
A Low-Latency Fine-Grained Dynamic Shared Cache

Management Scheme for Chip Multi-Processor*

Jinbo Xu, Weixia Xu

College of Computer

National University of Defense Technology

Changsha 410073, China

{xujinbo, xuweixia}@nudt.edu.cn

Zhengbin Pang

College of Computer

National University of Defense Technology

Changsha 410073, China

Science and Technology on Parallel and Distributed

Processing Laboratory

National University of Defense Technology

Changsha 410073, China

zhengbinpang@nudt.edu.cn

Abstract—In order to utilize the shared last-level cache (LLC)

in chip multi-processors (CMP) more efficiently, the partitioning
of LLC resources among all cores should have the characteristics
of low-latency for access, fine granularity for migration and
simple hardware complexity for implementation. This paper
proposes a dynamic LLC management scheme to achieve these
goals. The proposed scheme migrates cache resources among
different cores at the granularity of cache blocks, instead of ways.
The quantity of victim cache blocks that each victim core can
migrate to other target cores are related to an eviction
probability, which are calculated according to the performance
goal. Then the victim cache blocks for a target core is chosen
from the nearest victim core who has non-zero eviction
probability by introducing innovate E-Table structure in CMP.
The eviction probabilities are updated periodically. With the help
of E-Tables, the proposal achieves low-latency accesses by always
keeping the required cache blocks near to the target cores. And
fine granularity is guaranteed by maintaining an eviction
probability for each core. In addition, only little additional
hardware changes to traditional cache structure is required.
Simulation results suggest significant performance improvements
from 6.8% to 22.7% over related works.

Keywords—cache management; chip multi-processor; low
latency; fine granularity

I. INTRODUCTION

Research on last-level cache (LLC) management in chip
multi-processor (CMP) pays more attention to fine granularity,
low latency and simple implementation in recent
years[1][2][3][4][5][6][7][8][9][10][11][12]. Finer granularity
brings more flexibility to guarantee timely repartitioning. And
lower latency makes cache accesses more efficient. At the
same time, simple implementation reduces cost. Previous
works on cache partitioning can be classified into coarse-
grained partitioning[6][8][9][13] and fine-grained

partitioning[10][14]. As for coarse-grained partitioning, way-
partitioning is popular because of its simplicity of design.
However, it can be inefficient as it only allows partition sizes
to grow or shrink by a fixed large size (inversely proportional
to associativity) while it is possible that the optimal size for a
partition falls in between. As the number of cores increases and
becomes comparable to the number of ways, such scenarios are
likely to occur more frequently. Therefore, cache partitioning
at finer granularity such as block level is more desirable.
Vantage[10] achieves block-level cache partitioning, but it is
only for a portion but not for all of the cache. In addition, the
implementation cost is pretty large because of significant
changes to the hardware. Manikantan et al. proposes PriSM[14],
which manages the cache occupancy of different cores at cache
block granularity by dynamically controlling their eviction
probabilities. Moreover, PriSM requires only simple hardware
changes to implement. However, the selection of victim blocks
only relies on eviction probabilities, which may cause large
access latency if the cache block is far from the corresponding
core. To optimize the overall access latency, a good cache
partitioning scheme should guarantee that cache blocks
required by a core are always near to this core.

This paper proposes a shared cache management scheme
for CMP, which incorporates the location distribution with the
eviction probability, to achieve low-latency for access, fine
granularity for migration and simple hardware complexity for
implementation. The proposed scheme migrates cache
resources among different cores at the granularity of cache
blocks, instead of ways. At first, the performance goal is
translated into eviction probabilities of each core to determine
the quantity of victim cache blocks that each core could
provide. Then, a victim core which is near to the target core
and has higher eviction probability is chosen to provide the
victim cache block for replacement. The eviction probabilities
are updated periodically. The main contributions of this work
show as follows.

Supported by the National Natural Science Foundation of China under

Grant No.61202126, and the National High-Tech Research and Development
Plan of China under Grant No.2012AA01A301, and the National Grand

Fundamental Research 973 Program of China under Grant

No.2011CB309705-1, and the National High-Tech Research and
Development Plan of China under Grant No. 2013AA01A208

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

� In this work, each core maintains a look-up table,
denoted as E-Table, to record the occupancy
distribution of its surrounded cache resources. By
using these E-Tables, the proposal achieves low-
latency accesses by always keeping the required cache
blocks near to the target cores.

� Fine granularity is guaranteed by maintaining an
eviction probability for each core. Unlike way-
partitioning where the victim core is identified based
on the number of ways it occupies in the set, this work
generates a victim-core id in line with the eviction
probability distribution computed by the allocation
policy. It also allows each cache set to make its own
decision and controls the overall cache occupancy of
each core at the whole cache level.

� Only little additional hardware changes to traditional
cache structure is required. Simulation results suggest
significant performance improvements from 6.8% to
22.7% over related works.

The remainder of this paper is organized as follows. In
Section 1, the motivation is introduced. Section 2 presents the
proposed cache management scheme in detail. The
experimental results are described and analyzed in Section 3.
Section 4 remarks the conclusion.

II. MOTIVATION

The adjustment step of cache resources with coarse-grained
cache partitioning scheme is too large. Consequently,
theoretical optimal boundaries of cache resources among
different cores can hardly be achieved. For instance, way-
partitioning increases the allocation at a coarser granularity of
one way in all the cache sets. In a 16 way cache allocating one
more way translates to providing 6.25% more cache space.
And in the case of the 64 and 256 way associative caches
allocating one more way translates to increasing the occupancy
by 1.6% and 0.39% respectively. As the cache size remains
unmodified, the high associative configurations help us mimic
the impact of partitioning at finer granularities. Increasing
associativity and the resultant finer-grained control over cache
occupancy helps improve the performance[15]. But building
caches of very high associativity entails additional hardware
and different cache organizations. Hence it is required to
enable partitioning at granularities finer than that of
associativity, such as block-level granularity. Block level cache
partitioning provides the ability to reduce/increase the space
allocated in steps of 1=N, where N is the number of cache
blocks. This paper will focus on the research of block level
cache management scheme to achieve finer granularities, lower
latency and simpler implementation.

Allocation and partitioning of shared cache resources are
the key issues of block-level cache management scheme. The
allocation method should guarantee that every bit of cache
resources is owned by one of the cores and no idle cache block
exists. Vantage[10] has the disadvantage at this point since it
logically partitions the cache into ‘managed’ and ‘unmanaged’
regions and only achieves the desired target occupancy in the
‘managed’ portion of the cache by borrowing space from the
unmanaged region, which inevitably wastes the unmanaged

cache resources. Once all cache resources are allocated to all
cores initially, partitioning scheme is required to dynamically
transfer cache resources among different cores to achieve
certain performance goals. Some questions should be answered
for this transferring procedure, such as, which cache blocks
should be transferred (i.e. the selection of victim caches), and
how many victim cache blocks should be selected and when
will them be transferred, et al. To answer these questions, the
performance goals should be translated into the required cache
resources for each core to determine the difference between the
current cache utilization and the required cache utilization.
These differences reflect the eviction probabilities of cache
resources for each core, since a core who owns more free cache
resources has more probability to provide victim cache for
other cores. Therefore, eviction probability distribution can be
considered as a selection criterion of victim caches. Secondly,
the selection of victim caches should also consider the access
latency to achieve more performance. Therefore, the proposal
aims to achieving low-latency accesses by always keeping the
required cache blocks near to the target cores, and achieving
fine granularity by maintaining an eviction probability for each
core. In addition, only little additional hardware changes to
traditional cache structure is required.

III. THE PROPOSED CACHE MANAGEMENT SCHEME

The details of the proposed cache management scheme are
described in this section. For the convenience of description,
TABLE I. defines some common terms used in this paper. N
denotes the total number of cache blocks. W represents an
interval of execution, measured in terms of misses in the shared
cache. The allocation policy re-computes the cache space
allocated to each core at the end of every interval. Ci is the ratio
of the cache blocks occupied by Corei to the total number of
cache blocks. Mi denotes the fraction of misses contributed by
Corei to the total misses in an interval. Ti is the expected
occupancy for Corei to meet a certain performance goal. τi
represents the occupancy likely to be achieved at the end of an
interval. Ei is the eviction probability of choosing a victim
block from Corei.

A. Fine-Grained Cache Partitioning Based on Eviction
Probability
In this work, fine granularity is guaranteed by maintaining

an eviction probability for each core. Unlike way-partitioning

TABLE I. DEFINITION OF COMMON TERMS

Terms Description

N Number of cache blocks

W Interval length. Measured in terms of number of cache misses.

Ci
Fraction of cache space occupied by Corei at the beginning of
interval.

Mi Fraction of Misses caused by Corei at the beginning of interval.

Ti Desired cache occupancy at the end of interval for Corei.

i Achieved target cache occupancy of Corei at the end of interval.

Ei Eviction probability for Corei.

where the victim core is identified based on the number of
ways it occupies in the set, this work generates a victim-core id
in line with the eviction probability distribution computed by
the allocation policy. It also allows each cache set to make its
own decision and controls the overall cache occupancy of each
core at the whole cache level.

Eviction probabilities of all cores are calculated at the end
of every interval of W misses. We assume that Corei accounts
for a fraction Mi of the total misses in a certain interval.
Therefore, the number of cache misses for Corei is Mi×W. If no
cache line belonging to Corei is evicted, its cache occupancy
would have increased from Ci to (Ci+(Mi×W/N)) during the
interval. However, if eviction probability Ei is considered for
Corei, Ei×W lines would have been evicted over the interval.
Therefore the cache occupancy of Corei at the end of the
interval becomes τi= Ci+((Mi-Ei)×W/N). The objective of the
cache management scheme is to make τi reach the desired
cache occupancy Ti as quickly as possible. If τi is not able to
reach Ti in the current interval, Ei should be set to 0 when
Ci<Ti(i.e., no cache block from Corei is evicted) and Ei should
be set to 1 when Ci>Ti(i.e., cache blocks from Corei have the
highest priority to be evicted). On the other hand, if τi can reach
Ti in the current interval, Ei can be computed by solving the
equation Ti=τi= Ci+((Mi-Ei)×W/N). In summary Ei is calculated
in every interval by using the following equation.

�
�

�
�

�

�
�

�
�

�

	
�
�	
�

	
�

�
.,/)(

,0)/)((,1

,0)/)((,0

otherwiseMWNTC
MWNTCif
MWNTCif

E

iii

iii

iii

i
� ����

According to (1), Ci, Mi and Ti need to be determined first
before calculating Ei. Ci and Mi can be obtained easily by
deploying counters per core to provide the number of cache
blocks occupied by each core and the number of misses during
the previous interval. Ti is related to the performance goal and
is computed with well-designed algorithm in this work. This
paper focuses on Hit Maximization performance goal.

Hit Maximization tries to provide more cache space to the
core that has the maximum potential to gain hits. Usually, the
dependency upon cache resources of a certain core can be
measured based on how well it is likely to perform if the whole
cache were assigned to it. The core who has more dependency
upon cache resources will be assigned more cache blocks.
Therefore, the expected cache occupancy of Corei, Ti, can be
computed according to this theory. After this, Ei is determined
by using (1). The computing of Ti and Ei is shown in Algorithm
I.

If a certain core needs to be assigned more cache resources,
a victim core is selected first from the cores which have non-
zero eviction probabilities. Then a victim block belonging to
the victim core selected in the first step is identified using the
underlying cache replacement policy.

As for the core-selection step, multiple strategies can be
used. For example, the core who has the highest eviction
probability can be selected, or the victim core is selected
randomly from the eviction probability distribution. And as for
the block-selection step, any existing cache replacement

ALGORITHM I. COMPUTING OF TI AND EI

policies, such as LRU, DIP[16], TA-DIP[4], RRIP[5], RE-
LIFO[1], can be used.

The above work achieves fine granularity by introducing
eviction probability for cache partitioning, but access latency
from core to cache is not fully optimized yet. The victim cache
that the above work selects from multiple candidates may not
be the nearest to the target core, which consequently loses
performance. Therefore, in the next section, this paper tries to
incorporate location distribution of cores and cache resources
into the cache management scheme for reducing cache access
latency.

B. Cache Partitioning Optimization for Low Access Latency
Based on Location Distribution
The layout of cores and cache resources in CMPs varies a

lot. For example, dance-hall layout[19] puts cores and L1
private cache around last-level cache, and Nahalal layout[20]
puts last-level private cache around cores and L1 private cache,
and last-level shared cache is surrounded by cores and L1
private cache. These two layouts have the disadvantages of
poor scalability, which may cause long access latency from
cores to cache resources. Tile-structured layout[21][22] is then
widely used in CMPs because of its simplicity and scalability.
Therefore, the proposed latency optimization strategy is based
on tile-structured layout.

The basic structure of tile-structured CMP is illustrated in
Fig. 1. Each tile contains one or multiple cores, private L1I/D
cache, shared L2 cache, directory structure for cache coherence
and a router for interconnection. Since L2 cache is shared, L2
cache located in a certain tile may be accessed by cores in other
tiles. To make the cache access latency as low as possible, the
network distance between each core and its corresponding
cache resources should be as near as possible.

The basic idea of fine-grained cache management scheme
based on eviction probability is to select a victim block from
cache resources which are governed by cores who have non-
zero eviction probabilities and then transform the victim blocks
to the target core. If the victim blocks are selected without
considering latency optimization, they can be selected
randomly. However, this method would influences the overall

TotalProfit = 0;
TotalT = 0;
/*Dependency upon cache resources of a core is determined by
calculating the hit difference between stand-alone mode and shared
mode */
for (i = 1; i <= N; i++) begin
 Profit[i] = StandAloneHits[i] – SharedHits[i];
 TotalProfit += Profit[i];
end
/*Calculate the expected cache resources of each c=ore */
for (i = 1; i <= N; i++) begin
 T[i] = C[i] × (1 + (Profit[i] ÷ TotalProfit));
 TotalT += T[i];
end
/*Normalize Ti*/
for (i = 1; i <= N; i++)
 T[i] = T[i] ÷ TotalT;
Compute Ei using (1);

Core Private
L1 I/D$

Shared L2$

Directory Routing
Unit

Fig. 1. Basic structure of tile-structured CMP

performance. To optimize the cache access latency, the
selection of victim blocks should be guided with additional
methods.

This paper incorporates location distribution of cores and
cache resources into the cache management scheme for
reducing cache access latency. Each tile maintains a look-up
table, denoted as E-Table. E-Table in a certain tile stores all
core IDs who own part of cache resources in the current tile.
The eviction probabilities of these cores are also stored in the
E-Table. In a tiled CMP, Tile(i, j) denotes the tile located in the
ith row and the jth column, and Core(i, j) denotes the core in this
tile. When Core(i, j) needs to get more cache resources from
other cores, it is clear that the best candidates should be the
cache resources in the current tile. To achieve this, the victim
core is selected from the E-Table instead of from the entire
CMP, since the cores who can be found in the E-Table own
part of cache resources in the Tile(i, j). Therefore, if a core can
be identified in the E-Table and the corresponding eviction
probability is non-zero, this core is a candidate of the victim
core. The selection among these candidates can be random, or
the one with the highest eviction probability is selected. After
this, a victim block is identified from the part of cache
resources which belongs to the victim core in Tile(i, j) by using
the underlying cache replacement policy. If at least one victim
block can be found in Tile(i, j) for replacement, this victim
block is reassigned to Core(i, j) from the victim core.
Otherwise, if no victim block can be found in Tile(i, j), the
search scope is expanded to its neighboring tiles. E-Tables in
the neighboring Tile(i±1, j±1) are searched to find the victim
cores. As long as the required victim blocks are acquired, the
expansion of search scope stops. Fig. 2 illustrates the proposed
cache partitioning optimization for low access latency based on
E-Table. In Fig. 2, cache resources in Tile(i, j) are currently
used by Core(i, j), Core(i-1, j), Core(i-1, j+1) and Core(i, j+1).
Therefore, the IDs of Core(i-1, j), Core(i-1, j+1), Core(i, j+1)
and their eviction probabilities are stored in the E-Table of
Tile(i, j). By searching this E-Table, a victim core can be
selected from these cores with non-zero eviction probability,
for example, Core(i, j+1). Then victim blocks are selected with

existing replacement policy(such as DIP[16]) from cache
resources owned by Core(i, j+1) in Tile(i, j). The selection of
victim blocks will not expand to other tiles unless no victim
block is found in all cache resources in Tile(i, j). In this way,
most of cache accesses of a certain core can be kept in the
current tile or the neighboring tiles, which guarantees the
spatial locality among each core and its corresponding cache
resources, and therefore reduces the overall cache access
latency.

C. Low Cost Consideration about Hardware Implementation
of the Proposed Method
For the hardware implementation of the proposed method,

only little additional hardware changes to traditional cache
structure is required. In practice all cache accesses need to be
tagged with the unique-ID of the core causing the access so that
the cache-controller is able to keep track of occupancy. Since
these requirements are common to all the cache
partitioning/management schemes, the implementation costs of
these requirements are not considered as additional costs of the
proposed method.

As for the computation of eviction probability, only some
hardware counters need to be deployed to provide the number
of cache blocks occupied by each core and the number of
misses during the previous interval for computing Ci and Mi.
These counters are either already present in modern processors
or proposed in earlier works[17]. In addition, it is possible to
round off TotalProfit to the nearest power of 2 and convert the
division to a shift operation. In this way, Ei and Ti can be
computed using addition and shift operations on integers as
long as N and W is a power of two. In Algorithm I, the total
computations(arithmetic operations) performed by this
algorithm ranges from 20 for 4-cores to 160 for 32-cores.

In each tile, the E-Table needs some additional space to
store the IDs and the corresponding eviction probability values
of the cores who has part of cache resources in the current tile.
To reduce the hardware cost, this work stores the eviction
probability values as integers. Experimental results show that
the performance with 6, 8, 10 and 12 bits is very similar to that
of using floating point to represent probability. Hence it is
enough to use only 6 or 8 bits for eviction probability.

IV. EXPERIMENTAL RESULTS

M5 simulator[18] is used in this work to evaluate the
proposed cache management scheme. PriSM[14], Vantage[10],
UCP[8], and PIPP[12] are studied together with our proposal
for comparison. The configuration parameters of the simulator
are listed in TABLE II. Core numbers of 4/8/16/32 are
simulated. Cache line size is 64B. L1 cache has 64KB and is
configured as 2 way. L2 cache is the last-level cache. For 4-
core and 8-core system, L2 cache has 4MB and is configured
as 16 way. For 16-core system, L2 cache has 8MB and is
configured as 32 way. For 32-core system, L2 cache has 16MB
and is configured as 64 way. This paper uses a set of multi-
programmed workloads to evaluate the proposed method,
including 71 workloads: 21 4-core workloads, 16 8-core
workloads, 20 16-core workloads and 14 32-core workloads.
Detailed simulation is carried out until all the programs execute

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

4-co re 8-co re 16-core 32-core

N
o
rm

a
li
ze

d
 A

N
T

T
(G

e
o
M

e
a
n
)

thi s work PriSM UCP PIPP

Core(i,j) Private
L1 I/D$

L2$(i,j)

Directory Routing
Unit

Core(i,j-1) Private
L1 I/D$

Directory Routing
Unit

Core(i,j+1) Private
L1 I/D$

L2$(i,j+1)

Directory Routing
Unit

Core(i+1,j) Private
L1 I/D$

L2$(i+1,j)

Directory Routing
Unit

Core(i+1,j-1) Private
L1 I/D$

L2$(i+1,j-1)

Directory Routing
Unit

Core(i+1,j+1) Private
L1 I/D$

L2$(i+1,j+1)

Directory Routing
Unit

Core(i-1,j) Private
L1 I/D$

L2$(i-1,j)

Directory Routing
Unit

Core(i-1,j-1) Private
L1 I/D$

L2$(i-1,j-1)

Directory Routing
Unit

Core(i-1,j+1) Private
L1 I/D$

L2$(i-1,j+1)

Directory Routing
UniteectctororyyE-Table eectctororyyE-Table eectctororyyE-Table

ee yyE-Table ee yyE-Table eectctororyyE-Table

eectctororyyE-Table eectctororyyE-Table eectctororyyE-Table

L2$(i,j-1)

Fig. 2. Illustration of cache partitioning optimization based on E-Table

200M instructions. The experimental methodology and the
number of instructions simulated are in line with earlier
works[8][10][12][14]. We use Average Normalized
Turnaround Time (ANTT)[15] to summarize performance.
ANTT is defined as

� �� � ����

where is the stand-alone IPC of program in Corei and

 is its IPC when run as a part of the workload. ANTT is

a lower-is-better metric.

A. Performance Comparison with PriSM, UCP and PIPP
Fig. 3 gives the results of performance comparison with

PriSM, UCP and PIPP in terms of ANTT (normalized to that of
LRU). It can be seen that our proposal achieves an average
gain of 19%, 16%, 22.7% and 15% over LRU in the case of 4,
8, 16 and 32 cores respectively. Also our work outperforms
UCP and PIPP at higher core counts. This work achieves 4.9%
and 6.8% gain over PriSM for 16 and 32 cores scenarios. The
main reason why our proposal outperforms related works
includes:

TABLE II. CONFIGURATION PARAMETERS OF M5

Parameter Value

Issue 4

Clock Frequency 4GHz

ROB/IssueQueue/LQ/SQ 96/32/32/32

L1 D/I Cache 64KB 64B Cache Line 2 way

L2 Cache (LLC) 4MB/8MB/16MB 64B Cache Line 16/32/64

way

Number of Cores 4/8/16/32

Parameter Value

Memory Controllers 1/2/4/8

Main Memory Latency 50 cycles

� Fine-grained cache partitioning based on eviction
probability allows each cache set to make its own
decision so as to fully exploit the potential of every
single cache block to gain maximal performance.

� Cache partitioning optimization for low access latency
based on location distribution tracks the relative
spatial information between cores and cache blocks to
always keep the required cache blocks near to the
target cores, therefore reduces the cache access time
of each core.

It can be seen in Fig. 3 that our proposal achieves more
performance improvements for systems with higher core
numbers. The reason is that our proposal only selects victim
cores from a subset of all cores instead of the entire set of cores.
The higher the core number is, the smaller the proportion of
candidate victim cores to all cores is. Therefore the cache
resources are more convergent to their corresponding target
cores, which consequently achieves more latency optimization.

Fig. 4 shows the detailed performance comparison of this
work with PriSM, UCP and PIPP by using 4-core and 32-core
workloads. The results suggest that our work outperforms
related works for most workloads, such as Q7, Q11, T5, T7, T8.

B. Implementation Cost Analysis of Locating Victim Caches
The selection and locating of victim cache blocks directly

influences the overall performance of the proposed cache
partitioning scheme. If the victim blocks can be found in the
local tile, high locality and low latency can be clearly
guaranteed. Otherwise, if the victim blocks fail to be
determined in a single iteration, more iterations are required to
locate the victim blocks by searching the current E-Table for
the other cores in the current tile. If failures happen again, the
E-Tables in the neighboring tiles are then searched. More
iterations mean more additional costs and less locality.
Therefore, the number of iterations should be analyzed to
evaluate the implementation costs.

This paper evaluates the implementation costs by using the
ratio of the number that E-Table items are accessed to the

Fig. 3. Performance comparison with PriSM, UCP and PIPP

(a) Results of 4-core system

(b) Results of 32-core system

Fig. 4. Detailed performance comparison with PriSM, UCP and PIPP for 4-

core and 32-core system

number of cache misses. This ratio is defined as R. The number
that E-Table items are accessed can be retrieved by deploying
hardware counters in each E-Table. Fig. 5 gives the mean
values of R for all cores in 4/8/16/32-core system during 200M
instructions. It can be seen that R value grows a little while the
number of cores grows. Although the proposed method
introduces some additional implementation costs, the cache
access latency are also reduced significantly because of the
improved spatial locality. Therefore, the proposed method still
outperforms related works despite this additional
implementation costs, as described in the previous section.

V. CONCLUSIONS

This paper proposed a low-latency fine-grained dynamic
shared cache management scheme for chip multi-processor,
which proved to outperform related works. The proposed
scheme migrates cache resources among different cores at the
granularity of cache blocks, instead of ways. Fine granularity is
guaranteed by maintaining an eviction probability for each core.
Furthermore, to optimize the cache partitioning scheme for
lower cache access latency, this work introduced innovate E-
Table structure in CMP to record the location distribution of
caches and cores. With the help of E-Tables, the proposal
achieves low-latency accesses by always keeping the required
cache blocks near to the target cores. This paper also
considered reducing hardware costs of the proposal. Only little
additional hardware changes to traditional cache structure is

(a)4-core system

(b)8-core system

(c)16-core system

(d)32-core system

Fig. 5. Implementation cost analysis of locating victim caches in 4/8/16/32-

core system

required. Simulation results suggest significant performance
improvements over related works.

REFERENCES

[1] M. Chaudhuri, “Pseudo-LIFO: the foundation of a new family of
replacement policies for last-level caches,” IEEE/ACM. Symposium on
Microarchitecture(MICRO), December 12-16, 2009, New York, NY,
USA, pp. 401–412.

[2] L. R. Hsu, S. K. Reinhardt, R. Iyer, S. Makineni, “Communist,
utilitarian, and capitalist cache policies on CMPs: caches as a shared
resource,” ACM. Conference on Parallel Architectures and Compilation
Techniques(PACT), September 16-20, 2006, Seattle, Washington, USA,
pp. 13–22.

[3] R. Iyer, “CQoS: a framework for enabling QoS in shared caches of CMP
platforms,” ACM. Conference on Supercomputing(ICS), June 26-July 1,
2004, Saint-Malo, France, pp. 257–266.

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

1. 1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

N
o

rm
al

iz
ed

 A
N

T
T

4

this work PriSM UC P PIPP

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

N
o

rm
al

iz
ed

 A
N

T
T

32

this work PriSM UCP PIPP

1

1.5

Q
1

Q
3

Q
5

Q
7

Q
9

Q
11

Q
13

Q
15

Q
17

Q
19

Q
21

R m
ea
n

1.5

2.5

3.5

E1 E3 E5 E7 E9 E11 E13 E15

R m
ea
n

1

3

S1 S3 S5 S7 S9 S11S13S15S17S19
R m

ea
n

1.5

3.5

T1 T3 T5 T7 T9 T11 T13

R m
ea
n

[4] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. C. Steely, et al.,
“Adaptive insertion policies for managing shared caches,” ACM.
Conference on Parallel Architectures and Compilation
Techniques(PACT), October 25-29, 2008, Toronto, Canada, pp. 208–
219.

[5] A. Jaleel, K. B. Theobald, S. C. Steely, J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” ACM.
Symposimum on Computer Architecture(ISCA), June 19-23, 2010,
Saint-Malo, France, pp. 60–71.

[6] S. Kim, D. Chandra, Y. Solihin, “Fair cache sharing and partitioning in a
chip multiprocessor architecture,” IEEE Computer Society. Conference
on Parallel Architectures and Compilation Techniques(PACT),
September 29-October 3, 2004, Antibes Juan-les-Pins, France, pp. 111–
122.

[7] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, et al., “Gaining insights into
multicore cache partitioning: Bridging the gap between simulation and
real systems,” IEEE Computer Society. Conference on High-
Performance Computer Architecture(HPCA), February 16-20, 2008, Salt
Lake City, UT, USA, pp. 367–378.

[8] M. K. Qureshi, Y. N. Patt, “Utility-based cache partitioning: a low-
overhead, high-performance, runtime mechanism to partition shared
caches,” IEEE Computer Society. Symposium on
Microarchitecture(MICRO), December 9-13, 2006, Orlando, FL, USA,
pp. 423–432.

[9] N. Rafique, W. T. Lim, M. Thottehodi, “Architectural support for
operating system-driven CMP cache management,” ACM. Conference
on Parallel Architectures and Compilation Techniques(PACT),
September 16-20, 2006, Seattle, Washington, USA, pp. 2–12.

[10] D. Sanchez, C. Kozyrakis, “Vantage: scalable and efficient fine-grain
cache partitioning,” ACM. Symposimum on Computer
Architecture(ISCA), June 4-8, 2011, San Jose, CA, USA, pp. 57–68.

[11] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, et al.,
“Molecular caches: a caching structure for dynamic creation of
applicationspecific heterogeneous cache regions,” IEEE Computer
Society. Symposium on Microarchitecture(MICRO), December 9-13,
2006, Orlando, FL, USA, pp. 433–442.

[12] Y. Xie, G. H. Loh, “PIPP: promotion/insertion pseudo partitioning of
multi-core shared caches,” ACM. Symposimum on Computer
Architecture(ISCA), June 20-24, 2009, Austin, TX, USA, pp. 174–183.

[13] S. Srikantaiah, M. Kandemir, Q. Wang, “SHARP control: controlled
shared cache management in chip multiprocessors,” ACM. Symposium
on Microarchitecture(MICRO), December 12-16, 2009, New York, NY,
USA, pp. 517–528.

[14] R. Manikantan, K. Rajan, R. Govindarajan, “Probabilistic shared cache
management (PriSM),” ACM. Symposimum on Computer
Architecture(ISCA), June 9-13, 2012, Portland, OR, USA, pp. 428-439.

[15] S. Eyerman, L. Eeckhout, “System-level performance metrics for multi-
program workloads,” Micro, IEEE, 2008, vol. 28, no. 3, pp. 42 –53.

[16] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, J. Emer, “Adaptive
insertion policies for high performance caching,” ACM. Symposimum
on Computer Architecture(ISCA), June 9-13, 2007, San Diego, CA,
USA, pp. 381–391.

[17] S. Eyerman, L. Eeckhout, T. Karkhanis, J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” ACM.
Conference on Architectural Support for Programming Languages and
Operating Systems(ASPLOS), October 21-25, 2006, San Jose, CA, USA,
pp. 175–184.

[18] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, et al.,
“The M5 simulator: modeling networked systems,” Micro, IEEE, 2006,
vol. 26, pp. 52–60.

[19] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: a 32-way
multithreaded Sparc processor,” Micro, IEEE, 2005, vol. 25, no. 2, pp.
21-29.

[20] Z. Guz, I. Keidar, A. Kolodny, U. C. Weiser, “Utilizing shared data in
chip multiprocessors with the Nahalal architecture,” the twentieth annual
symposium on Parallelism in algorithms and architectures, 2008, pp. 1-
10.

[21] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, et al., “A 48-Core
IA-32 message-passing processor with DVFS in 45nm CMOS,” Solid-
State Circuits Conference Digest of Technical Papers(ISSCC), 2010, pp.
108-109.

[22] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, et al., “On-
Chip Interconnection Architecture of the Tile Processor,” Micro, IEEE,
2007, vol. 27, no. 5, pp. 15-31.

