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Abstract—In this paper, we study capacity scaling laws of the
deterministic dissemination (DD) in random wireless networks
under the generalized physical model (GphyM). This is truly not
a new topic. Our motivation to readdress this issue is two-fold:
Firstly, we aim to propose a more general result to unify the
network capacity for general homogeneous random models by
investigating the impacts of different parameters of the system
on the network capacity. Secondly, we target to close the open
gaps between the upper and the lower bounds on the network
capacity in the literature. We derive the general upper bounds on
the capacity for the arbitrary case of (�, ��, ��) by introducing
the Poisson Boolean model of continuum percolation, where �, ��,
and �� are the general node density, the number of destinations
for each session, and the number of sessions, respectively. We
prove that the derived upper bounds are tight according to the
existing general lower bounds constructed in the literature.

Index Terms—Network Capacity, Scaling Laws, Deterministic
Dissemination, Random Wireless Networks, Percolation Theory

I. INTRODUCTION

This work falls within the scope of the issue of capacity

scaling laws for wireless networks, initiated by Gupta and

Kumar [1], i.e., the scaling of network performance in the limit

when the network gets large, [2]. The main advantage of study-

ing scaling laws is to highlight qualitative and architectural

properties of the system without considering too many details

[1], [2]. The network capacity depends directly on the type

of traffic sessions of interest. Generally, the traffic sessions in

wireless networks can be classified into two broad types: data

dissemination, where a session has only one source, and data

gathering, where a session intends to transmit data from its

multiple sources to a relatively small number of destinations;

on the other hand, according to the property of destination

selection schemes, they can also be divided into the following

two types: deterministic session, where the selection of desti-

nation(s) is determined beforehand, and opportunistic session,

where the destination(s) are/is opportunistically chosen during

the transmitting procedure. Based on those classifications, the

typical session patterns can be located as shown in Table. I.

In this work, we focus on dissemination sessions that can be

usually represented by a triple dimensional vector (�, ��, ��)

with 1 ≤ �� ≤ �� ≤ � − 1. These parameters are defined

by the following: The node set of network, say � := �(�),
comprises � nodes; the cardinality of source set � ⊆ � is

∣�∣ = ��; during the process of dissemination with source

�� ∈ � , �� nodes are randomly chosen to compose a candidate

set, denoted by ��, and the session is completed when data are

transmitted to a subset �� ⊆ ��, called destination set, where

∣��∣ = �� ≤ ��. Obviously, when �� ≡ ��, the dissemination

is specified into a deterministic dissemination, i.e., the so-

called general multicast session. Please see the illustration in

Fig.1.
The purpose of this paper is to investigate the capacity

of wireless networks where �� : (1, �]1 general multicast

sessions, denoted by (�, ��, ��) with ��:[1, �], run simultane-

ously. In the research of networking-theoretic capacity scaling

laws [2], the unicast and broadcast sessions can be usually

regarded as two special cases of general multicast sessions

according to the number of destinations for each session.

Usually, any proposed multicast capacity could be specialized

into the unicast and broadcast capacities by letting �� = 1
and �� = �, respectively. This principle often applies in the

literatures [3]–[8].
Most of the existing results differ from each other due to

the diversity of adopted analytical models and assumptions.

Besides session patterns introduced above, there are two

typical models in terms of scaling patterns that are adopted

in the literature: random extended network (REN), where

the node density is fixed to a constant [5], [7], [9]–[11],

and random dense network (RDN), where the node density

increases linearly with the number of nodes [1], [4], [12]–

[14]. In [13], Shakkottai et al. derived the multicast capacity

of RDN for a specific case that �� = �� and �� ⋅ �� = Θ(�),
where � ∈ (0, 1]. They showed that such per-session multicast

capacity under the protocol model is at most of �( 1√
�� log�

).
To achieve the upper bound, they proposed a simple and novel

routing architecture, called the multicast comb, to transfer

1We use the term �(�) : [�1(�), �2(�)] to represent �(�) = Ω(�1(�))
and �(�) = �(�2(�)); and use �(�) : (�1(�), �2(�)) to represent �(�) =
�(�1(�)) and �(�) = �(�2(�)).
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multicast data in the network. A more general result, in

terms of �� and ��, was proposed by Li et al. in [3].

They showed that when �� = Ω(log �� ⋅
√

� log �/��), the

per-session multicast capacity for RDN under the protocol

model is of Θ( 1
��

√

�
�� log� ) if �� = �( �

log� ), and is of

Θ(1/��) if �� = Ω(�/log �). After that, Keshavarz-Haddad

et al. [4] derived the multicast capacity for RDN under the

generalized physical model [15] by designing new multicast

schemes and computing the upper bounds. A gap remains

open between the upper and the lower bounds in the regime

�� : [�/(log �)3, �/ log �]. For multicast capacity of REN

under the generalized physical model, Li et al. [5] derived

a lower bound as Ω(
√
�

��
√
��
) for the case that �� = Ω(�1/2+�)

and �� = �(�/(log �)2�+6). Recently, Wang et al. [7]

devised the specific multicast schemes and derived the multi-

cast throughput for all cases ��:(1, �] and ��:[1, �]. Under

the assumption that �� = Θ(�), their lower bounds are

specialized into those in Equation (4). They also derived an

upper bound for the case that �� = Θ(�), as in Equation

(5). An obvious gap exists between the upper and the lower

bounds in the regime ��:[�/(log �)�+1, �/ log �]. To the best

of our knowledge, this is the latest results on general multicast

capacity for static REN without considering the impacts of

node mobility [6], [16] or advanced physical communication

technology [17]–[19].

Closing the remaining gaps is one of the motivations of this

paper.

Both REN and RDN are extreme cases for a random

network consisting of � nodes in terms of the node density

�. So the characterization of two particular models does not

suffice to develop a comprehensive understanding of wireless

networks, although they are representative models to some

extent, [2]. Hence, in this paper, we comprehensively consider

the network with a general node density � : [1, �], rather than

only the cases � = 1 (REN) and � = � (RDN), which can

offer complete and deep insights about the scaling laws for

wireless networks. Unearthing the nature of general scaling is

another motivation of this work.

In conclusion, we aim to examine the capacity scaling

laws of general wireless networks, where the generality lies

in three aspects: (1) a general node density, �:[1, �]; (2)

a general number of receivers, �� : [1, �]; (3) a general

number of sessions, ��:(1, �]. For such general multicast

capacity of general wireless networks, we have computed the

lower bounds under the generalized physical model in [20].

More specifically, we build routing backbones of two levels:

highways and arterial roads. Furthermore, arterial roads (ARs)

have two subclasses, i.e., ordinary arterial roads (O-ARs) and

parallel arterial roads (P-ARs). Note that the highways are the

same as those in [4], [5], [7], [9], but the ARs are different

from the second-class highways (SHs) in [7]. Recall that in

the SH system of [7], there are two types of SHs: odd SHs and

even SHs. The bottleneck of the whole routing could happen

in the switching phase between the odd and even SHs. There

is no such a bottleneck in the current AR system, which can

TABLE I: Typical Session Patterns

Deterministic Session Opportunistic Session

Dissemination
/Single-
Source

Unicast Anycast

Broadcast ⋅ ⋅ ⋅

Multicast Manycast

Gathering
/Multiple-
Sources

Data Collection Undefined

⋅ ⋅ ⋅ (to the best of

ConvergeCast (Many-to-One) our knowledge)

improve the multicast throughput for some regimes of �� and

��. Based on the highways, O-ARs and P-ARs, we design

four routing schemes. By exploiting the theory of maximum

occupancy, we derive the optimal multicast throughput and

scheme according to different ranges of �, ��, and ��.

Major contributions of this paper can be summarized as

follows:

⊳ For deriving the upper bounds on multicast capacity, we

introduce the Poisson Boolean model of continuum percolation

[21] (not Poisson bond percolation model [9]), which, to the

best of our knowledge, is not used in previous studies on upper

bounds of network capacity. Based on the argument of giant

cluster (component) in the Poisson boolean percolation model,

we can divide the communications under any multicast routing

scheme into two parts, i.e., communications inside and outside

the giant component. Obviously, the network throughput must

be determined by the bottleneck of two parts. We give a

general formula to compute upper bounds on the capacity.

⊳ For the case that �� = Θ(�) and � = � (or � = 1), i.e.,

RDN and REN, due to the limitations of adopted analytical

methods, the previous works [4], [7] have not derived the tight

bounds on multicast capacity under the generalized physical

model. By applying our general results to these special cases,

we close those gaps.

The rest of the paper is organized as follows. The system

model is formulated in Section II. In Section III, we present

and discuss the main results. We make preparations for the

analysis of network capacity in Section IV, and discuss

the features of network topology under the feasible routing

schemes in Section V. Based on these results, we finally derive

the upper bounds on the capacity in Section VI. We draw some

conclusions in Section VII.

II. SYSTEM MODEL

A. Random Scaling Model

We construct a random network with node density �,

denoted by � (�, �), by placing wireless nodes randomly into

a square region ℛ(�, �) = [0,
√

�]2 according to a Poisson

point process with density �, where � = �/�. When �
is set to be 1 (or �), our model corresponds to random

extended network (REN) (or random dense network (RDN)),

[2]. According to Chebyshev’s inequality, we get that the

number of nodes in �(�2) is within ((1− �)�, (1+ �)�) with

high probability, where � > 0 is an arbitrarily small constant,

[22]. To simplify the description, we assume that the number

of nodes is exactly �, without changing our results in the
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Fig. 1: General Dissemination Sessions. Here, � is the size

of the specified group for a source, where 1 ≤ � ≤ � − 1;

� is the number of intended destinations of the source, where

1 ≤ � ≤ �.

sense of order, [7], [9], [10]. We are mainly concerned with

the events that occur inside these squares with high probability

(w.h.p.); that is, with probability approaching one as � →∞.

B. System Model

In wireless networks, there are two broad types of session

patterns: information dissemination [23] and information gath-

ering [22]. The former is the interest of this paper. Generally,

dissemination sessions can be further divided into two cate-

gories: deterministic dissemination, in which the destination(s)

of a message is (are) determined when it is generated at a

source, such as unicast [24], broadcast [25], and multicast

[26], and opportunistic dissemination, such as anycast [27],

[28], and manycast [29] sessions, in which the destination(s)

of a message is (are) opportunistically chosen and both the

paths to the group member(s) and the destination(s) can change

dynamically according to the network condition, such as the

node movement situation.

In this work, we focus on the general multicast sessions,

including unicast, broadcast and multicast sessions. We adopt

a similar construction procedure to the one in [7]. To generate

the �-th (1 ≤ � ≤ ��) multicast session, with source ��,� ∈ � ,

denoted by ℳ�,�, �� points ��,��
(1 ≤ � ≤ ��, and 1 ≤

�� ≤ � − 1) are randomly and independently chosen from

the deployment region ℛ(�, �). Denote the set of these ��

points by �̃�,� = {��,�1
, ��,�2

, ⋅ ⋅ ⋅ , ��,���
}. Let ��,��

be the

nearest ad hoc node from ��,��
(ties are broken randomly). In

ℳ�,�, the node ��,�, serving as a source, intends to deliver

data to �� destinations ��,� = {��,�1
, ��,�2

, ⋅ ⋅ ⋅ , ��,���
} at

an arbitrary data rate ��,�. Let ��,� = {��,�} ∪ ��,� be the

spanning set of nodes for the multicast session ℳ�,�. Please

see the illustration in Fig.2.

√
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Fig. 2: Multicast session ℳ�,�, [7]. The tree consisting of

solid lines represents the Euclidean minimum spanning tree

(EMST) over ��,� = {��,��
∣ 0 ≤ � ≤ ��}, denoted by

EMST(��,�), where ��,�0
is ��,�. The tree consisting of

dashed lines represents an Euclidean spanning tree (EST) over

��,� = {��,��
∣ 0 ≤ � ≤ ��}, denoted by EST0(��,�),

where ��,�0
is ��,�, and for any 0 ≤ �, � ≤ ��, link

(��,��
→ ��,��

) ∈ EST0(��,�) if and only if link (��,��
→

��,��
) ∈ EMST(��,�).

C. Communication Model

Generally, there are three types of communication (inter-

ference) models: the protocol model [1], physical model [1]

and generalized physical model [15] (along with the name

Gaussian Channel model, [5]). We adopt the generalized

physical model since it is more realistic than the other two

[5], [9], [14], [15].

Let �� denote a scheduling set of links in which all links

can be scheduled simultaneously in time slot �.

Definition 1. Under the generalized physical model, when a

scheduling set �� is scheduled, the rate of a link < �, � >∈ ��

is achieved at

��,�;� = � × 1 ⋅ {< �, � >∈ ��} × log(1 + SINR�,�;�), (1)

where SINR�,�;� = � ⋅ℓ(∣x�−x�∣)
�0+

∑
<�,�>∈��/<�,�> � ⋅ℓ(x�−x�∣) ; x� de-

notes the position of node �, ∣x�−x�∣ represents the Euclidean

distance between node � and node �; ℓ(⋅) denotes the power

attenuation function that is assumed to depend only on the

distance between the transmitter and the receiver [1], [5],

[9], [30]; ℓ(∣ ⋅ ∣) := ∣ ⋅ ∣−� for dense scaling networks, and

ℓ(∣ ⋅ ∣) := min{1, ∣ ⋅ ∣−�} for extended scaling networks [9].

III. MAIN RESULTS

We mainly derive the upper bounds on the general multicast

capacity of random ad hoc networks.



A. General Upper Bounds

Theorem 1. The multicast capacity for random network

� (�, �) is at most

Λ(�, �)

= max
��:ℒ�

{

min

{

min{1,�−�
� }

L(��,
√

�

��
√

���
)
,
min{1,( �

log � )
�
2 }

L(��,
�⋅

√
�⋅��

��⋅
√

log �
)

}}

,

where ℒ� = [1/
√

�,
√

log �/�], and L(�, �) is defined in

Table II.

B. Tight Capacity Bounds

In [20], the general lower bounds have been provided by

designing some strategies.

Lemma 1 ( [20]). The general multicast throughput for

random network � (�, �) can be achieved of

Λ(�, �)
= max{Λo(�, �),Λp(�, �),Λo&h(�, �),Λp&h(�, �)},

where Λo(�, �),Λp(�, �),Λo&h(�, �),Λp&h(�, �) are defined

in Table II.

We specialize the general results from Theorem 1 and

Lemma 1 to the cases that � = � and � = 1, corresponding to

the RDN and REN. Following a common assumption in most

existing works, i.e., �� = Θ(�), we show that for both RDN

and REN our results give the first tight bounds on multicast

capacity over the whole regime �� : [1, �].

1) Random Dense Networks: In Theorem 1, Λ(�, �), i.e.,

the upper bound on the capacity achieves its maximum value

by choosing �� = Θ( 1√
�
) when �� = �(�/(log �)2); and also

achieves its maximum value by choosing �� = Θ(
√
log �/

√
�)

when �� = Ω(�/(log �)2). Specifically, the multicast capacity

is at most of order
⎧







⎨







⎩

Θ( 1√
���

) when �� : [1, �
(log�)3 ]

Θ( 1

��(log�)
3
2

) when �� : [
�

(log�)3 , �
(log�)2 ]

Θ( 1√
��� log�

) when �� : [
�

(log�)2 , �
log� ]

Θ( 1� ) when �� : [
�

log� , �]

(2)

This result is exciting, because the multicast throughput as in

Equation (2) had been proven to be achievable by Keshavarz-

Haddad et al. in [4]. Moreover, they derived an upper bound

as
⎧



⎨



⎩

�( 1√
���

) when �� : [1, �
(log�)2 ]

�( 1
��⋅log� ) when �� : [

�
(log�)2 , �

log� ]

�( 1� ) when �� : [
�

log� , �]

(3)

It is clear that there is a gap between the upper and the lower

bounds in the regime �� : ( �
(log�)3 , �

log� ). In this work, we

close this gap. Moreover, by Lemma 1, this optimal throughput

in Equation (2) can also be achieved by using our schemes

�o cooperatively and �o&h that are defined in Table A.1 in

Appendix A of our technical report [31].

2) Random Extended Networks: In Theorem 1, Λ(1, �)
achieves its maximum value by letting �� = Θ(1) when �� =
�(�/(log �)2); and achieves its maximum value by letting

�� = Θ(
√
log �) when �� = Ω(�/(log �)2). Specifically, the

multicast capacity is at most of order
⎧











⎨











⎩

Θ( 1√
���

) when �� : [1, �
(log�)�+1 ]

Θ( 1

��(log�)
�+1
2

) when �� : [
�

(log�)�+1 , �
(log �)2 ]

Θ( 1
√
���⋅(log�)

�−1
2

) when �� : [
�

(log�)2 , �
log� ]

Θ( 1

��(log�)
�
2
) when �� : [

�
log� , �]

(4)

Such multicast throughput had been achieved by the

schemes in [7]. The upper bounds were proposed as:
{

�( 1√
���

) when �� : [1, �
(log �)� ]

�( 1

��(log�)
�
2
) when �� : [

�
(log�)� , �]

(5)

That is, we close the gap between the upper and the lower

bounds in the regime �� : [ �
(log�)�+1 , �

log� ]. In addition,

by Lemma 1, this optimal throughput in Equation (4) can

be equally achieved by using our schemes �p and �p&h

cooperatively that are defined in Table A.1 in Appendix A

of our technical report [31].

IV. TECHNICAL PREPARATIONS

A. Maximum Occupancy

We use the results in maximum occupancy theory to de-

rive the lower bounds of the multicast throughput. Now we

introduce the following result from [32], [33] and [34].

Lemma 2. Let L(�, �) be the random variable that counts

the maximum number of balls in any bin, if we throw � balls

independently and uniformly at random into � bins. Then, it

holds that w.h.p..

L(�, �) =

⎧





⎨





⎩

Θ
(

log�
log �

�

)

when � : [1, �
polylog(�) )

Θ
(

log�

log � log �
�

)

when � : [ �
polylog(�) , � log �)

Θ
(

�
�

)

when � = Ω(� log �)

B. Network Throughput by Occupancy Theory

We give a technical lemma as a basic argument of the

analysis of network capacity.

Lemma 3. Given a multicast scheme �, for any link initiating

from a node �, say ��, if it can sustain a rate of R(�, �), and

any multicast session shares the bandwidth of link �� with the

probability of p, then the throughput along link �� is of order

Θ(Λ(�, �)), where Λ(�, �) = R(�,�)
L(��,1/p)

.

C. The Tail of Poisson Trials

Lemma 4 ( [35]). Let �1, �2, ⋅ ⋅ ⋅ , �� be independent Pois-

son trials such that, for 1 ≤ � ≤ �, Pr[�� = 1] = ��, where

0 < �� < 1. Then, for � =
∑�

�=1 ��, � = E(�) =
∑�

�=1 ��,
and any � > 0,

Pr[� > (1 + �)�] <

[

��

(1 + �)1+�

]�

.



D. Euclidean Spanning Tree

Lemma 5 ( [7]). If ��, 1 ≤ � ≤ ∞, are uniformly distributed

on [0, �]�, for a set �(�) = {�1, �2, ⋅ ⋅ ⋅ , ��}, denote its

Euclidean minimum spanning tree (EMST) by EMST(�(�)).
Under such deployment model, build �(�) sets, denoted by

�1(�),�2(�), ⋅ ⋅ ⋅ ,��(�)(�), it holds that

Pr

[

lim
�→∞

∑�(�)
�=1 ∥EMST(��(�))∥

�(�) ⋅ � ⋅ �1− 1
�

= �(�)

]

= 1. (6)

This lemma can be straightforwardly proven according to

Theorem 2 of [36]. Please see the detailed proof of Lemma

D in the appendices of [7].

For any �� general multicast sessions constructed by the

method in Section II-B, by a similar procedure to Lemma 7

of [7], we have,

Lemma 6. For all multicast sessions ℳ�,� (1 ≤ � ≤ ��), it

holds that for �� = �( �
log� ),

∑��

�=1
∥EMST(��,�)∥ = Ω(�� ⋅

√
�� ⋅ �),

where EMST(��,�) denotes the Euclidean minimum span-

ning tree (EMST) over the destination set ��,�.

Note that the session construction in this work is different

from that in [7], and Lemma 6 only gives a result on
∑��

�=1 ∥EMST(��,�)∥ instead of
∑��

�=1 ∥EMST(ℳ�,�)∥,

where EMST(ℳ�,�) denotes the Euclidean minimum span-

ning tree (EMST) over the spanning set ��,�. Since it holds

that ∥EMST(ℳ�,�)∥ ≥ ∥EMST(��,�)∥, we can obtain the

following corollary.

Corollary 1. For all multicast sessions ℳ�,� (1 ≤ � ≤ ��),

it holds that for �� = �( �
log� ),

∑��

�=1
∥EMST(ℳ�,�)∥ = Ω(�� ⋅

√
�� ⋅ �).

V. NETWORK TOPOLOGY UNDER FEASIBLE ROUTINGS

We introduce the Poisson Boolean percolation model to

make preparations for computing the upper bounds on the

general multicast capacity.

A. Poisson Boolean Percolation Model

In a 2-dimensional Poisson Boolean model �(�, �) [21],

nodes are distributed in ℝ
2 according to a p.p.p of intensity

�. Each node is associated with a closed disk of radius �/2.

Two disks are directly connected if they overlap. Two disks

are connected if there exist a sequence of directly connected

disks between them. Define a cluster as a set of disks in which

any two disks are connected. Denote the set of all clusters by

C (�, �). Let ∣��∣ denote the number of disks in a cluster �� ∈
C (�, �). We can associate �(�, �) with a graph �(�, �), called

an associated graph, by associating a vertex with each node

in �(�, �) and an edge with each direct connection in �(�, �).
Two models �(�, �) and �(�0, �0) lead to the same associated

graph, namely �(�, �) = �(�0, �0) if �0�0
2 = ��2. Then, the

graph properties of �(�, �) only depend on the parameter ��2,

[37]. Let � denote the cluster containing the given node, the

percolation probability is thus defined as Pr�,�[∣�∣ =∞]. We

call �� the critical percolation threshold of Poisson Boolean

model in ℝ
2 when

�� = sup{� := ���2 ∣ Pr�,�[∣�∣ =∞] = 0}.

The exact value of �� is still open. The analytical results show

that it is within the range (0.7698�, 3.372�) [21], [38]. In

terms of the value of � = ���2, the subcritical phase and

supercritical phase can be defined, which correspond to the

cases when � < �� and � > ��, respectively. The following

lemma will be used in our analysis.

Lemma 7 ( [21], [39]). For a Poisson Boolean model �(�, �)
in ℝ

2, there exists a value �� in a square region ℛ(�, �) =
[0,

√

�/�]2, as � →∞:

∙ if � = ���2 < ��, i.e., in the subcritical phase [21], it

holds that

Pr[sup{∣��∣ ∣ �� ∈ C (�, �)} = �(log �)] = 1;

∙ if � = ���2 > ��, i.e., in the supercritical phase

[21], there exists, w.h.p., exactly one giant cluster (giant

component) �� ∈ C (�, �) of size ∣��∣ = Θ(�).

B. Distance to Giant Component

Connectivity is a necessary condition for a feasible routing

scheme. From [40], [41], the connectivity of a routing scheme

for homogeneous random networks � (�, �) can be ensured

when the maximum link length can reach Ω(
√

log �/�). More

specifically, by a geometric extension, we can obtain the

following lemma based on Theorem 3.2 of [40].

Lemma 8. In Poisson Boolean model ℬ(�, �), with

� ⋅ � ⋅ �2 = log � + �(�),

all disks with radius � are connected with probability 1 as

� →∞ if and only if �(�)→∞.

From Lemma 8, we limit the nontrivial range of � in

[��/
√

�,
√

log �/�], i.e., � : [1/
√

�,
√

log �/�]. According

to Lemma 7, in the Poisson Boolean model ℬ(�, �), there

exists exactly one giant component, denoted by �(�, �), with

∣�(�, �)∣ = Θ(�). Note that we take no account of the specific

values of the involved constants, since they have no impact on

the order of our final results.

In Poisson Boolean model ℬ(�, �), for any node outside

the giant cluster �(�, �), say an exterior node � /∈ �(�, �), we

define the distance between � and the giant component by

�̄�(�) = min�∈�(�,�) ∣��∣.
Furthermore, we define the largest distance between exterior

nodes and �(�, �) as

�̄M� [� (�, �)] := max�∈�(�)−�(�,�) �̄�(�),

where �(�) denotes the set of all nodes in � (�, �). Please

see the illustration in Fig.3.

From Lemma 8, there is no node outside �(�, �) when
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Functions Definitions

L(�,�)

⎧















⎨















⎩

Θ
(

log�

log �
�

)

when � : [1, �
polylog(�)

)

Θ

(

log�

log � log �
�

)

when � : [ �
polylog(�)

, � log �)

Θ
(

�
�

)

when � = Ω(� log�)

RO−AR(�, �)

⎧







⎨







⎩

Θ( �
�
2

(log�)
�
2
) when � : [1, log �]

Θ(1) when � : [log �, �]

RP−AR(�, �)

⎧







⎨







⎩

Θ( �
�
2

(log�)
�
2
) when � : [1, (log �)1−

2
� ]

Θ( 1
log�

) when � : [(log �)1−
2
� , �]

po

⎧







⎨







⎩

Θ(
√

�� log�

�
) when �� = �( �

log�
)

Θ(1) when �� = Ω( �
log�

)

pp

⎧







⎨







⎩

Θ(
√

��
√
� log�

) when �� : [1, �
log�

]

Θ(��
�
) when �� : [ �

log�
, �]

poh,O−AR

⎧







⎨







⎩

Θ(
��⋅(log�)3/2

�
) when �� : [1, �
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Θ(�� log�

�
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(log�)2
, �
log�
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(log�)
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⎧
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Θ(��⋅
√
log�

�
) when �� : [1, �

√
log�

]

Θ(1) when �� : [ �
√
log�

, �]
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1
po

)

Λp(�, �) RP−AR(�, �)/L(��,
1
pp

)

Λo&h(�, �) min

{

RO−AR(�,�)

L(��,
1

poh,O−AR
)
, 1
L(��,

1
poh,H

)

}

Λp&h(�, �) min

{

RP−AR(�,�)

L(��,
1

pph,P−AR
)
, 1
L(��,

1
pph,H

)

}

� ⋅ �2 = 1
� ⋅ (log � + �(�)) if �(�)→∞.

Then, we only consider the case that � ⋅ �2 = �(log �), i.e.,

� = �(
√

log �/�). It holds that

�̄M� [� (�, �)] > �, and �̄M� [� (�, �)] = �(
√

log �/�).

Next, we give a useful result for computing the upper bounds

on network capacity.

Lemma 9. In Poisson Boolean model ℬ(�, �) with � =
�(
√

log �/�), it holds that

� ⋅ � ⋅ �̄M� = Ω(log �), w.h.p., (7)

≤ l̄c/2

≤ l̄c/2

Fig. 3: Distance between an exterior node and the giant

component.

where �̄M� := �̄M� [� (�, �)] for the sake of succinctness.

Prior to proving Lemma 9, we get the following lemma

based on Corollary 1 of [42] by a geometric scaling method.

Lemma 10 ( [42], [43]). For any exterior node, say � /∈
�(�, �), it holds that for any � ∈ [0,

√

�/�],

lim
�→∞

log Pr
[

�̄�(�) > �
]

= − lim
�→∞

� ⋅ � ⋅ � ⋅ �,

where � > 0 is a constant.

Proof of Lemma 9. Firstly, we give a bound on the probability

of event

�̄(�) : � ⋅ � ⋅ �̄M� = �(log �),

which is a contradiction to Equation (7). For any � /∈ �(�, �),
we define an event

�̄�(�): � ⋅ � ⋅ �̄�(�) = �(log �).

Then, it follows that

Pr
[

�̄(�)
]

= Pr

[

⋀

�/∈�(�,�)
�̄�(�)

]

≤
(

1− �1
�(�)

)�2�

,

where �1 and �2 are some constants. Hence, we have

Pr
[

�̄(�)
]

→ 0,

which proves this lemma.

VI. UPPER BOUNDS ON GENERAL MULTICAST CAPACITY

For any routing scheme, denote the maximum length (in the

sense of order) of the links by ��. According to [1], [9], in the

networking-theoretic scaling laws [7], under the premise of

ensuring routing connectivity, long-distance communication is

not preferable, since the interference generated would preclude

too many nodes from communicating. The optimal strategy



Giant Component

Interior Link

Exterior Link

Exterior Link

Fig. 4: Interior and Exterior Links.

is to confine to the nearest neighbor communication and

maximize the number of simultaneous transmissions, i.e.,

optimize the spatial reuse, [2], [44]. From [40], [41], the

routing connectivity of any scheme for homogeneous random

networks [45] can be ensured when the maximum link length

is set to be Ω(
√

log �/�). Then, we consider the range

�� : [��/
√

�,
√

log �/�], i.e., �� : [1/
√

�,
√

log �/�].

From Lemma 7, in the Poisson Boolean model ℬ(�, ��), there

exists exactly one giant component, denoted by �(�, ��), with

∣�(�, ��)∣ = Θ(�). Note that we take no account of the specific

values of the constants, for they have no impact on the order

of our final results.

Then, the links of any multicast scheme can be divided into

two classes as follows: A link is called an interior link, if both

endpoints are located in �(�, ��); and it is called an exterior

link, otherwise. In the Poisson Boolean model ℬ(�, ��), for

any node outside the giant cluster �(�, ��), say � /∈ �(�, ��),
define the distance between � and the giant component as

�̄�(�) = min�∈�(�,��) ∣��∣.

Furthermore, we define

�̄M� [� (�, ��)] := max�/∈�(�,��/2) �̄�(�).

Please see the illustration in Fig.3.

We derive the upper bounds on multicast capacity by

considering two types of links comprehensively.

1) Inside a Giant Component: All links inside �(�, ��) have

the length of Θ(��). The upper bound on capacity of these links

can be computed as

R�� = min

{

1, � log

(

1 +
�−�
�

�0

)}

= �(min{1, �−�
� }).

Then, by combining with Lemma 3, we can obtain the

following lemma.

Lemma 11. For any multicast scheme with the parameter ��,

the multicast throughput along the links inside �(�, ��) is at

most of order

Λ�� = �

⎛

⎝

min{1, �−�
� }

L

(

��,
√
�

��
√
���

)

⎞

⎠ .

Proof. By Lemma 5, the length of any multicast tree is at least

of order Ω(
√

���/�). Then, for a given sender of any links

inside the giant component, a multicast session passes through

it with a probability of

Ω

(

min

{

1,
��
√

���/�

�/�

})

, i.e., Ω
(

min
{

1, ��
√
���√
�

})

.

By Lemma 3, the proof is completed.

2) Outside a Giant Component: Based on Lemma 9, we

have,

Lemma 12. For any multicast scheme with ��, the multicast

throughput along the links between �(�, ��) and the nodes

outside is at most of order

Λ�̄M�
= �

⎛

⎝

min{1, ( �
log� )

�/2}
L(��,

�
√
�⋅��

��⋅
√
log�

)

⎞

⎠ .

Proof. Since there must be a link outside the giant component

with the length of
√

log �/�, the link capacity is bounded by

R�̄M�
= min

{

1, � log

(

1 +
(
√

log �/�)−�

�0

)}

= �

(

min

{

1,

(

�

log �

)�/2
})

.

From Lemma 9, �̄M� = Ω
(

log�
�⋅��

)

. It implies that �̄M� =

Ω(
√

log �/�) because �� : [1/
√

�,
√

log �/�]. The probability

that a multicast session passes through such a link is of

Ω

(

min

{

1,
�� ⋅ �̄M� �̄M� ⋅

√
�

� ⋅ √log �

})

.

By Lemma 3, the proof is completed.

By combining Lemma 11 and Lemma 12, we finally obtain

Theorem 1.

VII. CONCLUSION AND DISCUSSION

We derive some new upper bounds on the capacity for

general deterministic dissemination in random wireless net-

works with a general node density. When the general results

are specialized to the well-known random dense and extended

networks, we show that our results close the previous gaps

between the upper and the lower bounds on the multicast

capacity for both networks.
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