
Reducing Inter-Task Interference Delay by
Optimizing Bank-to-Core Mapping*

Jizan Zhang, Zhimin Gu, Mingquan Zhang
School of Computer Science & Technology

Beijing Institute of Technology

Beijing, China

Email: zhangjizan@163.com, zmgu@x263.net, ncepu zmq@163.com

Abstract—Inter-task interferences on the shared resources are
the main difficulty in analyzing the timing behavior of multi-
cores. In the timing predictable embedded multicore architecture
MERASA, the inter-task interference delay suffered by a Hard
Real-time Task (HRT) can be bounded by the number of cores.
Although this method can simplify the Worst-Case Execution
Time (WCET) estimation, the value of WCET is seriously
overestimated. To obtain tighter WCET estimation, we propose a
novel approach that reduces the inter-task interference delay by
optimizing bank-to-core mapping in the multicore system with
the interference-aware bus arbiter and the two-level partitioned
cache. For this, we first analyze and compute the inter-task
interference delays suffered by the HRTs running simultaneously,
and then put forward the core-queue optimization method of
bank-to-core mapping and design the optimizing algorithms with
the minimum inter-task interference delay. Experimental results
demonstrate that our approach can reduce inter-task interference
delay and improve estimated WCET.

Keywords—multicore; hard real-time task; optimization; inter-
task interference delay; bank-to-core mapping

I. INTRODUCTION

The usage of multicore processors, such as ARM11 MP-
Core [1] and QorIQ P4080 [2], in hard real-time systems brings
new challenges for WCET (Worst-Case Execution Time)
analysis [3], [4]. Multicore processors often contain some
shared resources, such as the on-chip shared cache and shared
bus. Hard Real-time Tasks (HRTs) running simultaneously
can interfere with each other when they try to access these
shared resources at the same time. Since these interferences
can bring unpredictably extra execution time for HRTs, their
effects should be taken into account to obtain safe WCET.
Unfortunately, well-developed timing analysis techniques for
single-core systems are not able to estimate the effects of these
inter-task interferences [4], [5].

Shared cache (L2 cache) and shared bus are two important
resources of multicore architectures. Although cache locking
and partitioning can eliminate storage interference [6], [7] and
TDMA-based bus arbitration can be analyzed [8]–[11], most
existing literatures ignored the effect of bank conflict delay on
WCET estimation.

This work is supported by the national Natural Science Foundation of China
under Grant No.61370062

Corresponding Author: Zhimin Gu

The combination of cache partitioning and bus arbitration
designing can improve the predictability of hard real-time mul-
ticore systems [12]–[15]. For example, MERASA multicore
architecture [13] applying the Interference-Aware Bus Arbiter
(IABA) and L2 cache dynamic partitioning [14] to bound the
Upper Bound Delay (UBD) by the number of cores. Yoon
et al. [15] proposed a harmonic round-robin bus arbitration
and two-level cache partitioning to bound the upper bound
of inter-task interference delay. Although these methods took
the effect of bank conflict delay into consideration, a potential
maximum delay is added to the time that a request accesses
L2 cache and the WCET is seriously overestimated. In fact,
not all requests can suffer from inter-task interference delay.
Even though inter-task interferences occur among a group of
requests, the inter-task interference delay suffered by every
request is different.

The goal of this paper is to reduce inter-task interference
delay by optimizing bank-to-core mapping, and obtain tighter
WCET estimations on the multicore systems with the IABA
bus arbiter and two-level partitioned cache. The major contri-
butions of this paper are as follows:

1) Analyze the inter-task interference delay, and then
propose the method to compute inter-task interfer-
ence delay according to the timing sequence of
requests asking the bus.

2) Optimize bank-to-core mapping to reduce inter-task
interference delay. We propose the method to make
bank-to-core mapping according to the queue of
cores, and design the algorithm for the optimiza-
tion problem that the inter-task interference delay
is computed according to the timing sequence of
requests asking the bus.

3) Propose the method to estimate WCET using the
optimized results, and analyze the waiting time of a
request in the Intra-Core Bus Arbiter (ICBA).

This paper is organized as follows. Section II introduces
related work. Section III describes the background and mo-
tivation. In Section IV, we analyze and compute the inter-
task interference delay suffered by a HRT. In Section V,
we optimize bank-to-core Mapping and design algorithms
for the optimization problem. Section VI describes WCET
estimation. Section VII describes experimental results. At last,
we conclude this paper in Section VIII.

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

II. RELATED WORK

Existing literatures proposed various methods to deal with
inter-task interference, which can be mainly classified into
three categories.

Some put shared bus designing and shared cache par-
titioning together to bound the upper bound of inter-task
interference delay that a request suffers. Paolieri et al. [14]
proposed IABA bus arbiter and a dynamic cache partitioning.
When more than one request tries to access the same bank,
IABA employs a round robin policy to select one request
that will access the bus, and delays the other requests to
avoid any interference. Dynamic cache partitioning employs
bankization to eliminate storage and bank interferences. Yoon
et al. [15] proposed harmonic round robin bus arbitration and
two-level cache partitioning scheme. Harmonic round robin
bus arbitration allocates bus slots to cores and guarantees bank
conflict delays are limited in one bus round. In the two-level
cache partitioning, banks are mapped to cores and columns to
HRTs in a way that bank access conflicts are minimized with
the help of the harmonic round robin bus arbitration.

Some put storage interference and bus access interference
together to carry on WCET analysis, but did not take bank
conflict into consideration. Rosén et al [8] proposed a TDMA-
based bus arbitration which allocates bus slots to cores by static
scheduling. They analyzed the bus access delay and storage
interference delay, and then optimized the bus arbitration
policy. Chattopadhyay et al. [11] improved the treatment of
loop structures in [9], the authors employed the maximum
bus access delay to estimate WCET according to execution
contexts instead of aligning each loop head execution to the
first TDMA slot. Kelter et al. [10] improved further analysis
efficiency via bounding the upper bound of TDMA offsets.

Some only focused on the analysis of storage interference,
but did not take bank conflict and bus access interference
into consideration. Yan et al. [16] computed the worst-case
instruction access interferences between different threads based
on the program control flow information of each thread. Chen
et al. [17] analyzed the worst-case cache interferences based
on instruction fetching timing, while judging the interferences
status through instruction fetching timing relations. Ding et
al. [6] proposed a flexible dynamic cache locking approach to
eliminate storage interference.

Unlike the existing methods, we compute inter-task inter-
ference delay according to the request timing sequence, make
bank-to-core mapping according to the queue of cores and op-
timize bank-to-core mapping to reduce inter-task interference
delay.

III. BACKGROUND AND MOTIVATION

In this section, we describe the embedded multicore ar-
chitecture, multi-task application model and motivation of our
optimization approach.

A. Embedded Multicore Architecture

An embedded multicore architecture consists of Ncore

homogeneous in-order cores C = {c1, c2, · · · , cNcore
}. Each

core has its own private data and instruction cache. The
unified L2 cache shared by all cores is two-level partitioned

[15], which is partitioned evenly into Nbank banks, B =
{b1, b2, · · · , bNbank

}. Bank access latency is 4 cycles, labeled
as LM . Each bank is subdivided evenly into Ncolumn columns.
The real-time bus connecting the cores and the L2 cache
applies the IABA bus arbiter [13], [14]. Bus access latency
is 2 cycles, labeled as LB . The penalty of L2 cache miss is
30 cycles fixedly.

The IABA bus arbiter comprises one Inter-Core Bus Ar-
biter (XCBA) and several ICBAs [14]. Each core has one ICBA
to schedule among requests from the same core. All the ICBAs
apply FIFO arbitration for requests from HRTs and First Ready
First Serviced arbitration for requests from Non Hard Real-
time Tasks (NHRTs). The XCBA schedules among requests
from different cores, first, the requests from HRTs have priority
over requests from NHRTs, second, between different requests
from HRTs, a round robin policy is applied as well as between
different requests from NHRTs [14]. If more than one request
tries to access the same bank at same time, the XCBA selects
one request to access the bus and delays other requests to avoid
inter-task interferences, including bus access interference and
bank access conflict.

B. Multi-task Application Model

A real-time application comprises HRTs and NHRTs, and
the HRT set is denoted as Thrt. All tasks are partitioned to
Ncore cores based on a non-preemptive partitioned scheduling
approach [18]. The HRTs allocated to the same core are
executed in turn, and no migration is permitted. Let Chrt(⊆ C)
be the set of cores with HRTs, and the number of the cores in
Chrt is Nhrt(≤ Ncore). Only one core is only allocated with
NHRTs, labeled as cnhrt(∈ C). In the worst case, all Nhrt

cores in Chrt are executing HRTs, i.e., at most Nhrt HRTs
are running simultaneously.

We first allocate L2 cache for the cores in Chrt. The
number of columns allocated one core is determined by the
HRT with the maximum number of demanded columns. In the
HRT set Γi(⊆ Thrt) allocated to ci(∈ Chrt) , HRTi(∈ Γi)
needs Sizej columns. The columns allocated to ci (denoted
as Szci) can be expressed as Szci = max(Sizej |∀HRTj ∈
Γi). The HRTs allocated to one core exclusively use the
columns allocated to this core. If cnhrt 6= φ, we allocate
(Nbank · Ncolumn −

∑

∀ci∈Chrt
Szci) columns to cnhrt. This

cache allocation has the following characteristics: (1) no stor-
age interference exists since each HRT exclusively uses the
allocated columns, (2) one bank can be shared by more than
one core. Bank conflict can occur when the HRTs running
simultaneously try to access the same bank, and (3) the
different distributions of Nbank · Ncolumn columns among
Ncore cores correspond to different bank-to-core mappings.

Additionally, we apply the methods mentioned in [19] to
deal with the code shared among the HRTs and inter-task
communication. If more than one HRT shares a function, we
create one separate copy of this function for each HRT. The
tasks communicate with each other through message passing
via mailboxes.

C. Motivation

The WCETs estimated by bounding the upper bound of
inter-task interference delay, such as Paolieri [14] and Yoon

Fig. 1. An example that the inter-task interference delay suffered by HRTs
in different bank-to-core mappings

[15], are seriously overestimated which can produce negative
effect on the schedulability of HRTs, performance and energy
dissipation [18], [20], [21]. Although the bankization of L2
cache can reduce the estimated WCET by eliminating storage
and bank conflicts, the bankization may cause bank capacity’s
waste, what is more, it is unable to meet the needs of many
real-time applications.

The two-level cache partitioning scheme can improve the
utilization of shared cache, in which banks can be flexibly
allocated between cores. If

∑

∀ci∈Chrt
⌈Szci/Ncolumn⌉ ≤

Nbank,⌈Szci/Ncolumn⌉ banks are exclusively allocated to ci,
the caching requirement of each HRT is satisfied and no
bank conflict exists. If

∑

∀ci∈Chrt
⌈Szci/Ncolumn⌉ > Nbank,

one bank can be shared by more than one core, and bank
conflicts occur when the HRTs allocated to these cores try
to access this shared bank at the same time. In different
bank-to-core mappings, bank access conflict is different since
banks can be shared by different cores. For example, in
the bank-to-core mapping shown in Fig.1(a), HRT1(c1) and
NHRT (c2) share Bank b2, HRT2(c3) and HRT3(c4) share
Bank b1. The requests from HRT1(c1) and HRT3(c4) can
suffer from bank conflict, the inter-task interference delays
suffered by the requests from HRT1, HRT2 and HRT3

are 3, 5 and 9 cycles, respectively. In another bank-to-core
mapping shown in Fig.1(b), HRT2(c3) and NHRT (c2) share
Bank b2, HRT1(c1) and HRT3(c4) share Bank b1, the inter-
task interference delays suffered by the requests from HRT1,
HRT2 and HRT3 are 1, 3 and 5 cycles.

A HRT has a timing sequence of requests asking the bus
in its worst case execution path. The inter-task interference
delay suffered by the HRT can be computed according to the
timing sequence and the XCBA’s arbitration policy. In this

paper, we compute inter-task interference delay suffered by
a HRT according to the timing sequence of requests asking
the bus in its worst case execution path, and reduce inter-task
interference delay by optimizing bank-to-core mapping.

IV. ANALYSIS AND COMPUTATION OF INTER-TASK

INTERFERENCE DELAY

Let QHRTi be the timing sequence of requests asking the
bus in the worst case execution path of HRTi. qj(∈ QHRTi)
is a request tries to access Bank bk, the time of qj asking
the bus is tarrj . Txcbasta is the start time of the current
scheduling of the XCBA. If tarrj < Txcbasta, qj reaches the
ICBA before Txcbasta, and stay in the ICBA until it is sent to
XCBA at Txcbasta. In this case, we update tarrj = Txcbasta.
Let Qcur be the request set in the current schedule of XCBA.
We divide two cases to discuss the interference delay suffered
by the request qj .

Case (1): No NHRT exists. Let q(j−1)(∈ Qcur) be the
previous request of qj(∈ Qcur). The bus access delay suffered
by qj can be expressed as dbusj = tacc(j−1)+LB−Txcbasta,
where tacc(j−1) is the time that q(j−1) is granted to access
the bus. qr(∈ Qcur) is the previous request of qj to access
Bank bk, the time that qr is granted to access the bus can
be expressed as taccr = Txcbasta + dbusr + dbankr, where
dbankr is the bank conflict delay suffered by qr. if taccr +
LB + LM > Txcbasta + dbusj + LB , qj suffers from bank
access conflict, and the bank conflict delay suffered by qj can
be expressed as taccr+LB+LM − (Txcbasta+dbusj +LB)
, i.e., dbankj = dbusr + dbankr + LM − dbusj . Otherwise,
qj does not suffers from bank access conflict, dbankj = 0.

Case (2): NHRTs exist. The requests from HRTs can suffer
from inter-task interference delay caused by the requests from
NHRTs, e.g., the inter-task interference delay shown in Fig.1.
Let taccnhrt be the time that the request from a NHRT is
granted to access the bus. If tarrj < taccnhrt+LB , qj suffers
from bus access interference caused by the request from the
NHRT, the bus access delay can be expressed as dbusj =
taccnhrt+LB− tarrj . If HRTi share the same bank with the
NHRT and taccnhrt + LB + LM > tarrj + dbusj + LB , qj
suffers from bank access conflict caused by the request from
the NHRT, and the bank conflict delay can be expressed as
dbankj = taccnhrt + LM − (tarrj + dbusj).

The total inter-task interference delay suffered by HRTi

can be expressed as
∑

∀qj∈QHRTi
(dbusj + dbankj). Let Qci

be the timing sequence of the requests from the tasks allocated
to ci. If ci ∈ Chrt, let Qc′i(⊆ Qci) be the timing sequence
of the requests from the HRTs allocated to ci. Algorithm
1 is to compute the interference delay in one schedule of
the XCBA. CurrentQ[i] is the current request in Qci(ci ∈
C). BtoCMapping[Ncore][Nbank] is a bank-to-core mapping.
used[i] denotes whether CurrentQ[i] is deal with or not.
If CurrentQ[i] has been dealt with, used[i]=TRUE. In line
1∼11, a function Compute Bankdelay is defined to compute
the potential bank conflict delay. Line 12∼18 determine which
kind of request should be scheduled. The XCBA schedules
the requests from HRTs in line 20∼29. Bus access delay
is computed in line 23, and the finish time of the current
scheduling is computed in line 29. The requests from NHRTs
are dealt with in line 31∼53. In the process of dealing with

Algorithm 1 Compute the interference delay in a scheduling
of the XCBA
Require: C, Ncore, B, Nbank , Chrt, CurrentQ[i], QC′

i(ci ∈ C) , used[i],
Txcbasta, BtoCMapping[Ncore][Nbank]

Ensure: bus access delay suffered by a request (dbus[i]), bank conflict delay suffered
by a request (dbank[i]), the bus access delay caused by the requests from NHRTs
(dbusbyNHRT [i]), the finish time that a request accesses the bus (FinishQ[i]),
the finish time of the current scheduling of XCBA (Txcbafin), used[i]

1: function Compute Bankdelay(curr) do

2: for j = 1; j ≤ Nbank; j + + do

3: for k = Ncore; k ≥ 1; k − − do

4: if used[k] ==TRUE , and ck and ccurr share Bank bj in BtoCMapping
then

5: if dbus[k] + dbank[k] + LM − dbus[curr] > dbank[curr] then

6: dbank[curr] = dbus[k] + dbank[k] + LM − dbus[curr];
7: end if

8: end if

9: end for

10: end for

11: end function

12: CheckHRT=FALSE; CheckNHRT=FALSE;
13: for i = 1; i ≤ Ncore; i + + do

14: if CurrentQ[i] ≤ Txcbasta then

15: ifCurrentQ[i] ∈ Qc′i then CheckHRT =TRUE;

16: ifCurrentQ[i] /∈ Qc′i then CheckNHRT =TRUE;

17: end if

18: end for

19: FinTime = Txcbasta;
20: if CheckHRT==TRUE then

21: for i = 1; i ≤ Ncore; i + + do

22: if CurrentQ[i] ∈ Qc′i and CurrentQ[i] == Txcbasta then

23: dbus[i] = FinTime − Txcbasta;

24: CALL Compute Bankdelay(i);

25: FinTime = FinTime + LB + dbank[i];
26: FinishQ[i] = FinTime; used[i]= TRUE;

27: end if

28: end for

29: Txcbafin = FinTime + LM ;

30: else

31: for i = 1; iNcore; i + + do

32: if CurrentQ[i] /∈ Qc′i then

33: if CurrentQ[i] ≤ Txcbasta then

34: CALL Compute Bankdelay(i);

35: FinTime = FinTime + LB + dbank[i];
36: FinishQ[i] = FinTime; used[i]= TRUE;

37: end if

38: MinV alue = min(CurrentQ[i]|∀CurrentQ[i] ∈ Qc′i);

39: if MinV alue ≤ FinTime + LM then

40: CheckHRT=TRUE;
41: for j = 1; j ≤ Ncore; j + + do

42: if CurrentQ[j] = MinV alue and CurrentQ[j] ∈ Qc′j
then

43: if CurrentQ[j] < FinTime then

dbusbyNHRT [j] = FinTime − CurrentQ[j];
44: CALL Compute Bankdelay(j);

45: FinTime = FinTime + LB + dbank[j];
46: FinishQ[j] = FinTime;used[j] = TRUE;

47: end if

48: end for

49: end if

50: if CheckHRT==TRUE then break;
51: end if

52: end for

53: Txcbafin = FinTime + LM ;

54: end if

55: return dbus[], dbank[], dbusbyNHRT [], F inishQ[], Txcbafin, used[];

the requests from NHRTs, deal with the requests from HRTs
in line 39∼50 if any, and the bus access delay caused by the
requests from NHRTs is computed in line 43.

Algorithm 2 is to compute the inter-task interference de-
lay suffered by HRTs. The first request is taken from Qci
to CurrentQ[i] in line 6 if used[i]=TRUE. If more than
one HRT is allocated to the same core, compute the inter-
task interference delay suffered by the previous HRT in line
9. In line 15∼17, CurrentQ[i] is updated as Txcbasta if

Algorithm 2 Compute the inter-task interference delay suf-
fered by HRTs

Require: C, Ncore, B, Nbank , Chrt, Qci, Qc′i(ci ∈ C)
Ensure: the interference delay suffered by each HRT (TaskDelay[][]) and the

total inter-task interference delay suffered by the HRTs allocated to the same core
(Delay[])

1: Delay[i] = 0, CurrentQ[i] = 0, FinishQ[i] = 0, used[i]=TRUE,
BusDelay[i] = 0, 1 ≤ i ≤ Ncore;

2: Txcbasta = 0, DelayT ime[j] = 0, BankDelay[i] = 0, ki = 1, 1 ≤ i ≤
Ncore;

3: while ∃Qci 6=NULL, ci ∈ C do

4: for i = 1; i ≤ Ncore; i + + do

5: if used[i]== TRUE and Qci 6=NULL then

6: Fetch the first request of Qci to CurrentQ[i];
7: Delete the first request from Qci;

8: if CurrentQ[i] and its previous request are from the different tasks
then

9: TaskDelay[i][ki] = BusDelay[i] + DBusbyNHRT [i] +
BankDelay[i];

10: BusDelay[i] = 0, DBusbyNHRT [i] = 0,
BankDelay[i] = 0, ki + +;

11: end if

12: used[i]=FALSE;

13: end if

14: end for

15: for i = 1; i ≤ Ncore; i + + do

16: if CurrentQ[i] < Txcbasta then CurrentQ[i] = Txcbasta;

17: end for

18: MinV alue = min(CurrentQ[i]|∀ci ∈ C);

19: Txcbasta = MinV alue;
20: Call Algorithm 1 to compute the interference delays suffered by CurrentQ[i];
21: for i = 1; i ≤ Ncore; i + + do

22: if CurrentQ[i] ∈ Qc′i then

23: BusDelay[i] = BusDelay[i] + dbus[i];
24: BankDelay[i] = BankDelay[i] + dbank[i];
25: DBusbyNHRT [i] = DBusbyNHRT [i] + dbusbyNHRT [i];
26: end if

27: end for

28: Txcbasta = Txcbafin;

29: end while

30: TaskDelay[i][ki] = BusDelay[i] + DBusbyNHRT [i] +
BankDelay[i], ci ∈ Chrt;

31: Delay[i] =
∑

ki

j=1
TaskDelay[i][j], ci ∈ Chrt;

32: return TaskDelay[][], Delay[];

CurrentQ[i] < Txcbasta. Txcbasta is updated in line 18
and 19. In line 20, Algorithm 1 is called to compute bus
access delay dbus[i], bank conflict delay dbank[i], and the
bus access delay dbusbyNHRT [i] caused by NHRTs if any.
Bus access delay and bank conflict delay are updated in line
21∼27. The total inter-task interference delay suffered by the
HRTs allocated to the same core is computed in line 31.

V. OPTIMIZING BANK-TO-CORE MAPPING TO REDUCE

INTER-TASK INTERFERENCE DELAY

In this section, we optimize bank-to-core mapping to re-
duce inter-task interference delay. We describe the optimization
problem, and design algorithms for the optimization problem.

A. Optimization Problem

Let xik denote whether bk(∈ B) has columns allocated to
ci(∈ C). If bk has columns allocated to ci, xik = 1. Otherwise,
xik = 0. The number of columns of bk allocated to ci is ncolik.
If xik = 1, ncolik > 0. Otherwise, ncolik = 0. Txcbasta and
Txcbafin are the start time and finish time of a schedule of
XCBA, respectively. xik and ncolik are the decision variables.

1) Objective Function: Since inter-task interference delay
is non-negative, reducing the inter-task interference delay

suffered by each HRT is equivalent to reducing the total inter-
task interference delay suffered by all HRTs. The objective
function can be expressed as follows:

min(
∑

∀ci∈Chrt

∑

∀qj∈Qc′
i

(dbusj + dbankj)) (1)

2) Constraints:

• The start time of the current schedule of XCBA
is the finish time of the previous schedule or the
earliest time that the current requests ask the bus,
which is expressed as follows: if Txcbafin ≥
min(tarrj |∀qj ∈ Qcur), Txcbasta = Txcbafin;
otherwise, Txcbasta = min(tarrj |∀qj ∈ Qcur).

• If the time of a request asking the bus is earlier than
the start time of the current schedule of XCBA, update
the time of the request asking the bus as the start time
of the current schedule, which is expressed as follows:

tarrj = Txcbasta, if tarrj < Txcbasta, ∀qj ∈ Qcur

• The finish time of the current schedule of XCBA is
the finish time of the last request in this schedule,
which can be expressed as follows:

Txcbafin = max(taccj + LB + LM |∀qj ∈ Qcur)

• The time that a request is granted to access the bus
can be expressed as follows:

taccj = Txcbasta + dbusj + dbankj , ∀qj ∈ Qcur

• The bus access delay suffered by a request can
be expressed as follows: ∀qj ∈ Qcur, dbusj =
tacc(j−1)+LB−tarrj if existing the effect of NHRTs;
otherwise, dbusj = tacc(j−1) + LB − Txcbasta.

• If bank access conflict occurs between two requests
(qr and qj(r < j)) from HRTs, the bank conflict
delay suffered by qj can be expressed as follows:
if dbusr + dbankr + LM − dbusj > 0, dbankj =
dbusr+dbankr+LM−dbusj ; otherwise, dbankj = 0.

• If bank access conflict occurs between the request
qj from HRT and the requests from NHRTs, the
bank conflict delay suffered by qj can be expressed
as follows: if taccnhrt + LM − (tarrj + dbusj),
dbankj = taccnhrt+LM−(tarrj+dbusj); otherwise,
dbankj = 0.

• The capacity of L2 cache should meet the demand of

all cores, that is, Nbank ·Ncolumn ≥
∑Ncore

i=1 Szci .

• If cnhrt 6= φ, the remainder columns are allocated to
it, that is,

Szcnhrt
= Nbank ·Ncolumn −

∑

∀ci∈Chrt

Szci

• The total columns allocated to a core needs to meet
the demand of the core, that is,

Szci ≤

Nbank
∑

k=1

ncolik · xik, ∀ci ∈ Chrt

• The columns of any bank allocated to all cores are
less than or equal to the capacity of the bank, which
can be expressed as follows:

Ncore
∑

i=1

ncolik · xik ≤ Ncolumn, ∀bk ∈ B

• The demand columns of any core and the columns of
any bank allocated to any core are nonnegative, that
is, Szci ≥ 0, ncolik ≥ 0, ∀ci ∈ C, ∀bk ∈ B.

B. The Way of Making Bank-to-Core Mapping

There are some different ways of bank-to-core mapping.
Different ways can produce different bank-to-core mappings.
In this paper, we make bank-to-core mapping according to the
queue of cores. Considering the demanded columns of cores,
the way of making bank-to-core mapping can be divided into
three cases as follows:

Case (1):
∑

∀ci∈Chrt
⌈Szci/Ncolumn⌉ ≤ Nbank. In this

case, we exclusively allocate ⌈Szci/Ncolumn⌉ banks to the
core ci(∈ Chrt). If cnhrt 6= φ, we allocate (Nbank −
∑

∀ci∈Chrt
⌈Szci/Ncolumn⌉) banks to cnhrt. Since the cores

in Chrt exclusively use the allocated banks, all HRTs do not
suffer from bank conflict.

Case (2):
∑

∀ci∈Chrt
⌈Szci/Ncolumn⌉) > Nbank and

∑

∀ci∈Chrt
Szci > (Nbank − 1) · Ncolumn. If cnhrt 6= φ, we

allocate (Nbank ·Ncolumn−
∑

∀ci∈Chrt
Szci) columns to cnhrt.

The process of making bank-to-core mapping can be described
as follows: (1) make bank-to-core mapping according to a core
queue. We first allocate columns for the first core in the core
queue. Next, we allocate columns for the second core, and so
on, and (2) we first allocate the columns of Bank b1 to cores.
Next, we allocate the columns of Bank b2, and so on.

Case (3):
∑

∀ci∈Chrt
⌈Szci/Ncolumn⌉) > Nbank and

∑

∀ci∈Chrt
Szci ≤ (Nbank − 1) · Ncolumn. If cnhrt 6= φ,

we allocate (Nbank · Ncolumn −
∑

∀ci∈Chrt
Szci) column-

s to cnhrt. The process of making bank-to-core mapping
is same as that of Case (2). Otherwise, we first reserve
⌊(Nbank · Ncolumn −

∑

∀ci∈C Szci)/Nbank⌋ columns for
((Nbank · Ncolumn −

∑

∀ci∈C Szci) mod Nbank) banks and
⌈(Nbank · Ncolumn −

∑

∀ci∈C Szci)/Nbank⌉ columns for the
rest banks that do not take part in allocation, and then apply
the method of Case (2) to make bank-to-core mapping.

C. The Optimizing Algorithm

It is necessary to know the request timing sequences to
compute inter-task interference delay according to the ob-
jective function (i.e, Equation (1)). Chronos [22], one static
WCET analysis tool for single-core systems, can obtain the
latest time that requests ask the bus in each basic block of
CFG (Control Flow Graph). With the help of Integer Linear
Programming (ILP) solvers, such as lp solve [23], we can
obtain the request timing sequence in the worst case execution
path of one HRT. In this paper, we use the request timing
sequences obtained by Chronos and lp solve to compute inter-
task interference delay. In order to simplify computation and
guarantee that the estimated WCET is safe, we assume that the
requests from one core always try to access the shared banks
in the worst case.

Algorithm 3 Optimize bank-to-core mapping to minimize
interference delay

Require: C, Ncore, Chrt, Nhrt, cnhrt, B, Nbank , Ncolumn,Szci (ci ∈ C),

Qci(ci ∈ C), Qc′i(ci ∈ Chrt)
Ensure: The minimum interference delay suffered each HRT (MinTaskDelay[][]),

the sum of the minimum interference delay suffered each HRT (MinTotalDelay)
and the corresponding bank-to-core mapping (MinDelayMap[][])

1: MinTotalDelay = Infinity, used[i]=FALSE, 1 ≤ i ≤ Ncore;

2: function FindMinMapping(n) do

3: if n > Ncore then

4: Make bank-to-core mapping BtoCMapping[][] according to the core queue
in c seq[];

5: Call Algorithm 2 to compute the inter-task interference delay TaskDelay[i][]
suffered by each HRT and the total inter-task interference delay Delay[i]
suffered by the HRTs allocated to ci;

6: TotalDelay =
∑

∀ci∈Chrt
Delay[i] ;

7: if TotalDelay < MinTotalDelay then

8: MinTaskDelay[i][] = TaskDelay[i][], MinTotalDelay =
TotalDelay;

9: MinDelayMap[][] = BtoCMapping[][];
10: end if

11: return

12: end if

13: for i = 1; i ≤ Ncore; i + + do

14: if !used[i] then

15: c seq[n] = ci; used[i]=TRUE;

16: FindMinMapping(n + 1); used[i]=FALSE;

17: end if

18: end for

19: end function

20: Call FindMinMapping(1);

21: return MinTaskDelay[][],MinTotalDelay,MinDelayMap[][];

Algorithm 3 is to optimize bank-to-core mapping to min-
imize the inter-task interference delay suffered by HRTs.
A function FindMinMapping(n) is defined in line 2∼19.
c seq[] stores a core queue. The total interference delay is
computed in line 6. In line 7∼10, the minimum interference de-
lay and the corresponding bank-to-core mapping are updated.
The backtracking and recursion of the algorithm is practiced
in line 13∼18.

VI. WCET ESTIMATION

The worst case execution time of HRTi(∈ Thrt) comprises
three parts: (1) the inter-task interference delay, which can
be expressed as

∑

∀qi∈QHRTi
(dbusj + dbankj). This part

is estimated by the optimized result of Algorithm 3, (2)
the waiting time in the ICBA, which can be expressed as
∑

∀qi∈QHRTi
wicbaj , where wicbaj is the waiting time of qj

in the ICBA, and (3) the rest part which does not be disturbed
by other HRTs and can be measured by WCET analysis tools
designed for single-core systems, such as the total execution
time in the pipeline, the total latency of the shared L2 cache
and bus, the total penalty of L2 cache miss (Note that we have
assumed that each L2 cache miss fixedly needs 30 cycles to
access the memory), and so on.

Let qj(∈ QHRTi) be the request in the current schedule of
the XCBA, q(j−1)(∈ QHRTi) be the request in the previous
schedule of the XCBA. When no NHRT, the waiting time of
qj in the ICBA can be expressed as:

wicbaj =

{

Txcbasta − tarrj , tarrj > tacc(j−1)

Txcbasta − tacc(j−1), otherwise
(2)

where Txcbasta is the start time of the current schedule. When
existing NHRTs, Equation (2) also holds.

Fig. 2. An example of the waiting time in ICBAs when cnhrt = φ

An example of the waiting time in ICBAs when cnhrt = φ
is shown in Fig. 2. The start time of the current schedule of
the XCBA is at the 13th cycle. In the current schedule of the
XCBA, the request from HRT1(c1) asks the bus at the 8th
cycle which is later than the 1st cycle which is the time that
the previous request from the same HRT accesses the bus. The
waiting time of the request are 5 cycles. For the request from
HRT3(c3) in the current schedule of the XCBA, it asks the bus
at the 3rd cycle which is earlier than the 7th cycle which is the
time that the previous request from the same HRT accesses the
bus. The valid waiting time of the request are 6 cycles because
the time overlapping exists between its waiting time and the
interference delay suffered by the previous request from the
same HRT.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate our approaches by Mälardalen
wcet benchmarks [24], which is maintained by the Mälardalen
WCET research group situated at Mälardalen Real-Time Re-
search Center (MRTC, http://www.es.mdh.se/).

A. Experimental Environment and Criterion Measurement

The embedded multicore architecture consists of 6 ho-
mogeneous cores, c1, c2, · · · , c6, each of which implements
an in-order 5-stages pipeline without branch prediction. The
instruction fetch queue size is 4, fetch width is 2 and the
instruction window size is 8. Each core has 64B private
instruction and data L1 cache (1-bank, 2-way associated, 8-
byte per line, 1 cycle access and LRU replacement policy).
The L2 cache is shared among all cores and it is 4KB (4
banks, 4-way associated, 32-byte per line, 4 cycles’ access,
LRU replacement policy). Each bank is 1KB and comprises 8
columns, each of which is 128B. The real-time bus, connecting
cores and L2 cache, applies the IABA bus arbiter [14]. Bus
access latency is 2 cycles. The penalty of L2 cache miss is 30
cycles.

To get the demanded L2 caching of all tasks, we use
Chronos to measure their WCET when the L2 cache capacity
is 128B, 256B, 512B, 1KB, 2KB and 4KB, respectively.

TABLE I. THE TYPES, DEMANDED COLUMNS AND ALLOCATION ON

CORES

Benchmark Type Demanded columns Core

insertsort HRT 4 c1

expint HRT 2 c2

fibcall HRT 1 c3

bsort100 HRT 16 c4

cnt NHRT 8 c5

prime HRT 1 c6

Fig. 3. The request timing sequences of the tasks

Fig. 4. The execution results of Algorithm 3 when existing NHRTs

According to the measured results, the demanded columns of
each task are listed in TABLE I. The types of these tasks and
the allocation on cores are listed in TABLE I as well. The bus
request time sequences of these tasks measured by Chronos
and lp solve are shown in Fig. 3.

B. Results

The measured results of Algorithm 3 are shown in Fig.
4. The solution space is 720, and the sum of the inter-task
interference delay suffered by 5 HRTs is between 33774
and 67542 cycles. One of bank-to-core mappings with the
minimum inter-task interference delay is shown in TABLE II.
The waiting time and the inter-task interference delay suffered
by 5 HRTs in this mapping are listed in TABLE III.

In order to demonstrate the effect of optimized bank-
to-core mapping on WCET, we select one mapping in the
solution space of Algorithm 3 as the un-optimized mapping
which shown in TABLE IV. The corresponding waiting time
and inter-task interference delay suffered by each task in this
mapping are listed in TABLE V. We estimate the WCETs of all
HRTs in these two mappings (shown in TABLE II and TABLE
IV) respectively via computing the inter-task interference delay
and waiting time in ICBAs. The results are shown in Fig. 5. All

TABLE II. A BANK-TO-CORE MAPPING THAT THE SUM OF THE

INTER-TASK INTERFERENCE DELAY IS THE MINIMUM

Benchmark Core Demanded columns b1 b2 b3 b4

insertsort c1 4 4 0 0 0

expint c2 2 0 2 0 0

fibcall c3 1 1 0 0 0

bsort100 c4 16 0 0 8 8

cnt c5 8 3 5 0 0

prime c6 1 0 1 0 0

TABLE III. THE WAITING TIME AND INTERFERENCE DELAY SUFFERED

BY EACH HRT IN THE MAPPING SHOWN IN TABLE II

Benchmark Interference delay (cycles) Waiting time (cycles)

insertsort 5 11565

expint 2349 16039

fibcall 8 31

bsort100 6387 1595516

prime 25025 37336

TABLE IV. AN UN-OPTIMIZED BANK-TO-CORE MAPPING

Benchmark Core Demanded columns b1 b2 b3 b4

insertsort c1 4 4 0 0 0

expint c2 2 2 0 0 0

fibcall c3 1 1 0 0 0

bsort100 c4 16 1 8 7 0

cnt c5 8 0 0 0 8

prime c6 1 0 0 1 0

results are relative to the estimated WCETs of the tasks without
inter-task interference. “Opt Delay” and “UnOpt Delay” de-
note the measured results in the optimized mapping and the un-
optimized mapping, respectively. Compared with the measured
results in the un-optimized mapping, the measured results in
the optimized mapping have different degrees of improvement,
improved by 13% in average.

The estimated WCET of insertsort has the most improve-
ment, about 23%. According to the arbitration of XCBA, the
requests from HRTs have priority over requests from NHRTs.
The interference delay suffered by insertsort is only caused
by the NHRT (i.e., cnt). In the mapping shown in TABLE
II, insertsort shares Bank b1 with cnt, and insertsort can
suffer from bus access interference and bank access conflict
caused by cnt. In the mapping shown in TABLE IV, however,
insertsort shares no bank with cnt, and insertsort can
only suffer from bus access interference caused by cnt. Thus,
insertsort suffers more interference delay in the bank-to-core
mapping shown in TABLE II. On the other side, the chance that
HRTs share the same banks is reduced in the mapping shown
in TABLE II. This means that inter-task interference between
HRTs is reduced and the length of a XCBA’s schedule can also
be reduced. For this reason, the waiting time of insertsort
in the mapping shown in TABLE II is less than that in the
mapping shown in TABLE IV.

Although bsort100 suffers from less interference delay
in the mapping shown in TABLE II, the improvement for
bsort100 is not obvious (about 1%) for its huge program scale
. For fibcall, the improvement also is about 1% for the less
L2 cache access and the small program scale.

TABLE V. THE WAITING TIME AND INTERFERENCE DELAY SUFFERED

BY EACH HRT IN THE MAPPING SHOWN IN TABLE IV

Benchmark Interference delay (cycles) Waiting time (cycles)

insertsort 1 18463

expint 4701 24043

fibcall 24 43

bsort100 12765 1614178

prime 50051 37344

Fig. 5. The estimated results via computing interference delay and waiting
time

VIII. CONCLUSION

The WCETs estimated by bounding the upper bound of in-
terference delay is seriously overestimated which can produce
negative effect on the schedulability of HRTs, performance
and energy dissipation of hard real-time multicore systems.
In this paper, we reduce the inter-task interference delay by
optimizing bank-to-core mapping on the multicore systems
with IABA and the two-level partitioned cache.

We analyze and compute inter-task interference delay, and
then put forward a core-queue optimization method of bank-
to-core mapping and design the optimizing algorithms with the
minimum inter-task interference delay. In this method, we use
the request timing sequence in the worst case execution path
to compute inter-task interference delay.

We use the Mälardalen WCET benchmarks to evaluate
our proposal, and experimental results demonstrate that our
approaches can reduce the inter-task interference delay and
obtain tighter WCET estimations.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No.61370062. Special thanks
to the anonymous reviewers for their helpful comments and
suggestions.

REFERENCES

[1] ARM11 MPCore Processor, http://www.arm.com/products/
processors/classic/arm11/arm11-mpcore.php.

[2] Freescale QorIQ P4080 Processor, http://www.freescale.com/webapp/
sps/site/prod summary.jsp?code=P4080.

[3] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza and et
al., Predictability considerations in the design of multi-core embedded
systems, in Proc. of Embedded Real Time Software and Systems, pp.
36-42, 2010.

[4] V.Suhendra and T. Mitra, Exploring locking & partitioning for predictable
shared caches on multi-cores, in Proc. of the 45th annual Design
Automation Conference, 2008, pp. 300-303.

[5] N. Guan, M. Stigge, W. Yi, and G.Yu, Cache-aware scheduling and
analysis for multicores, in Proc. of the 7th ACM Int’l Conference on
Embedded Software, 2009, pp. 245-254.

[6] H. Ding, Y. Liang, and T. Mitra, WCET-centric dynamic instruction cache
locking, in Proc. of the conference on Design, Automation & Test in
Europe, 2014, pp. 1-6.

[7] T. Liu, M. Li, and C. J. Xue, Instruction cache locking for multi-task
real-time embedded systems, Real-Time Syst, vol. 48, no. 2, pp. 166-197,
2012.

[8] J. Rosén, A. Andrei, P. Eles, and Z. Peng, Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip, in Proc. of the 28th IEEE Real-Time Systems Sympo-
sium, 2007, pp. 49-60.

[9] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, Modeling shared
cache and bus in multi-cores for timing analysis, in Proc. of the
13th International Workshop on Software & Compilers for Embedded
Systems, 2010, pp. 1-10.

[10] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoud-
hury, Bus-aware multicore WCET analysis through TDMA offset bounds,
in Proc. of the 2011 Euromicro Conference on Real-Time Systems, 2011,
pp. 3-12.

[11] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Mar-
wedel, and H. Falk, A unified WCET analysis framework for multi-core
platforms, ACM Trans. Embedd. Comput. Syst., vol. 13, no. 4s, pp. 1-29,
2014.

[12] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, and et al., Building
timing predictable embedded systems, ACM Trans. Embed. Comput.
Syst., vol. 13, no. 4, pp.1-37, 2014.

[13] T. Ungerer, F. J. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, et al.,
Merasa: Multicore execution of hard real-time applications supporting
analyzability, Micro, IEEE, vol. 30, no. 5, pp.66-75, 2010.

[14] M. Paolieri, E. Quiñones, F.J. Cazorla, G. Bernat, and M. Valero, Hard-
ware support for WCET analysis of hard real-time multicore systems,
in Proc. of the 36th IEEE/ACM International Symposium on Computer
Architecture, 2009, pp. 57-68.

[15] M. K. Yoon, J.E. Kim, and L. Sha, Optimizing tunable WCET with
shared resource allocation and arbitration in hard real-time multicore
systems, in Proc. of the 32th IEEE Real-Time Systems Symposium, 2011,
pp. 227-238.

[16] J. Yan and W. Zhang, WCET analysis for multi-core processors with
shared L2 instruction caches, in Proc. of the 14th IEEE Real-Time and
Embedded Technology and Applications Symposium,2008, pp. 80-89.

[17] F. Chen, D. Zhang and Z. Wang, Static analysis of run-time inter-thread
interferences in shared cache multi-core architectures based on instruc-
tion fetching timing, in Proc. of 2011 IEEE International Conference on
Computer Science and Automation Engineering, 2011, pp. 208-212.

[18] R. I. Davis and A. Burns, A survey of hard real-time scheduling for
multiprocessor systems, ACM Computing Surveys, vol. 43, no. 4, pp.
1-44, 2011.

[19] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, Timing
analysis of concurrent programs running on shared cache multi-cores, in
Proc. of the 32th IEEE Real-Time Systems Symposium, 2009, pp. 57-67.

[20] H. F. Sheikh, H. Tan, I. Ahmad, S. Ranka, and P. Bv, Energy-
and performance-aware scheduling of tasks on parallel and distributed
systems, J. Emerg. Technol. Comput. Syst., vol. 8, no. 4, pp. 1-37, 2012.

[21] L. W. Yeon, Energy-Efficient Scheduling of Periodic Real-Time Tasks
on Lightly Loaded Multicore Processors, IEEE Transactions on Parallel
and Distributed Systems, vol. 23, no. 3, pp. 530-537, 2012.

[22] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, Chronos: A timing
analyzer for embedded software, Science of Computer Programming, vol.
69, no.13, pp. 56-67, 2007.

[23] M. Berkelaar, K. Eikland, and P. Notebaert, lp solve version 5.5,
http://lpsolve.sourceforge.net/5.5/, 2012.

[24] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The Mälardalen WCET
benchmarks: past, present and future, in Proc. of the 10th International
Workshop on Worst-Case Execution Time Analysis, 2010, pp.137-147.

