Section IV-A3), and the number of labels per week. (a)(b)(c)(d) shows the results when
the initial threshold set is T = {[10, 9.8]} and (e)(f)(g)(h) shows that of T = {[2, 1.96]}. Because the significant changes are infrequent in some weeks,
which makes FPR and FNR jitters a lot, all the four metrics are obtained using 3-week moving average. That is also why the X axis ends at W13 rather than
W16 (4 months).

B. Results

1) Real History Tickets: We run time series decomposition upon

the overall PV in three threshold learning ways: no learning (fixed

Thld), PTL with lazy operators (lazy OP), and PTL with careful

operators (careful OP) in Table II. Also we start PTL with different

initial threshold sets T , from very small ones to very large ones. In

the detection process, operators are supposed to check PTL according

to the tickets only. Table III shows the results. Since the tickets can

be incomplete, we can only determine how many tickets have been

detected, but cannot provide the accurate FPR or FNR.

TABLE III
DETECTION RESULTS OF THE OVERALL PV (VALIDATED BY TICKETS).

Initial T
Threshold

#Alarms
Identified

#Labels #Checks
Learning Tickets(%)

{[2, 1.96]} Fixed Thld 3744 100% - -
Lazy OP 84 79% 16 28

Careful OP 54 87% 25 68

{[3, 3.92]} Fixed Thld 108 83% - -
Lazy OP 39 83% 4 10

Careful OP 51 83% 25 56

{[5, 5.88]} Fixed Thld 18 67% - -
Lazy OP 18 79% 4 8

Careful OP 30 79% 20 27

{[7, 7.84]} Fixed Thld 13 50% - -
Lazy OP 25 58% 4 9

Careful OP 24 75% 9 41

{[10, 9.8]} Fixed Thld 4 17% - -
Lazy OP 13 46% 2 7

Careful OP 34 67% 19 49

First, focusing on T = {[2, 1.96]}, we see that though the fixed

Thld identified all the tickets, it triggers 3744 alarms. They are much

more than necessary in contrast with other cases, and thus most of

them are supposed to be false alarms. This is because the initial T
is set too aggressively. On the other hand, using the same initial

T , PTL can reduce the number of alarms greatly, and still many

of the tickets can be identified (e.g., 87% tickets for the careful

OP). Second, the results also demonstrate an important fact that it

is difficult to set the most suitable thresholds once and for all. See

T = {[3, 3.92]} and T = {[5, 5.88]}, the fixed Thld seemingly

yields a relatively good results, but PTL can still improve them

by lowering the number of alarms while still identifying the same

number of tickets, or more tickets. Note that, in these two cases, the

careful OP raises more alarms than the lazy OP. This is probably

because the 24 tickets in the database missed some real significant

PV changes, and through learning, they are identified by the careful

OP. Third, as for T = {[10, 9.8]}, PTL can also achieve better results

but the improvement is less, compared with other cases. The reason

is that the initial T is too large and PTL needs false negative labels to

adjust T . Nevertheless, we lack tickets (only 24 tickets) to produce

such labels. Last, we observe that both the labels and the checks

required by PTL are relative few no matter which initial T is used.

This indicates the labeling overhead is low for operators when using

PTL.

2) Pair-wise Validation: In Fig. 7, we detect the 103 ISP PVs with

pair-wise validation as described in Section IV-A2. Two experiments

are conducted with different initial T , a large one T = {[10, 9.8]}
and a small one T = {[2, 1.96]}. In both experiments, we compare

the performance of five threshold learning methods. In addition to

the three methods introduced in Section IV-B1, we also compare

PTL with sharing learning outcomes, namely “lazy OP with sharing”

and “careful OP with sharing” in Fig. 7.

First, for T = {[10, 9.8]} (Fig. 7(a), (b), (c), (d)), the main

deficiency of the accuracy at beginning is the FNR. This is because

the initial threshold set T is too large and few significant changes can

be identified. In Fig. 7(b) we see that, the FNR of the fixed Thld is

always above 75%, and reaches 96% for the worst case. Although its

FPR is 0 (Fig. 7(a)), such detection results are useless for operators.

As for the results of PTL, the FNR is reduced strikingly as learning.

In particular, the FNR of week 1 has already been decreased to 41%
for the careful OP with sharing, from 90% of the fixed Thld. During

PTL learns the thresholds, the FPR increases but then goes down

as shown Fig. 7(a). This is because the significant changes actually

detected are different from the ones in the ground truth, and this

further affects normalizing the measures of the change severity since

different data are eliminated from the calculation of the mean and the

standard deviation (Section IV-A1). As a result, the change severity

of the labeled period could be smaller from the perspective of PTL,

leading to that the thresholds are over adjusted. This influence would

be mitigated as learning. We see the FPR and the FNR at week 13

are 8% and 9% respectively for the careful OP with sharing. We

also observe that sharing learning outcomes can further improve the



detection accuracy (Fig. 7(a), (b)), compared with no sharing, and

converge the thresholds more quickly (Fig. 7(c)), which is measured

by the average nSize difference as described in Section IV-A3.

In addition to the accuracy, another important performance metric

is the number of labels required. As shown in Fig. 7(d), PTL requires

only a few labels per week. Specifically, the careful operators (without

sharing) need to provide 47 labels every week on average for the 4

months, while the careful OP with sharing only needs to provide 29

labels every week on average. We see that sharing learning outcomes

can reduce the labeling overhead by 38% here. As for the lazy

operators, as they provide less labels in nature (about 20 labels per

week on average), sharing learning outcomes does not benefit them

a lot, reducing 3 (15%) labels per week on average.

The conclusions of T = {[2, 1.96]} are much similar except two

things. One is that the FPR (Fig. 7(e)) and the FNR (Fig. 7(f)) are

exchanged when compared with T = {[10, 9.8]}. This is because

T = {[2, 1.96]} is very aggressive and triggers too many false

alarms, so the FPR is the major problem instead of the FNR. Another

is that the number of labels (Fig. 7(h)) is about twice as that in

T = {[10, 9.8]} (Fig. 7(d)). This is also caused by the excessive

false alarms, and operators would have more chances to label false

positives. But the number of labels decreases quickly as learning, and

is finally under 25 per week for careful OP with sharing.

V. RELATED WORK

Many change detection approaches have been proposed in recent

years. [2] employs change detection in a search engine as we do,

but they focus on the overall search response time, not like the

PVs that can be aggregated in many ways. There are some work

attempting to apply change detection approaches in ISP networks,

such as [4], [3], [7], [8], [22], [6], [13], [9]. Although several

sophisticated change detection approaches are designed, we argue

that it is still inconvenient for operators to use them in the real world,

especially when there are a large number of metrics for detecting (i.e.,

PVs from many ISPs). One of main problems is tuning thresholds,

which is neither intuitive nor scalable for operators. To solve this,

[14] provides an automatic way to adjust the severity thresholds

based on the labeled data, but they ignore the duration thresholds

which make the problem more complicated. Besides, we are not

aware of any prior work trying to reducing the labeling overhead

of learning many thresholds for detecting different metrics. Some

work also devotes to automatically tune the internal parameters of

change detection approaches, such as [15], [16], while our focus is

on learning the detection thresholds from operators’ labels. Those

works are complementary to ours.

VI. CONCLUSION

PVs are crucial for search engines as they are closely related

to the ad revenue. To monitor PVs in a fine granularity, PVs are

always counted in many ways. For example, the PVs of different

ISPs. When applying change detection approaches on those PVs,

it requires a lot of thresholds, including both the change severity

thresholds and the duration thresholds, to characterize the detection

requirements of operators. However, these thresholds are typically

tuned manually, and such attempt has been hampered by the cost

of manual efforts. To adjust the thresholds more conveniently and

effectively, we propose a framework, called PTL, intending to learn

the thresholds from the operators’ simple labels of the detection

results. Through the simulation on 4-month real PV data from a

global top search engine, we demonstrate the effectiveness of PTL.

For example, in our experiment, PTL can decrease the FNR from

96% to 9% with only 29 labels per week on average.

We believe that PTL is a very useful framework to help tune the

thresholds in significant PV change detection. We also believe that

PTL can be extended to other detection scenarios as well.
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