
P-CLS: A Popularity-driven Caching Location and
Searching Scheme in Content Centric Networking

Yuemei Xu∗, Shuai Ma†, Yang Li‡, Fu Chen∗ and Song Ci§

∗ Department of Computer Science, Beijing Foreign Studies University, China
† Viterbi School of Engineering, University of Southern California, USA

‡ Institute of Information Engineering, Chinese Academy of Science, Beijing, China
§Department of Computer and Electronics Engineering, University of Nebraska-Lincoln, USA

Abstract—Content Centric Networking (CCN) is an emerging
next-generation network infrastructure around content dissemi-
nation and retrieval, shifting from physical locations to named
data. The built-in caching capacity of CCN, termed as in-network
caching, promises to enable fast and effective content distribution
at a global scale. Because of the in-network caching, the caching
strategy of content location potentially affects how to make
content searching decisions, while content searching in return
decides in which routers content are stored. The relationship
between content caching location and content searching has not
been fully exploited in CCN or further used for the whole
network performance improvement. This paper exploits the
content caching location and content searching mechanism of
CCN, and proposes a Popularity-driven content Caching Loca-
tion and Searching scheme (P-CLS) in CCN. P-CLS leverages
content access popularity to realize diverse content distribution
and reduce content caching redundancy, which also overcomes
the oscillation and frequent replacement phenomenon in the
existing content caching and searching (CLS) scheme. Extensive
simulations via hierarchical and arbitrary caching topologies
show that the proposed scheme outperforms the existing caching
algorithms.

I. INTRODUCTION

Millions of multimedia data (e.g., user-generated content,

Video-on-demand, HTTP web pages) are generated and shared

by content producers and consumers. This trend has been

posing high stress on network bandwidth and content stor-

age, resulting in network congestion and server overload. To

address these issues, Content Delivery Network (CDN) and

application-specific solutions like peer-to-peer (P2P) are pop-

ular. However, CDN may experience sub-optimal performance

due to the traffic engineering of Internet service provides

(ISPs) [1] and P2P systems incur a lot of inter-ISP traffic

and are unstable in terms of content availability and download

performance [2].

To overcome limitations of CDN and P2P, accelerate net-

work data delivery and reduce server load, Content Centric

Networking (CCN) has been proposed as a predominant next-

generation Internet architecture [3], which is funded upon the

∗This work is supported by the Fundamental Research Funds for the
Central Universities (No.023600-500110002), the National Natural Science
Foundation of China (No.61502038, No.61170209) and Program for New
Century Excellent Talents in University (No.NCET-13-0676).
Corresponding email: xuyuemei@bfsu.edu.cn.

idea that most users only focus on the accessing data, rather

than the physical locations from which the data are retrieved.

In-network caching, as an intrinsic component of CCN,

enables each router in CCN to equip a content store (CS) mod-

ule (we call these routers as C-routers for short), attempting to

maximize the probability of content sharing while satisfying

users’ requests as close to end-users as possible.

Due to In-network caching, two important issues

need to be addressed in CCN. First, C-routers become avail-

able containers to cache content for the purpose of satisfying

the subsequent requests. Thus we need to decide which C-

routers in the content delivery path should cache the content,

in order to maximize the utilization of CS while maintaining

the content diversity of network. That is what to cache, what

to replace and where to cache, and is defined as a content

caching location problem. Second, content replicas in C-

routers change with time, which is because when a C-router

needs to cache content but its CS is full, it will carry out

a content replacement strategy (e.g., LRU or LFU) to evict

content for the new coming one. Due to the high volatility

of content in CS, C-routers take efforts to find and select an

appropriate content replica location to forward requests. It is

known as content searching problem.

The content caching location and content searching prob-

lems have not been fully exploited in CCN and are usually

studied separately. On one hand, two research lines exist in

content caching location problem, namely on-path and off-

path content caching. For example, Leave Copy Everywhere

(LCE), Leave Copy Down (LCD) and Move Copy Down

(MCD) are all the on-path content caching strategies, where

content may be cached by any on-path cache or a subset

of traverse caches in its delivery path. In contrast, off-path

content caching often calculates the (near) optimal content

placement off-line. Off-path strategies can achieve better net-

work performance than on-path ones but at the cost of time

complexity. On the other hand, content searching in CCN

is usually implemented coordinately in a distributed manner,

relying on local cache management policies as well as the

relative position of caches in the network to achieve good

performance. As the Internet traffic grows dramatically, it is

still very challenging to forward user requests towards a “best”

(e.g. closest) available replica in CCN.

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

Recently, there is a tend to exploit the content caching

location and content searching problems tightly, suggesting

that content searching potentially decides request forwarding

path and in which C-routers content are stored, while content

caching location in return affects how to make content search-

ing decisions for forwarding requests appropriately. Among

these researches, Li et al. proposes an implicit coordinate

content location and searching scheme (CLS) and shows

promising potential in this research direction [4]. However,

CLS scheme is designed in a hierarchical caching topology,

but not the arbitrary caching topology of CCN, which will

lead to a oscillation and frequent replacement phenomenon

when applying it in CCN. The reason lies in that CLS makes

the content caching down or up decisions only considering

the current hitting event while ignoring the global content

popularity.

In this paper, we focus on the content caching location and

searching problem in an arbitrary caching topology of CCN,

and novelly propose a Popularity-driven content Caching Lo-

cation and Searching scheme (P-CLS). Researches [5], [6] re-

veal that content popularity is (by far) the most important fac-

tor affecting the network performance, compared with content

request distributions, content catalog size, cache replacement

strategies and etc. P-CLS distributes content towards end-users

considering content popularity as well as the content caching

location.

The main characteristics of P-CLS are summarized as

follows:

1) Popularity-based: Through incorporating the content

popularity factor into the content caching location and

searching decisions, P-CLS not only realizes to dis-

tribute content to these C-routers which request them

most frequently, but also prevents the oscillation and

frequent replacement phenomenon of CLS.

2) Content Diversity: In P-CLS, there is always one and

at most one copy of a content cached on the whole path

between a server and an edge C-router. Thus, P-CLS can

make more efficient cache utilization while guaranteeing

content diversity in the whole network.

3) Trail-based Searching: P-CLS creates a trail to store

the content caching history during the content cached up

and down. The trail and content popularity information

helps to find a “best” (e.g. closest) available replica

arbitrary caching topology of CCN.

The reminder of this paper is organized as follows. Section

II presents a survey of the related work and the background.

Section III describes the relevant problem analysis. Then

section IV presents the system model and section V describes

the proposed P-CLS scheme in detail. Section VI presents the

simulation results and conclusions are summarized in section

VII.

II. RELATED WORK AND BACKGROUND

In-network caching plays an important role in speeding

up content delivery, reducing network traffic and alleviating

server load, as it can cache the content passed by it and push

popular content to edge network closer to end-users. Recently,

a large body of researches focus on how to improve the

efficiency of in-network caching in CCN, such as exploring op-

timal replication strategy [7], [8], explicit cooperative caching

[9], [10], implicit cooperative caching [11]–[13], cache-aware

routing [14] and bandwidth and storage sharing mechanism

[15], [16]. All of these studies consistently reveal that content

caching location and content searching mechanism are the

essential parts of in-network caching, therefore need to be

sophisticatedly designed and deliberated.

A. Content Caching Location

An implicit and transparent approach towards content

caching location called Leave Copy Everywhere (LCE) [17]

is used in CCN by default. LCE places content copies at all

the intermediate C-routers from the hitting C-router to the re-

quested end-user. LCE can realize fast content delivery but will

lead to unnecessary content caching redundancy. LCD [2] and

MCD [2] are implicit coordinated content caching strategies

frequently used in Web caching systems or CDN, and have

been introduced to CCN. In LCD, the requested content hit at

l level will be pulled down to l-1 level. Simultaneously, the

l level node keeps the requested content. MCD is similar to

LCD and the only difference is that the l level node will delete

the requested content after it has been moved to l-1 level.

Studies [18] show that LCD works better than MCD as

it can cache one more copy on-path to serve clients from

other branches. Furthermore, LCD also outperforms LCE and

greatly reduces content caching redundancy [18], and thus is

used for comparison in our simulations.

B. Content Searching

Along the research line of content searching, a best-effort

approach called Breadcrumbs is proposed to use the content

caching location information to improve the efficiency of

content searching [19]. In Breadcrumbs, a trail for the purpose

of storing content forwarding history is created and maintained

at each router when the content is downloaded. Thus the

subsequent request for the same content may be routed towards

the nearest content copy directed by such a trail. Sourlas et

al. propose an intra-domain cache-aware content searching

scheme that computes the paths with minimum transportation

cost based on the information item demands and the caching

capacities of the network [14]. Chioccheti et al. compare two

CCN content searching strategies: a deterministic exploitation

of forwarding requests towards a “known” copy and a random

request flooding exploration towards an “unknown” copy [9].

Among these content searching strategies, Breadcrumbs is

superior as it can take a good balance between implementation

complexity and network improvement benefit.

Li et al. was the first one to exploit the content caching

location and content searching in a tight manner and proposed

a simple content caching location and searching scheme called

CLS [4]. The basic idea of CLS is that the hit content at level

l is pushed down to the l-1 level router towards the end-users,

and the evicted chunk at level l is pushed back to the l+1 level

cache. At the same time, the trail storing the chunk history is

set up during the content cached up and down, which can be

used to direct the following content search. More details about

CLS can be found in [4].

As we can see, CLS skillfully takes the advantages of LCD

and Breadcrumbs, trying to reduce content caching redundancy

and direct requests by historical trail information, therefore

can achieve a better network performance than LCE and LCD

strategies.

C. Content Popularity

Content popularity is considered as the most important

factor that affects the network performance [5], [6]. Bernardini

[20] et al. consider the high skewness of content popularity

and propose a caching strategy named Most Popular Content

(MPC). In MPC, every C-router counts the local number

of requests for each content and stores the pair information

(content name; popularity count). Although MPC outperforms

LCE, LRU and LFU strategies, it has undesirable features

of slow convergence of hitting rate and unstable hitting rate

performance for various cache sizes. In order to overcome

weak points of MPC, Mau et al. have proposed a Fine-

Grained Popularity-based caching (FGPC) strategy [6]. Li et

al. propose two popularity content caching algorithms, named

TopDown and AsympOpt from the perspective of optimization

[21]. They formulate the content caching problem and then

solve it to lead C-routers coordinately make online caching

decisions independently. Cho et al. consider the content pop-

ularity as well as inter-chunk relation and then propose a

popularity-based content caching strategy called WAVE [2].

An upstream node in WAVE recommends the number of

chunks to be cached at its downstream node based on the

content popularity.

All these studies show promising results by incorporating

content popularity into content caching decisions, but not re-

ferring to content searching. In this paper, we try to incorporate

it into the tight couple problem of content caching decision

and searching problem.

III. PROBLEM ANALYSIS

CLS shows a promising result in the direction of in-

vestigating content caching location and searching tightly.

However, CLS also has its own problems. Originally, CLS

is designed in a hierarchical network topology and will cause

undesirable oscillation and frequent replacement phenomenon-

s when applying it in the arbitrary caching topology of

CCN. Fig. 1 shows the difference between hierarchical and

arbitrary network topologies. The hierarchical caching network

topology is often deployed in CDN or Web caching systems. In

contrast, in-network caching in CCN makes caches ubiquitous,

therefore C-routers may cover the whole Internet scale and

are constructed in an arbitrary network topology. The fixed

parent-child relationship presented in hierarchical topologies

vanishes in CCN, which leads to the oscillation and frequent

replacement phenomenon.

Fig. 1. Hierarchical and Arbitrary Caching Topologies.

A. Oscillation Phenomenon

Fig. 2 shows an example of oscillation phenomenon of CLS.

A network consists of 2 servers and 3 routers. Server 1 is

the original source for content B and G, and server 2 is for

content R. For simplicity, we assume that all the 3 content

have the same unified size and all routers have cache size of

one content. In this case, the content caching location and the

trail information are shown in Fig. 2.

Fig. 2. An Example of Oscillation Phenomenon of CLS.

Now there is a cache hit at C-router 1, causing content B

to be sent down to C-router 2. Then C-router 2 has to evict

content R to make room for content B. In an hierarchical

topology, the content B and R would just change places. But in

this case, the evicted content R is sent up towards its content

server, which is Server 2. Next, content G in C-router 3 is

evicted to make room for content R, and content G is sent

down to C-router 2. Content G will be cached in C-router 2,

evicting the content B, which will be sent up to C-router 1

once more. As such, there has not 2 but 6 cache changes,

and the state of content B, the one requested originally, is

not changed after all swaps take place. As the function of the

network topology, the number of such cache content changes

may grow indefinitely, which is defined as the “Oscillation

Phenomenon”.

B. Frequent Replacement Phenomenon

CLS proposes to push the evicted content at level l back

to the l+1 level cache in any situation, which may lead to

Fig. 3. An Example of Frequent Replacement Phenomenon of CLS.

a frequent replacement phenomenon. Fig. 3 depicts a path

between a server and an edge C-router and shows an example

of frequent replacement phenomenon.

When a content is evicted from C-router i at level i due to

replacement (i.e., LRU algorithm), CLS forces to cache it at

level i+1. If cache space of C-router i+1 is full, it will kick

out another content and send it up to C-router i+2. If all the C-

routers on the way to content server have full cache space, the

content replacement and eviction will continue until arriving

at content server. One eviction leads to continuous content

replacement, which is defined as the “Frequent Replacement

phenomenon”.

IV. SYSTEM MODEL

We consider an arbitrary network topology G = (V,E)
consisting of a set of N routers and a set of bidirectional links

between these C-routers. C-router i (i = 1, ..., N) equipped

with a CS module will cache the chunks of files and make

content searching by exploiting in-network caching.

Each resource in the network is divided into small chunks∗

and an end-user requests the resource in the unit of chunk.

For example, a resource that consists of 10 chunks will be

requested by sending out 10 chunk requests from end-users.

Also, each chunk is associated with an individual name (e.g.,

chunk-based naming [7]) and can be identified by C-routers.

The chunk popularity varies across different domains and even

the chunks of the same resource have different popularity: the

forepart of a resource is requested more frequently, especially

in video steaming.

In order to realize the chunk-level popularity-based content

caching and searching, P-CLS creates a Chunk-popularity

Table at each C-router to keep 3-tuple information pairs

(ChunkName; PopularityCount; TimeStamp), indexed by a

global chunk ID, the number of chunk counter and the time

stamp when receiving a chunk from upstream or delivering

it downstream. The overhead of Chunk-popularity Table has

also been considered and can be greatly alleviated by adopting

algorithms such as the message-digest (MD5) Hash algorithm

[6]. Experiments [20] show that if a MD5 Hash value used

4 Bytes (i.e., 1B for ChunkName 2B for PopularityCount

and 1B for TimeStamp), a C-router would need an additional

19.0735MB for containing one million chunks in the Chunk-

popularity Table. This can be supported by the current network

device techniques.

In content caching, collaborations among C-routers are

required, in order to reduce chunk placement redundancy and

∗We use chunk and content interchangeably in this paper.

avoid all C-routers caching the same set of chunks. In P-CLS,

a C-router suggests caching a chunk downstream or evicting a

chunk upstream by making the chunk with a cache suggestion

Flag CSF. Such a Flag can be included in the Data packet

header in CCN [7]. The value of CSF is set to 1 when a chunk

is hit and modified to 0 after it is cached. When a chunk is

evicted, the value of CSF is set to 2.

In content searching, traditionally a chunk request will be

routed towards its original server. If the chunk request can

not be satisfied by any C-router along the path, it will be

forwarded towards the server. In P-CLS, if a C-router can

not satisfy the chunk request, before sending it towards the

server the C-router will try a downstream retrieval based on

the caching history trail, helping to satisfy the request at a

nearby C-router. The caching history Trail will be explained

in next section.

V. POPULARITY-DRIVEN P-CLS SCHEME

P-CLS scheme solves the tightly couple problem of content

caching and searching in CCN through Chunk-popularity

Table and caching history Trail.

Fig. 4. Operations of a C-router in P-CLS when Receiving a Chunk.

A. Content Caching Operations

P-CLS dynamically makes the two main decisions of con-

tent caching: where to cache and what to replace based on

chunk popularity.

1) Where to cache: A chunk can be cached by any C-

router along the path between the hit node (the server or a

C-router having the requested chunk) and the edge C-router.

P-CLS guarantees there is at most one copy cached along

its delivery path and dynamically adjusts the chunk caching

location depending on the chunk popularity.

Let Pik be the PopularityCount parameter of chunk k at

C-router i. A hit chunk k at C-router i will be pulled down to

downstream C-router i−1 in two cases: (a) There is available

cache space at C-router i−1 (regardless of chunk popularity);

(b) Otherwise, P(i−1)k>P(i−1)k′

min
exits, where k′

min
is the

chunk that has the minimum PopularityCount value at C-router

i− 1.

P-CLS requires CCN Interest packet header to include a

popularity comparison Flag PCF field. Every C-router refresh-

es the Flag PCF field of an unsatisfied Interest to indicate

the next-hop C-router the popularity comparison relationship

between the requested chunk k and the local least popular

chunk k′
min

. If P(i−1)k>P(i−1)k′

min
, Flag PCF is set to be 1,

otherwise 0. If the chunk request is hit at C-router i, the Flag

PCF field will be extracted. If PCF= 1, C-router i marks C-

router i− 1 to cache the hit chunk (i.e., sets cache suggestion

Flag CSF to 1) and deletes the hit chunk from its local CS.

Note that Flag CSF will be reset to 0 at C-router i − 1 to

prevent the additional caching at downstream C-routers.

P-CLS guarantees that a chunk will not be pulled down to

a C-router if its PopularityCount is less than the minimum

one of the cached chunks. It is straightforward that C-routers

would not want to cache a chunk at the cost of evicting a more

popular one.

2) What to replace: When C-router i− 1 receives a chunk

k from upstream and its cache suggestion Flag CSF is 1, C-

router i − 1 will cache it directly if there is available space

in CS; otherwise the chunk replacement will be carried out.

In latter case, the chunk k′
min

with the minimum value of

PopularityCount in the cached chunks will be evicted. The

evicted chunk k′
min

with its Flag CSF set to 2 will be pushed

back up by one hop.

Upon receiving an evicted chunk with CSF= 2, two cases

exist in a C-router, which are shown in Fig. 5. Suppose that

Fig. 5(a) is a random state of chunk caching and trails creation.

Then an Interest for chunk G is sent from CR4 and hit at CR2.

Depending on the Where to cache operations, CR4 decides to

cache chunk G, has to evict chunk B and pushes it back up

to CR2. Two cases of chunk replacement exist: (1) There is

available space to cache chunk B at CR2, shown in Fig. 5(b).

In this case, it is equivalent to simply swap the positions of

chunk G and B. (2) The available space in CR2 because of

pulling down chunk G has been occupied by a new coming

chunk R, as shown in Fig. 5(c). Therefore, the arrival of

chunk B may cause another chunk replacement. In this case,

whether to replace chunk R for the new coming B depends

on their PopularityCount values. The one which has larger

PopularityCount value can be survived in the replacement

operations. Fig. 4 describes the operations of a C-router in

P-CLS when receiving a chunk.

B. Content Searching Operations

The content searching is based on the caching history trails

created at C-routers along the chunk delivery path. Each trail

is a 4-tuple entry (ID, in, out, h), including the information:

(1) ID: a global unique chunk ID; (2) in: the Face of incoming

C-router from which the chunk arrived; (3) out: the Face(s) of

outgoing C-routers to which the chunk has been sent; (4) h:

the number of hops from the server to this C-router.
The key difference of trails between P-CLS and CLS is

that P-CLS trail considers arbitrary network topology and thus

there may be multiple servers in the network. When the chunk

arrives from a server, the value of in is not null as that in

CLS but is the Face of the server. For example, C-router CR1

connects to two servers and gets two chunk named B and R

from server 1 and server 2, respectively. The trails created

in P-CLS should be (B,Server1,null,1) and (R,Server2,null,1)

but not as (B,null,null,1) and (R,null,null,1) in CLS. Explicit

indication of chunk server in trails can avoid incorrect chunk

being pulled back in chunk replacement operations.
The detailed content searching algorithm is shown in Alg. 1.

C-routers will first check their CS and the Pending Interest

Table (PIT) before using trails information to implement chunk

retrieval. The lines 9-14 in Alg. 1 depict the generation of Flag

PCT used for where to cache operation.

Algorithm 1 Chunk Searching Algorithm

1: INPUT: Receive an Interest for chunk k.

2: OUTPUT: Make request forwarding decision.

3: if CS has not stored chunk k then

4: Check the PIT;

5: if PIT has a pending request for chunk k then

6: Add the Interest arriving Face to the PIT record;

7: Stop request forwarding.

8: else

9: Find the local least popular chunk k′
min

;

10: if PopularityCount of k′
min

is smaller than that of k
then

11: Set PCF= 1 in the Interest packet header.

12: else

13: Set Flag PCF= 0.

14: end if

15: Check the trails.

16: if A trail fits chunk k && its h > Hth then

17: Forward the Interest to a Face of out parameter.

18: else

19: Forward the Interest to the direction of server.

20: end if

21: end if

22: end if

VI. PERFORMANCE EVALUATION

In this section, we evaluate the proposed P-CLS scheme

and compare it with existing LCE, LCD and CLS strategies

as described in section 2. First, experimental evaluation is

performed in a Java-built simulation environment for CCN.

Second, a case study is given to illustrate how can P-CLS

alleviate the oscillation and frequent replacement phenomenon

of CLS.

A. Experimental Evaluation

The simulated topologies include arbitrary and hierarchial

network topologies. All C-routers are equipped with CS mod-

Fig. 5. An Example of What to Replace in P-CLS.

ules and the total size of these CSs is ranged from 10% to 50%
of the whole content. C-routers are assigned with equal cache

size for convenience. We consider 10000 resources and each

resource is partitioned into chunks of unit size. Simulation

launches 50000 request events following the Zipf distribution

with a typical exponent α = 0.3 and α = 0.9. The bigger

α indicates that few distinct content attract the majority of

the requests while the smaller one indicates almost uniform

content popularity.

Three metrics are used for performance evaluation, namely

average cache hit ratio, path stretch and number of evictions

caused by oscillation and frequent replacement phenomenon.

We also exploit the impact of content popularity, cache size

of CSs and network topology factors on the network perfor-

mance.

Average Cache Hit Ratio: Fig. 6(a) and Fig. 6(c) depict the

average hit ratio of requests curved as function of cache size

for different caching schemes. The average hit ratio is defined

as the ratio of the number of requests served by the C-router

to the total number of requests arrived at the C-router.

• Average Cache Hit Ratio vs. Total Cache Size. With total

cache size increases, the performance of average cache hit

ratio becomes better. It is reasonable. More cache size of

C-router can store more content, and thus preferentially

requests can be satisfied by C-routers rather than the

content server. The improvement of average cache hit

ratio in CLS and P-CLS is not so obvious as that in LCE

and LCD. The reason lies in that CLS and P-CLS take

efforts to improve the content diversity of network. When

cache size increases from 20% to 50%, the new coming

content in CLS and P-CLS are those less popular content,

which take limited impact on the network performance.

As the total cache size increases from 30% to 50%, the

performance of CLS is worse than LCD. The reason is

related to the impact of network topology factor, which

will be discussed later.

• Average Cache Hit Ratio vs. Content Popularity. Fig. 6(a)

and Fig. 6(c) show the average hit ratio of requests in two

types of content popularity (α = 0.3 and α = 0.9). All

the evaluating schemes consistently perform better with a

bigger α parameter. When α parameter increases from 0.3
to 0.9, the request arrival becomes more centralized, and

thus C-routers can satisfy more requests with the same

cache size.

P-CLS improves the average cache hit ratio over other

schemes. This is not surprising because P-CLS can achieve

content retrieval through chunk history trail and always caches

the most popular chunk in C-routers.

Path Stretch: Fig. 6(b) and Fig. 6(d) depict the performance

of path stretch. The path stretch is defined as d/|P |, where

d is the number of hops that the data chunk has actually

traveled, and |P | is the path length from the requested user

to the corresponding content server. Note that d = 0 when

the content is cached at the edge access router and d = |P |
when the content is fetched from the content server, therefore

d/|P | ∈ [0, 1]. A lower path stretch means less content

download latency.

• Path Stretch vs. Total Cache Size. The impact of total

cache size on the metric of path stretch is much better

than that of average cache hit ratio. With total cache size

increasing from 10% to 50%, the improvement of path

stretch in P-CLS and CLS is not so obvious, especially

in decentralized request arrival (i.e. α = 0.3). When the

total cache size is large enough (i.e. 50%) and the request

arrival is relatively decentralized (i.e. α = 0.3), CLS and

P-CLS that keep at most one copy of content at their

delivery path are not so effective in this case. With cache

size large enough, LCE and LCD strategies can also cache

the almost popular content as these content are frequently

requested by end-users, and thus can also achieve a good

performance. In practice, C-routers can rarely hold 50%
of the whole Internet content.

• Path Stretch vs. Content Popularity. Fig. 6(b) and

Fig. 6(d) show the performance of path stretch in two

types of content popularity (α = 0.3 and α = 0.9). The

benefit of P-CLS in path stretch metric becomes more

significant with α increasing. This implies that the more

centralized the content popularity is, the more worthy

performing the popularity-based chunk caching is.

Number of Evictions: Here we focus on the number of

evictions that are caused by caching a new chunk at each

C-router. Fig. 7 shows the performance comparison of the

number of evictions between CLS and P-CLS. Because P-CLS

always chooses to cache the more popular content in C-routers,

it can reduce considerable number of unnecessary evictions.

For example, P-CLS greatly reduces the number of evictions

by 32% on average compared with CLS. It can also be seen

that the number of evictions in P-CLS becomes smaller with

α increasing from 0.3 to 0.9, but this rule can not found in

CLS. This is because that CLS carries out chunk caching and

evicting with LRU algorithm, without considering the content

popularity factor.

10% 20% 30% 40% 50%
0

5000

10000

15000

20000

25000

30000 Number of Request=50000
Arbitrary Caching Topology, N=96

N
um

be
r o

f E
vi

ct
io

ns
 C

au
se

d
by

 O
sc

ill
at

io
n

Total Cache Size (of the Content)

 CLS()
 P-CLS()
 CLS()
 P-CLS()

0 2 4 6 8 10

Fig. 7. Performance Comparison of Number of Evictions between CLS and
P-CLS in Arbitrary Caching Topology (N=96).

Network Topology: Experiment results in Fig. 6 indicate

that the performance of CLS is worse than LCD especially

in large cache size. This conclusion is not consistent with

related work [4], and the reason lies in the impact of network

topology. Fig. 8 shows the average cache hit ratio comparisons

in a hierarchical caching topology as that in [4]. It can

be seen that CLS performs better than LCD in hierarchical

caching topology regardless of cache size and content popu-

larity factors. This is because that CLS is designed typically

in hierarchical topologies and thus performs not so well in

arbitrary network topologies. In a hierarchical topology, P-

CLS is superior than CLS especially when the request arrival

is more centralized (i.e., α = 0.9).

B. A Case Study and Discussion

Here we use a case study to illustrate how P-CLS can

alleviate the oscillation phenomenon, an example of which

has been shown in Fig. 2.

Suppose that the Chunk-popularity Table of C-router 2 is (B,

20, tB ; R, 30, tR; G, 10, tG;). C-router 2 receives a request for

chunk B and can not satisfy it, therefore sends it to C-router

10% 20% 30% 40% 50%

0.2

0.3

0.4

Hierarchical Caching Topology, N=7

A
ve

ra
ge

 C
ac

he
 H

it
R

at
io

Total Cache Size (of the Content)

 LCD()
 CLS()
 P-CLS()
 LCD()
 CLS()
 P-CLS()

Fig. 8. Performance Comparison of Average Cache Hit Ratio between CLS
and P-CLS in Hierarchical Caching Topology (N=7).

1 with the popularity comparison Flag PCF= 0. The request

is hit in C-router 1. Because of PCF= 0, C-router 1 will not

delete chunk B in local CS, but updates its chunk-popularity

information and sends it downstream, marking C-router 2 not

to cache it by setting the cache suggestion Flag CSF= 0. In

this case, a cache hit in P-CLS does not cause 6 cache changes

as that in CLS. Besides, a similar case study can also be given

to show how can P-CLS alleviate the frequent replacement

phenomenon of CLS by incorporating the Chunk-popularity

Table into chunk placement and eviction.

P-CLS attempts to distribute content towards their (near)

optimal positions by considering content popularity as well as

the past content caching history trail. Sometimes an eviction

will also cause several cache changes in P-CLS. Such cache

changes are worthy as they are seeking an optimal chunk

placement and will lead to whole network improvement.

VII. CONCLUSION

This paper focuses on the tightly couple problem of con-

tent caching location and searching in CCN and proposes

a popularity-driven content caching location and searching

scheme, called P-CLS. P-CLS is designed in the arbitrary

caching topology of CCN and works effectively to overcome

the oscillation and frequent replacement phenomenon in CLS.

Extensive simulations show that P-CLS is superior than the

existing caching algorithms.

Our research also summarizes the following conclusions:

(1) Total cache size, content popularity and network topology

will affect the caching algorithms and the impact of content

popularity is the most significant. The more centralized the

request arrival is, the more benefit P-CLS can bring. (2) With

the total cache size increasing, performance of all the caching

algorithm improves, but potential of P-CLS decreases. (3)

CLS is typically suit for hierarchial caching topologies and

performs not so well in arbitrary topologies.

10% 20% 30% 40% 50%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Zipf Distribution
Arbitrary Caching Topology, N=96

A
ve

ra
ge

 C
ac

he
 H

it
R

at
io

Total Cache Size (of the Content)

 LCE
 LCD
 CLS
 P-CLS

(a) Cache Hit Ratio vs. Total Cache Size (α = 0.3).

10% 20% 30% 40% 50%
0.6

0.7

0.8

0.9

Zipf Distribution
Arbitrary Caching Topology, N=96

A
ve

ra
ge

 P
at

h
S

tre
tc

h

Total Cache Size (of the Content)

 LCE
 LCD
 CLS
 P-CLS

(b) Path Stretch vs. Total Cache Size (α = 0.3).

10% 20% 30% 40% 50%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Zipf Distribution
Arbitrary Caching Topology, N=96

A
ve

ra
ge

 C
ac

he
 H

it
R

at
io

Total Cache Size (of the Content)

 LCE
 LCD
 CLS
 P-CLS

(c) Cache Hit Ratio vs. Total Cache Size (α = 0.9).

10% 20% 30% 40% 50%
0.6

0.7

0.8

0.9

Zipf Distribution
Arbitrary Caching Topology, N=96

A
ve

ra
ge

 P
at

h
S

tre
tc

h

Total Cache Size (of the Content)

 LCE
 LCD
 CLS
 P-CLS

(d) Path Stretch vs. Total Cache Size (α = 0.9).

Fig. 6. Performance Comparisons between Different Caching Algorithms as a function of Total Cache Size (α = 0.3 and α = 0.9).

REFERENCES

[1] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative
content distribution and traffic engineering in an isp network,” pp. 1200–
1206, 2009.

[2] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in IEEE INFOCOM WKSHPS, 2012, pp. 316–321.

[3] Cisco, “Cisco visual networking index: Forecast and methodology:
2011-2015,” White Paper, 2012.

[4] Y. Li, T. Lin, H. Tang, and P. Sun, “A chunk caching location and
searching scheme in content centric networking,” in ICC. IEEE, 2012,
pp. 2655–2659.

[5] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[6] D. Mau, M. Chen, T. Taleb, X. Wang, and V. Leung, “Fgpc: Fine-
grained popularity-based caching design for content centric networking,”
pp. 295–302, 2014.

[7] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” in ACM CoNEXT, 2009.

[8] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed internet
replica placement,” Computer Communications, vol. 25, no. 4, pp. 384–
392, 2002.

[9] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in IEEE INFOCOM, 2010.

[10] X. Tang and S. T. Chanson, “Coordinated en-route web caching,” vol. 51,
no. 6, pp. 595–607, 2002.

[11] Y. Xu, Y. Li, T. Lin, G. Zhang, Z. Wang, and S. Ci, “A dominating-
set-based collaborative caching with request routing in content centric
networking,” in IEEE ICC, 2013.

[12] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[13] T. Bektaş, J.-F. Cordeau, E. Erkut, and G. Laporte, “Exact algorithms
for the joint object placement and request routing problem in content
distribution networks,” Computers & Operations Research, vol. 35,
no. 12, pp. 3860–3884, 2008.

[14] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical caching
with dynamic request routing for massive content distribution,” in IEEE

INFOCOM, 2012, pp. 2444–2452.
[15] A. Iosup, P. Garbacki, J. Pouwelse, and D. Epema, “Multiprobe project,”

URL: http://multiprobe.ewi.tudelft.nl, 2013.
[16] “Maxmind geoip database,” URL: http://www.maxmind.com, 2013.
[17] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evaluation of

memory management in content-centric networking,” in IEEE ICC,
2011, pp. 1–6.

[18] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino,
“Exploit the known or explore the unknown?: hamlet-like doubts in
ICN,” in ACM ICN, 2012, pp. 7–12.

[19] E. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort con-
tent location in cache networks,” pp. 91–100, 2009.

[20] C. Bernardini, T. Silverston, and O. Festor, “Mpc: Popularity-based
caching strategy for content centric networks,” pp. 2212–2216, 2013.

[21] J. Li, H. Wu, B. Liu, X. Wang, Y. Zhang, and L. Dong, “Popularity-
driven coordinated caching in named data networking,” pp. 200–211,
2012.

