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Abstract—In this paper we consider the management of a
tiered storage system consisting of disk and flash drive storage
and a DRAM cache, with the challenge of taking into account
heterogeneous quality of service (QoS) requirements.

We integrate and adjust methods which control the use of
fast resources such as flash drives and cache, according to
the user access patterns of different data extents and the QoS
requirements of the extents, which we developed in previous
work. Using traces from real production systems, we show that
the benefits of the integrated system are substantially larger than
that provided by each method alone. Our method is able to
substantially improve the performance of data with high QoS
demands, with little or no damage to data with low QoS demands.
Thus we are able to exploit the resources of the storage system
to the advantage of all data types. we show improvements in the
range of 9%-71% for datasets with the highest QoS requirements,
and 0%-70% response time improvement overall, compared to
a QoS optimized system which took only disk drive resource
allocation into consideration. In workloads where cache is useful
we obtain large gains, showing that it is important to integrate
back-end (drives) and front-end (cache) optimization.

I. INTRODUCTION

Providing QoS is an important challenge in enterprise stor-

age systems, especially in heterogeneous environments which

are typical in our increasingly virtualized and cloud based

computing world. Quality of service is usually defined in terms

of some performance metric, such as IOPS or average response

time. Different portions of the user dataset need to achieve

different performance targets. Depending on the type of user

access pattern (workload) of the datasets, such requirements

translate into cache and flash residency requirements and load

balancing requirements to avoid queues. The challenge then

becomes to provide appropriate portions of the cache and flash

drives to the different datasets, taking into account, both their

needs and their ability to utilize the resources made available

to them. it is also important that our resource management

methods will be relatively easy to implement across many

types of storage systems.

In previous work [13] we introduced an algorithm which

allocated resources back-end resources (disk and flash drives)

to different datasets according to their QoS requirements and

their ability to take advantage of resources such as flash

drives. It was shown that we can provide better performance

to datasets with stringent QoS requirements without hurting

too much (or not at all) other datasets.

In this paper we show that by taking into account the QoS

requirements and the ability to take advantage of cache of

different datasets we can provide further substantial improve-

ments beyond those presented in [13]. Cache management is

different from the management of drives, being more dynamic

and real time driven, hence our caching algorithms have to

be easy to implement and are different from the back-end

algorithms. We use a simple mechanism that allows us to push

data into different locations of the LRU cycle. Data belonging

to datasets which have shown their capability of exploiting

cache (good hit ratios) and have stringent QoS requirements

(need high hit ratios) are injected into the beginning of the

LRU cycle and will reside in cache for a lengthy time period.

On the other hand, datasets which do not utilize cache well,

or do not require good performance are injected near the tail

of the LRU cycle and spend little time in cache before being

removed, unless they are requested. This framework is very

flexible and can easily accommodate changes to the criteria

that one applies when deciding on the overall importance of

a dataset.

In addition, the mechanism is integrated with the back-end

resource allocation mechanism in an algorithm which adjusts

the weights (priorities) of the different datasets according to

how well we are achieving their QoS goals.

We evaluate our method with trace data from real produc-

tion systems. The results of the combined backe-end/cache

algorithm show substantial improvement over a back-end

algorithm combined with a generic LRU algorithm. In all

the workloads we have improvement in the performance of

the QoS stringent datasets, however, the level of improvement

varies substantially, between 9% and 71% . The reason is that

in some systems the workload tends to be rather random and

has difficulties exploiting the improved cache algorithms. For

the same reason, the overall response time has improvement

ranging from negligible to 70% . Workloads that can utilize

cache improve in overall performance because, regardless of

QoS, our algorithms place in cache datasets which are more
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likely to receive hits. For this reason, the improvement in the

performance of high priority datasets does not come at the

expense of low priority datasets, rather, all datasets profit, high

priority just somewhat more than others.

II. RELATED WORK

There is an extensive literature on cache management

schemes. Some basic general references include [4], [3], where

methods for improving the hit ratio such as LRU, LFU,

cascading LRU, working set and many others have been

considered. Cache partitioning for QoS has been considered,

however, this method is not as flexible and lowers the overall

hit ratio. The mechanism which we use is very simple to

implement and to the best of our knowledge, has not been

suggested before.

The use of flash drives in enterprise storage systems has

been considered in [5], [7], [8], [10], [11], [12], [14], [15],

[16], [17], [1].

Applications which may profit from the use of the flash

drives have been considered in [5], [7], [8], [10], [11], [12],

[14], [15], [16], [17].

The configuration of the back-end of a storage system has

been considered in [1], [6].

Configurations of enterprise arrays involving a mix of

SSD, SCSI and SATA are commercially common these days

and accordingly many vendors offer capacity planning and

dynamic data reconfiguration tools for such systems, see [9],

[21], [18], [20], [19] among others. While the caching and

back-end aspects of a storage system with QoS requirements

have been considered separately in the open literature, we are

not aware of a previous work which integrates efficiently all

these aspects.

III. BACKGROUND AND PRELIMINARIES

We provide a very brief general description of the archi-

tecture of the type of storage systems which concerns us in

this paper. For more information we refer to [13]. The main

physical system components include directors, cache memory

and secondary storage devices.

Cache memory (DRAM) is a fast and expensive storage

area. The cache (DRAM) is managed as a shared resource by

the directors. The content of the cache is typically managed

by a replacement algorithm which is similar to the Least

Recently Used (LRU) algorithm, which will serve as our

baseline algorithm.

The data in the system is divided into user defined units,

which are called logical units (LU) or volumes. An LU will

typically span several GB. The LU is a unit of data which is

referenced in the I/O communication between the host and the

storage system. From the point of view of the storage system,

the LU is divided into smaller units called Extents, which are

of a smaller size of 3.75MB and can be viewed as atomic units

for storage statistics collections. In the system that we have

studied, a Symmetrix VMAX system, an extent contains 7680

blocks whom are of a fixed size of 512 Bytes.

A. Verification of the Placements Procedure and the Cache

Management Policies

We need to verify and measure the performance of various

management policies and algorithms. Since we do not have

an enterprise level storage array, we developed a detailed

simulation of a generic enterprise level array. Experience with

a similar type of simulator which was employed during the

design of Symoptimizer, [2], a commercially available opti-

mization product, shows that such simulators provide reliable

indications of the improvement that can be expected in an

actual system. We then coupled the simulation with several real

traces of data from a production array to create a realistic test

environment. The simulation was designed with the storage

components and logical units described above. It includes a

simulation of the cache and the other storage components,

although we will mostly use the portion of the simulation

which is related to the cache.

B. Trace data

The simulation uses real production trace data collected

from several EMC Symmetrix systems from different cus-

tomers. This data is hard to collect and requires special

permission from the customer. Thus, the amount of trace data

is limited.

The traces that we use in the simulations are composed of

items which describe each and every I/O request during an

extended time period. The items corresponding to each I/O

request consist of:

1) time stamp: indicating when the request was received.

2) I/O operation: read or write.

3) logical unit ID: the volume targeted by the I/O request.

4) block offset: the offset of the start of the request within

the logical unit

5) size: size of the I/O request, in blocks.

For example, a request might be to read 32 blocks from logical

unit number 41, starting with block 15360 within the logical

unit.

C. Cache

In this particular work the cache is divided into 64KB

sections and consists of two parts. The major part of it

is dedicated to the read requests and the smaller part to

write requests. The cache management policies, that will be

presented in the next section, refer to the read portion of

the cache. The insertion to the write portion of the cache is

managed using the LRU policy. The write cache is used for

hiding the latency of writing to the disk drive and are destaged

asynchronously as described in detail in [13].

IV. CACHE MANAGEMENT POLICIES WITH THE BACK-END

PLACEMENT ALGORITHM

Cache management policies in this paper address the dy-

namic nature of our caching priority mechanism, which will

be explained later in this section. This mechanism is influenced

by the system’s back-end priority mechanism, whose definition



and analysis were described in [13], and which served us to

determine the back-end placement of the data.

The data is split into three priority groups, high, medium

and low. The QoS requirements are the desired response times

for these groups, which are set to 2, 6 and 12 milliseconds

respectively. The management policies, that we are about to

present, emphasize the importance of the hit ratio in cache

placement location decisions. We also give weight to the

priority of the data in order to provide a sufficient response to

the QoS requirements. We use the LRU management policy

as a baseline for our results. In addition, we take the QoS

requirements into account when placing data on the disk drives

using the algorithms presented in [13].

Throughout this paper we will be working with Extents as

our basic storage units. Note that this is much larger than the

cache page size that is 64KB in our evaluations. This implies

that statistics used for the cache management will be gathered

over Extents. Extents are large enough that statistical patterns

of usage are meaningful, but not too big so as to be coarse

grained.

A. The Hit Ratio LRU (HR LRU) Policy

The HR LRU policy serves as the basis for our Priority LRU

policy. The main purpose of the HR LRU policy is to prevent

cache under-utilization, therefore, if the cache hit ratio of an

extent is low then we would like to avoid leaving it inside the

cache for a long time.

The policy inserts the extents with a high hit ratio towards

the end of the LRU queue, while the extents which are rarely

accessed are inserted towards the head of the queue (but not

at the very head). Apart from the placement/insertion phase,

the cache operates as an LRU queue.

When we consider the cache size in our calculations, we

refer to the size of the read part of the cache. The cache

time slice is a period that spans 5 minutes. The placement

calculation works as follows:

Let MaxHRcurrent be the highest hit ratio among all the

extents, whose data was added to the cache or accessed while

in it during the current cache time slice.

Let MaxHRprevious be the same as MaxHRcurrent, but

only for the previous cache time slice.

MaxHR ← max(MaxHRcurrent, MaxHRprevious) (in

percentage points).

Let HR be the hit ratio of the extent containing the data

(in percentage points).

InsertionIndex ← HR/MaxHR.

The InsertionIndex is a value which assesses data’s hit

ratio relatively to the highest relevant hit ratio.

We discretize the InsertionIndex into a small number of

intervals, covering the range of all its possible values, i.e. [0,1].

Let there be m such intervals. We will denote interval bounds

by xi, s.t. 1 ≤ i ≤ m. Let yi be a value determining the

location in which data will enter the cache (1 ≤ i ≤ m holds).

The yi is measured in percentage points of the cache size.

We will initialize these parameters during our experimental

evaluation analysis, which is described later in this section.

Let yi calculation be as follows:

if InsertionIndex ∈ [xi, xi+1) then

InsertionIndex← yi
end if

We refer to [xi, xi+1] if i = m in the if condition.

Final position ← InsertionIndex.

For example, if the InsertionIndex=0.45 and belongs to

an interval [0.4,0.7) then it will be inserted at 70% of the

cache/queue.

The lowest value of yi, y1 in our case, will be greater than

0. So, even if some data has very low hit ratio, it will not

be placed at the very head of the queue. We can also see

that our placement calculation contains hit ratio comparison

according to the latest time window, so that the placement of

data in cache is more accurate and only the most relevant data’s

hit ratio is taken into account while computing the placement

position.

B. Priority LRU Policy

Let RT be the current response time of an Extent and DRT
its desired response time, i.e. the current response time and the

desired response time of the LU it is a part of. Our goal is for

each Extent’s RT/DRT value to be close to 1, which means to

satisfy the QoS requirements, which are not addressed in the

HR LRU policy. We do not want it to be way below 1 though,

because we wish to utilize our resources and improve the

performance of a data, which QoS requirements are not met

yet. We have decided to use an integrated priority mechanism,

which will handle the QoS requirements throughout the whole

system. For the back-end, the priority mechanism stays the

same as in [13], which imposes the use of dynamic priorities

for the cache as well.

The priority of the data is the one of the Extent it resides

in. We denote this priority by prio (minPriority ≤ prio ≤
maxPriority), while minPriority and maxPriority values

prevent the data from moving too far to either end of the queue.

The prio value is measured in percentage points and is altered

every cache time slice depending on the RT/DRT ratio of

the LU, which the Extent is a part of. In addition, we introduce

to the system a factor, which we denote by prioFactor (s.t.

|prioFactor| is a constant) and which is added to the current

prio value every cache time slice. This factor is positive if the

RT/DRT ratio is larger than 1 and is negative otherwise. The

addition is done only if the new priority value is still legal,

i.e. satisfies minPriority ≤ prio ≤ maxPriority.

The cache placement algorithm is based on the HR LRU

policy, with a small adjustment added to the final position

calculation according to the HR stats of the data. We would

like to move the data towards the tail or head of the queue

if it has high or low priority respectively, so that the final

position of the data also reflects the current damage its LU

has suffered based on the comparison to the desired response

time. The calculation procedure is as follows:

Let InsertionIndex hold the value assigned to it at the

end of the HR LRU Policy placement algorithm.



Let MinPosition be the smallest position in the cache that

data may be placed in. This value is the minimum value that

InsertionIndex may hold after the completion of the HR

LRU Policy placement algorithm, i.e. if the corresponding

HR/MaxHR value belongs to the first interval.

InsertionIndex ← InsertionIndex+ prio
PrioPosition← min(InsertionIndex, 100%)

Final position ← max(MinPosition, PrioPosition)
As we can observe, the final position is a combination of the

InsertionIndex value, which was presented in the previous

subsection and is defined by the data’s hit ratio and priority.

In addition there are some sanity checks, which include the

verification of the final position being above the minimum

position allowed and not beyond the whole cache size.

It is not too difficult to efficiently implement this placement

algorithm. As a part of our implementation we have used

pointers to approximate LRU queue positions(x-% of the

cache) in order to achieve an O(1) access time to the queue.

C. Algorithm Flow

The general time units for our simulation are of the 1 hour

length. The simulation basis and most of the actions performed

by our system during this time unit are described thoroughly

in [13]. There are, however, some additional enhancements

that had to be done while simulating the cache activity. Our

general time units are further divided into cache time slices,

which last 5 minutes. For each time unit, we collect hit ratio

statistics per extent. According to this hit ratio data we adjust

the maximum hit ratio values for the last couple of time

slices. These values are needed for the calculation procedure

described in the HR LRU Policy subsection. In addition, we

maintain extent’s priority value based on total response time

and total number of I/O’s statistics, which are collected for

the LU it belongs to during each time unit, and the desired

response time we have assigned to this LU’s priority group at

the start of the simulation.

D. Experimental Evaluation

In this section we describe the experiments conducted to

evaluate the changes, which we have made to our placement

calculations for both the HR LRU and the Priority policies

in general, and the dynamic priority mechanism for the cache

that is introduced in this paper in particular. Our experiments

are designed to examine:

• The improvement in each priority group’s response time.

• The overall improvement of the response time in the

system.

E. Comparison

We have divided all the LUs into three priority groups,

each with its predefined desired response time. We ran two

simulations, all taking the QoS considerations into account in

the back-end part of the storage system. The first simulation

ran as a benchmark for our Priority LRU cache management

policy and the cache management in it was done according

to the regular LRU policy. The second simulation ran with

Priority LRU policy. Our goal is to examine the impact of

taking the QoS considerations into account in the cache during

the simulation with the Priority LRU policy in comparison to

the one ran with the plain LRU policy, which does not take

the QoS requirements in cache into consideration.

We want to inspect the performance of each simulation by

collecting the relevant statistics, such as response times per

each priority group, during each general time unit.

F. Analysis

We had data traces from 4 customers. The detailed analysis

we present is from one customer over a 24 hour period.

Qualitatively similar results were obtained from the other

customers as well, and their summary will be shown later in

this section. This customer trace contains 98 LUs, with each

being of a size that ranges from a few GB to a hundreds of GB.

As the traces are from the real customers, the activity along

the various time slices is not uniformly distributed. Hence,

the response times and other statistics collected by us differ

greatly between different time periods. The desired response

times were set to 2ms, 6ms and 12ms for the high, medium

and low priority group respectively. The simulations used a

cache of size 100 GB, 1 SSD (flash) device, 6 FC devices, and

100 SATA disks. Regarding the back-end placement algorithm,

we have allowed a maximum of 15000 exchanges of Extents

between the different devices during each general time unit.

These exchanges were distributed according to the system’s

workload, which in this case happened to be around an average

of 600 seconds at the beginning of each general time unit.

We want to analyze system’s performance after it has

stabilized. Thus, we have removed the first two general time

units statistics from our analysis.

We have predefined 4 intervals and the corresponding 4

yi values, introduced during the HR LRU Policy placement

algorithm description. The intervals are: [0,0.2), [0.2,0.4),

[0.4,0.7), [0.7,1] and the values: 20%, 40%, 70%, 100%. We

wish to remind that yi values are measured in cache size

percentage points.

As we can see, yi values coincide with the interval upper

bounds values. We have decided to take a conservative ap-

proach in setting these values.

We have fixed the |prioFactor| value to be 5%, as we do

not want to move data significantly either to the head of the

queue or to its tail at once, but rather do so gradually during

each general time unit, while altering data’s priority after each

cache time slice.

The minPriority and the maxPriority values were set

to −30% and 30% respectively. We do not want to hand an

excessive weight to the priority in final position calculation,

because then we are in danger of leaving some data, that is

being accessed rarely, in the cache for too long. On the other

hand we want data, whose RT/DRT value is high, to improve

its response time.

Both the |prioFactor|, minPriority and maxPriority
values are measured in percentage points of the cache size.



✵
✷
✹
✻
✽

✶✵
✶✷
✶✹
✶✻
✶✽
✷✵
✷✷

� ✁ ✂ ✄ ☎ ✆ ✝ ✞✟✞✞✞✠✞�✞✁✞✂✞✄✞☎✞✆✞✝✠✟✠✞✠✠✠�✠✁

❘❡
s✡
♦♥
s❡
❚☛
♠
❡
✭♠
s☞

✌✍✎✏ ✥❤✑✉r✒✓

▲✔❯ ✔✕✖

❍✐✗✘

▼✙❞✐✚✛

✜✢✇

(a) LRU Response Times

✣
✤
✦
✧
★

✩✣
✩✤
✩✦
✩✧
✩★
✤✣
✤✤

✪ ✫ ✬ ✮ ✯ ✰ ✱ ✲✳✲✲✲✴✲✪✲✫✲✬✲✮✲✯✲✰✲✱✴✳✴✲✴✴✴✪✴✫

✸✺
✼✾
✿❀
✼✺
❁❂
❃
✺
❄❃
✼❅

❆❇❈❉ ❊❋●■❏❑◆

P❖◗❙ ❱❲❳ ❲❨❩

❬❭❪❫

❴❵❛❭❜❝

❢❣❥
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Fig. 1. This figure shows the response times comparison between the LRU
and Prio LRU cache management policies.

The response times throughout the simulations conducted

on the customer are shown in figure 1. Figure 1(a) shows

the response times achieved by the LRU management policy,

i.e. response times observed by the end of the simulation,

that does not take QoS requirements into consideration at the

cache level. Figure 1(b) shows the response times achieved by

the end of the other simulation, which ran with our Priority

LRU policy and thus did take the QoS requirements into

consideration for the cache management. We can observe that

overall our Priority LRU policy outperforms LRU policy. For

example we would like to highlight the two time slices that

are the most problematic in terms of response times achieved

by the high priority group LUs, these are the hours 11 and

13. During these times the LRU policy achieves an average

response times of 12.55 and 14.32 milliseconds respectively.

Our Priority LRU policy reduces the damage to the high

priority group data and achieves response times of 9.4 and 6.34

milliseconds for these time slices. From inspecting the figure

2(a) we can denote that the improvement gained during hour

11 can be partially referred to an increase of 4% in number

of I/Os satisfied in cache for the Priority LRU policy over

the LRU policy. As for hour 13, where there is no such gain

in number of cache satisfied I/Os, the improvement can be

addressed to the nature of data kept in cache by Priority LRU

policy. LRU policy does not try to keep in cache the data that

suffered a substantial damage, i.e. has a high RT/DRT value,

while the Priority LRU policy prioritizes such data. From this

we can conclude that the Priority LRU’s ability to leave in

cache data that suffered more damage enables us to gain an

improvement in response times even during periods, when the

policy does not hold an advantage in cache hits in comparison

to the LRU policy. Overall hour 13 can be emphasized, as

the one where our policy is able to substantially decrease

the response times of the LRU policy for the high and the

medium priority groups without damaging the performance

of the low priority group. During this hour the Priority LRU

achieves response times of 6.34, 13.29 and 2.06 milliseconds,

while the LRU policy achieves times of 14.32, 15.9 and 2.05

milliseconds for the high, medium and low priority groups.

Another interesting observation occurs during the times period

consisting of hours 17 and 18. From inspecting the figure 2(a)

once more we can see that there is a significant increase of

9.74% and 5.76% in cache satisfied I/Os respectively achieved

during the simulation ran with the Priority LRU policy in

comparison to the one ran with the LRU policy. Therefore, the

performance of the Priority LRU policy response times wise

is better than that of the LRU policy. During these hours our

Priority LRU obtains response times of 1ms and 0.34ms, while

the LRU policy only reaches the times of 2.77ms and 1.58ms.

The difference in time during hour 17 is more significant

as here the Priority LRU is able to stay below the desired

response time mark for the high priority group of 2ms while

the LRU policy is not.

For the medium priority group, we can notice that our

Priority LRU policy is able to reduce the damage suffered

by this group’s data, especially during a particularly harmful

periods where the response times are well above the desired

response time mark of 6 milliseconds. We can see this pattern

occurring throughout the whole simulation. For instance, dur-

ing a time window, which stretches from hour 10 to hour 13

inclusively, we can observe that the response times of 9.65,

8.75, 11.18 and 15.9 milliseconds achieved by the LRU policy

are bettered by our policy, with it achieving the times of 6.48,

7.4, 9.72 and 13.29ms. We can back this observation after

looking at figure 2(b), where during this time period we see a

consistent increase of around 2 to 9 percent in number of I/Os

being satisfied in cache with our Priority LRU policy over the

LRU policy. We can observe a similar behavior during hour

22, where our Priority LRU policy reduces the LRU policy’s

response time of 18.52ms to a less damaging 11.72ms.

As for the low priority group, even in this case the Priority

LRU policy manages to perform better than the LRU policy.

We can observe some significant damage reduction, e.g. we

can see that during hour 10 the response time achieved

by our Priority LRU policy is 16.22ms in comparison to

a response time of 20.98ms achieved by the LRU policy.

This improvement can be addressed to our cache priority

mechanism, which increases the priorities of some low priority

group’s data after making its damage assessments. We can

further strengthen this notion by looking at figure 2(c), where

there is a substantial increase of 15.17% in number of low

group I/Os satisfied in cache with Priority LRU policy in

comparison to the corresponding number with the LRU policy.

To conclude our analysis of this particular customer we want

to emphasize the fact that our Priority LRU policy achieves
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(b) Medium Priority Group
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(c) Low Priority Group

Fig. 2. This figure shows, for each priority group, the improvements gained
by Priority LRU policy over the LRU policy regarding the number of I/O
requests that were fulfilled in cache.

a significant improvements in both the high and medium

priority groups’ response times without compromising the

performance of the low priority group LUs. On the contrary,

it manages to outperform the LRU policy even in this aspect.

In table I we can observe the performance summary of

both the Priority LRU and the LRU policies for multiple

customers. As we can see, we have achieved a substantial

improvements in high priority group response times for all

customers. In addition, we can also notice the effect our Prio

LRU policy has had on meeting the QoS requirements for the

customers 1 and 2(the customer we have analyzed in detail),

i.e. obtaining response times better than the desired ones for

all priority groups, while the LRU policy has failed to do so.

This achievement was due to the improvements made in the

high and medium priority groups’ response times.

We can also conclude, by looking at the summary columns

④⑤⑥⑦⑧⑨⑩❶ ❷❸❹ ❺❶❻⑧❶❻⑦❼ ❷❸❹ ❽ ❾⑨❿❶⑧➀⑩⑨⑩➁⑦

④⑤⑥⑦⑧⑨⑩❶ ➂ ➃➄➅➆ 2.36 1.38 71.47% 

➇➈➉➄➊➋ 6.35 3.26 94.58% 

➌➍➎ 2.76 2.04 35.38% 

➏➍➐➑➒ 4.06 2.38 70.56% 

④⑤⑥⑦⑧⑨⑩❶ ➓ ➃➄➅➆ 2.59 2 29.39% 

➇➈➉➄➊➋ 6.65 5.57 19.45% 

➌➍➎ 6.77 6.35 6.57% 

➏➍➐➑➒ 5.08 4.32 17.63% 

④⑤⑥⑦⑧⑨⑩❶ ➔ ➃➄➅➆ 1.75 1.6 9.01% 

➇➈➉➄➊➋ 41.31 41.34 -0.06% 

➌➍➎ 38.5 38.43 0.17% 

➏➍➐➑➒ 35.08 35.04 0.11% 

④⑤⑥⑦⑧⑨⑩❶ → ➃➄➅➆ 3.09 2.49 24.10% 

➇➈➉➄➊➋ 11.1 10.95 1.33% 

➌➍➎ 10.04 10.02 0.18% 

➏➍➐➑➒ 9.59 9.44 1.64% 

TABLE I
THIS TABLE SHOWS THE SUMMARY OF RESPONSE TIMES (IN

MILLISECONDS) OVER ALL CUSTOMERS, COMPARING PRIO LRU AND

LRU POLICIES.

for the third customer, that our Prio LRU policy does not

always improve the overall system performance of the LRU

policy. In this case it happened because of the sheer number

of distinct I/Os in almost every general time unit throughout

the simulations, making the devices’ queues very large.

As a result of all these inspections, we can infer that Prio

LRU cache management policy achieves better results than the

widely-used LRU policy in both meeting the QoS requirements

and overall system performance.

V. BENEFITS OF A COMPLETELY QOS-OPTIMIZED SYSTEM

OVER THE REGULAR MECHANISM

In this section we will compare between a completely

optimized mechanism that we have presented in section IV

and the regular one, that is not QoS aware, presented as a

baseline for comparison in [13].

A. Experimental Evaluation

Here we would like to describe the experiments conducted

to evaluate the benefits of introducing the integrated priority

mechanism into the storage system. Our experiments are

designed to examine the same parameters as in section IV,

which are as follows:

• The improvement in each priority group’s response time.

• The overall improvement of the response time in the

system.

B. Comparison

As in section IV, we divided all the LUs into three priority

groups, each with its predefined desired response time. We are

comparing between two simulations. The first simulation took

the QoS considerations into account in both the back-end part

of the storage system and the cache, using the Prio LRU cache

management policy for this matter (the same as the second

simulation as in the previous section). The second simulation

ran without considering any QoS requirements whatsoever,
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Fig. 3. This figure summarizes the response times for each priority group
during the regular system simulation.

using a non-prioritized mechanism for the secondary storage

management and a plain LRU policy for the cache.

Our intent is to show a far greater improvements than those

achieved in section IV.

We are collecting the same kind of statistics as described

in the previous section.

C. Analysis

As mentioned before we ran our simulations over 4 real

customers trace data.

We would like to keep our emphasis on the same customer

as in section IV. We have chosen to do so in order underline

the continuous improvement from the previous section and

thus, build on our mechanism’s achievements made so far in

this paper. Hence, the system configurations and the simulation

parameters remain the same as in section IV.

The response times of the simulation ran on the non-

prioritized system are shown in figure 3 and the results of

our QoS-optimized system are the same as inspected during

the previous section and are shown in figure 1(b).

We will focus our analysis on the high priority group as

here there are the most dramatic differences between the two

mechanisms and in addition this group is of a great interest

to us QoS wise. In order to analyze the differences in high

priority group LUs performances we will concentrate on a

couple of time periods. The first one is the hours 12 through

to 14, where the simulation on the regular system shows the

most damage. We can see that the main reason for that is a

phenomenally high response time of 414.03ms during hour 13,

though the hours 12 and 14 produce response times of 4.53

and 3.7 milliseconds respectively, which is still above the DRT

mark of 2ms. Our integrated priority mechanism significantly

reduces this damage and achieves response times of 1.4, 6.34

and 0.18 milliseconds. This is a combined result of our front-

end and back-end optimizations. We can infer that from figures

4 and 5, where there is an increase of around 2.5 to 10 percent

in number of I/Os satisfied in cache and a substantial rise of

around 41 to 76 percent of I/Os serviced by the SSD devices

during this time period achieved by our priority mechanism.

An additional time window that we would like to take a look at

is the one which spreads from hour 16 to hour 18. There is not

so much damage suffered by the high priority group data, but
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Fig. 4. This figure shows the improvements gained by our integrated priority
mechanism over the regular one regarding the number of I/O requests that
were fulfilled in cache for the high priority group.

still we notice some important improvements that enable us to

meet the QoS requirements. The regular mechanism achieves

response times of 2.33, 2.72 and 1.94 milliseconds, while

simulation on QoS-optimized system shows response times

of 1.96, 1 and 0.34 milliseconds. Thus, our mechanism keeps

the high priority group response times under the DRT mark of

2ms throughout the whole period. Again, we can address these

improvements to a better cache utilization, as we manage to

increase the number of I/Os satisfied in cache by some 3.5

to 10 percent and to keeping more high priority data in SSD

drives, as we are able to service 18.5 to 31 percent more I/O

requests there. We can observe a similar result during the hour

21 as well, where we improve the average response time of

2.93ms to only some 0.05ms.

Despite all the QoS implied preferences we have given to

the high priority data both in cache placements and in back-

end devices assignments, because of its low desired response

time, our integrated priority mechanism is still able to utilize

our remaining resources in a better way as we improve the

performance of the medium and low priority groups’ LUs.

For the medium priority group we can see that the perfor-

mances are quite similar during both simulations apart from

two significant time slices. These are hours 13 and 22, where

the regular system sustains a substantial damage and records

response times of 20.18 and 21.96 milliseconds respectively.

The QoS-optimized system statistics show us a decrease in

these response times, achieving times of 13.29 and 11.72

milliseconds.

As for the low priority group, we would like to emphasize

the hour 15, where we can notice a response time of some

63.26ms achieved during the simulation ran on the regular

system. Our priority mechanism manages to better it, however,

and record an average response time of 4.19ms during this

hour, which is lower the low priority group’s DRT of 12ms.

Table II summarizes the improvements we obtain by apply-

ing our integrated priority mechanism on all the customers.

In this summary we are able to see that the response times

of the customers 1,2 and 4 are bettered significantly, with total

systems response times’ improvements ranging from 28.68 to

263.57 percent. In addition, we are able to reduce the average

response times of the high priority group for all the customers
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(b) QoS-optimized system

Fig. 5. This figure shows the distribution of I/O requests between different
back-end storage devices for the high priority group achieved in both the
regular and the QoS-optimized systems simulations.

❳❨❩t❬❭❪❫ ❴❪❵❛ ❜②❩t❪❭ ❞❬❜ ❢❣t❛ ❜②❩❛ ✐ ❥❭❣❫❬✈❪❭❪❦t

❳❨❩t❬❭❪❫ ❧ ♥♣q✇ 2.29 1.38 66.19% 

①③④♣⑤⑥ 6.12 3.26 87.42% 

⑦⑧⑨ 2.56 2.04 25.68% 

⑩⑧❶❷❸ 3.87 2.38 62.70% 

❳❨❩t❬❭❪❫ ❹ ♥♣q✇ 26.22 2 1210.39% 

①③④♣⑤⑥ 6.77 5.57 21.60% 

⑦⑧⑨ 13.64 6.35 114.67% 

⑩⑧❶❷❸ 15.71 4.32 263.57% 

❳❨❩t❬❭❪❫ ❺ ♥♣q✇ 1.75 1.6 9.33% 

①③④♣⑤⑥ 41.34 41.34 0.01% 

⑦⑧⑨ 38.42 38.43 -0.02% 

⑩⑧❶❷❸ 35.06 35.04 0.05% 

❳❨❩t❬❭❪❫ ❻ ♥♣q✇ 4.37 2.49 75.11% 

①③④♣⑤⑥ 14.35 10.95 31.07% 

⑦⑧⑨ 12.22 10.02 21.95% 

⑩⑧❶❷❸ 12.14 9.44 28.68% 

TABLE II
THIS TABLE SHOWS THE SUMMARY OF RESPONSE TIMES (IN

MILLISECONDS) OVER ALL CUSTOMERS, COMPARING QOS-OPTIMIZED

SYSTEM AND REGULAR SYSTEM PERFORMANCES.

by 9.33 to 1210.39 percent.

As for the third customer, there are still no major improve-

ments all due to the reasons explained in the previous section.

Additionally, an interesting observation can be made from

inspecting the first customer’s statistics. If it were for the back-

end optimization alone, we would have been unable to achieve

any sort of improvement for this customer. We can infer that

from comparing an appropriate part of the summary table from

the previous section to the regular system’s response times. But

when we combine this optimization with the front-end one

presented in this paper, we are able to achieve improvements

for every single priority group.

In conclusion, our examinations of the latter summary table

serve as an evidence to the importance of introducing an

integrated priority mechanism. Our QoS-optimized system

not only enhances the improvements made by our back-end

placement algorithm, but also achieves new ones, previously

unreachable.
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