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Abstract—In order to utilize the shared last-level cache (LLC) 

in chip multi-processors (CMP) more efficiently, the partitioning 
of LLC resources among all cores should have the characteristics 
of low-latency for access, fine granularity for migration and 
simple hardware complexity for implementation. This paper 
proposes a dynamic LLC management scheme to achieve these 
goals. The proposed scheme migrates cache resources among 
different cores at the granularity of cache blocks, instead of ways. 
The quantity of victim cache blocks that each victim core can 
migrate to other target cores are related to an eviction 
probability, which are calculated according to the performance 
goal. Then the victim cache blocks for a target core is chosen 
from the nearest victim core who has non-zero eviction 
probability by introducing innovate E-Table structure in CMP. 
The eviction probabilities are updated periodically. With the help 
of E-Tables, the proposal achieves low-latency accesses by always 
keeping the required cache blocks near to the target cores. And 
fine granularity is guaranteed by maintaining an eviction 
probability for each core. In addition, only little additional 
hardware changes to traditional cache structure is required. 
Simulation results suggest significant performance improvements 
from 6.8% to 22.7% over related works. 

Keywords—cache management; chip multi-processor; low 
latency; fine granularity 

I.  INTRODUCTION 

Research on last-level cache (LLC) management in chip 
multi-processor (CMP) pays more attention to fine granularity, 
low latency and simple implementation in recent 
years[1][2][3][4][5][6][7][8][9][10][11][12]. Finer granularity 
brings more flexibility to guarantee timely repartitioning. And 
lower latency makes cache accesses more efficient. At the 
same time, simple implementation reduces cost. Previous 
works on cache partitioning can be classified into coarse-
grained partitioning[6][8][9][13] and fine-grained 

partitioning[10][14]. As for coarse-grained partitioning, way-
partitioning is popular because of its simplicity of design. 
However, it can be inefficient as it only allows partition sizes 
to grow or shrink by a fixed large size (inversely proportional 
to associativity) while it is possible that the optimal size for a 
partition falls in between. As the number of cores increases and 
becomes comparable to the number of ways, such scenarios are 
likely to occur more frequently. Therefore, cache partitioning 
at finer granularity such as block level is more desirable. 
Vantage[10] achieves block-level cache partitioning, but it is 
only for a portion but not for all of the cache. In addition, the 
implementation cost is pretty large because of significant 
changes to the hardware. Manikantan et al. proposes PriSM[14], 
which manages the cache occupancy of different cores at cache 
block granularity by dynamically controlling their eviction 
probabilities. Moreover, PriSM requires only simple hardware 
changes to implement. However, the selection of victim blocks 
only relies on eviction probabilities, which may cause large 
access latency if the cache block is far from the corresponding 
core. To optimize the overall access latency, a good cache 
partitioning scheme should guarantee that cache blocks 
required by a core are always near to this core. 

This paper proposes a shared cache management scheme 
for CMP, which incorporates the location distribution with the 
eviction probability, to achieve low-latency for access, fine 
granularity for migration and simple hardware complexity for 
implementation. The proposed scheme migrates cache 
resources among different cores at the granularity of cache 
blocks, instead of ways. At first, the performance goal is 
translated into eviction probabilities of each core to determine 
the quantity of victim cache blocks that each core could 
provide. Then, a victim core which is near to the target core 
and has higher eviction probability is chosen to provide the 
victim cache block for replacement. The eviction probabilities 
are updated periodically. The main contributions of this work 
show as follows. 
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� In this work, each core maintains a look-up table, 
denoted as E-Table, to record the occupancy 
distribution of its surrounded cache resources. By 
using these E-Tables, the proposal achieves low-
latency accesses by always keeping the required cache 
blocks near to the target cores. 

� Fine granularity is guaranteed by maintaining an 
eviction probability for each core. Unlike way-
partitioning where the victim core is identified based 
on the number of ways it occupies in the set, this work 
generates a victim-core id in line with the eviction 
probability distribution computed by the allocation 
policy. It also allows each cache set to make its own 
decision and controls the overall cache occupancy of 
each core at the whole cache level. 

� Only little additional hardware changes to traditional 
cache structure is required. Simulation results suggest 
significant performance improvements from 6.8% to 
22.7% over related works. 

The remainder of this paper is organized as follows. In 
Section 1, the motivation is introduced. Section 2 presents the 
proposed cache management scheme in detail. The 
experimental results are described and analyzed in Section 3. 
Section 4 remarks the conclusion. 

II. MOTIVATION 

The adjustment step of cache resources with coarse-grained 
cache partitioning scheme is too large. Consequently, 
theoretical optimal boundaries of cache resources among 
different cores can hardly be achieved. For instance, way-
partitioning increases the allocation at a coarser granularity of 
one way in all the cache sets. In a 16 way cache allocating one 
more way translates to providing 6.25% more cache space. 
And in the case of the 64 and 256 way associative caches 
allocating one more way translates to increasing the occupancy 
by 1.6% and 0.39% respectively. As the cache size remains 
unmodified, the high associative configurations help us mimic 
the impact of partitioning at finer granularities. Increasing 
associativity and the resultant finer-grained control over cache 
occupancy helps improve the performance[15]. But building 
caches of very high associativity entails additional hardware 
and different cache organizations. Hence it is required to 
enable partitioning at granularities finer than that of 
associativity, such as block-level granularity. Block level cache 
partitioning provides the ability to reduce/increase the space 
allocated in steps of 1=N, where N is the number of cache 
blocks. This paper will focus on the research of block level 
cache management scheme to achieve finer granularities, lower 
latency and simpler implementation. 

Allocation and partitioning of shared cache resources are 
the key issues of block-level cache management scheme. The 
allocation method should guarantee that every bit of cache 
resources is owned by one of the cores and no idle cache block 
exists. Vantage[10] has the disadvantage at this point since it 
logically partitions the cache into ‘managed’ and ‘unmanaged’ 
regions and only achieves the desired target occupancy in the 
‘managed’ portion of the cache by borrowing space from the 
unmanaged region, which inevitably wastes the unmanaged 

cache resources. Once all cache resources are allocated to all 
cores initially, partitioning scheme is required to dynamically 
transfer cache resources among different cores to achieve 
certain performance goals. Some questions should be answered 
for this transferring procedure, such as, which cache blocks 
should be transferred (i.e. the selection of victim caches), and 
how many victim cache blocks should be selected and when 
will them be transferred, et al. To answer these questions, the 
performance goals should be translated into the required cache 
resources for each core to determine the difference between the 
current cache utilization and the required cache utilization. 
These differences reflect the eviction probabilities of cache 
resources for each core, since a core who owns more free cache 
resources has more probability to provide victim cache for 
other cores. Therefore, eviction probability distribution can be 
considered as a selection criterion of victim caches. Secondly, 
the selection of victim caches should also consider the access 
latency to achieve more performance. Therefore, the proposal 
aims to achieving low-latency accesses by always keeping the 
required cache blocks near to the target cores, and achieving 
fine granularity by maintaining an eviction probability for each 
core. In addition, only little additional hardware changes to 
traditional cache structure is required. 

III. THE PROPOSED CACHE MANAGEMENT SCHEME 

The details of the proposed cache management scheme are 
described in this section. For the convenience of description, 
TABLE I. defines some common terms used in this paper. N 
denotes the total number of cache blocks. W represents an 
interval of execution, measured in terms of misses in the shared 
cache. The allocation policy re-computes the cache space 
allocated to each core at the end of every interval. Ci is the ratio 
of the cache blocks occupied by Corei to the total number of 
cache blocks. Mi denotes the fraction of misses contributed by 
Corei to the total misses in an interval. Ti is the expected 
occupancy for Corei to meet a certain performance goal. τi 
represents the occupancy likely to be achieved at the end of an 
interval. Ei is the eviction probability of choosing a victim 
block from Corei. 

A. Fine-Grained Cache Partitioning Based on Eviction 
Probability 
In this work, fine granularity is guaranteed by maintaining 

an eviction probability for each core. Unlike way-partitioning 

TABLE I.  DEFINITION OF COMMON TERMS 

Terms Description 

N Number of cache blocks 

W Interval length. Measured in terms of number of cache misses. 

Ci 
Fraction of cache space occupied by Corei at the beginning of 
interval. 

Mi Fraction of Misses caused by Corei at the beginning of interval. 

Ti Desired cache occupancy at the end of interval for Corei. 

i Achieved target cache occupancy of Corei at the end of interval. 

Ei Eviction probability for Corei. 



where the victim core is identified based on the number of 
ways it occupies in the set, this work generates a victim-core id 
in line with the eviction probability distribution computed by 
the allocation policy. It also allows each cache set to make its 
own decision and controls the overall cache occupancy of each 
core at the whole cache level. 

Eviction probabilities of all cores are calculated at the end 
of every interval of W misses. We assume that Corei accounts 
for a fraction Mi of the total misses in a certain interval. 
Therefore, the number of cache misses for Corei is Mi×W. If no 
cache line belonging to Corei is evicted, its cache occupancy 
would have increased from Ci to (Ci+(Mi×W/N)) during the 
interval. However, if eviction probability Ei is considered for 
Corei, Ei×W lines would have been evicted over the interval. 
Therefore the cache occupancy of Corei at the end of the 
interval becomes τi= Ci+((Mi-Ei)×W/N). The objective of the 
cache management scheme is to make τi reach the desired 
cache occupancy Ti as quickly as possible. If τi is not able to 
reach Ti in the current interval, Ei should be set to 0 when 
Ci<Ti(i.e., no cache block from Corei is evicted) and Ei should 
be set to 1 when Ci>Ti(i.e., cache blocks from Corei have the 
highest priority to be evicted). On the other hand, if τi can reach 
Ti in the current interval, Ei can be computed by solving the 
equation Ti=τi= Ci+((Mi-Ei)×W/N). In summary Ei is calculated 
in every interval by using the following equation. 
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According to (1), Ci, Mi and Ti need to be determined first 
before calculating Ei. Ci and Mi can be obtained easily by 
deploying counters per core to provide the number of cache 
blocks occupied by each core and the number of misses during 
the previous interval. Ti is related to the performance goal and 
is computed with well-designed algorithm in this work. This 
paper focuses on Hit Maximization performance goal. 

Hit Maximization tries to provide more cache space to the 
core that has the maximum potential to gain hits. Usually, the 
dependency upon cache resources of a certain core can be 
measured based on how well it is likely to perform if the whole 
cache were assigned to it. The core who has more dependency 
upon cache resources will be assigned more cache blocks. 
Therefore, the expected cache occupancy of Corei, Ti, can be 
computed according to this theory. After this, Ei is determined 
by using (1). The computing of Ti and Ei is shown in Algorithm 
I. 

If a certain core needs to be assigned more cache resources, 
a victim core is selected first from the cores which have non-
zero eviction probabilities. Then a victim block belonging to 
the victim core selected in the first step is identified using the 
underlying cache replacement policy. 

As for the core-selection step, multiple strategies can be 
used. For example, the core who has the highest eviction 
probability can be selected, or the victim core is selected 
randomly from the eviction probability distribution. And as for 
the block-selection step, any existing cache replacement 

ALGORITHM I. COMPUTING OF TI AND EI 

policies, such as LRU, DIP[16], TA-DIP[4], RRIP[5], RE-
LIFO[1], can be used. 

The above work achieves fine granularity by introducing 
eviction probability for cache partitioning, but access latency 
from core to cache is not fully optimized yet. The victim cache 
that the above work selects from multiple candidates may not 
be the nearest to the target core, which consequently loses 
performance. Therefore, in the next section, this paper tries to 
incorporate location distribution of cores and cache resources 
into the cache management scheme for reducing cache access 
latency. 

B. Cache Partitioning Optimization for Low Access Latency 
Based on Location Distribution 
The layout of cores and cache resources in CMPs varies a 

lot. For example, dance-hall layout[19] puts cores and L1 
private cache around last-level cache, and Nahalal layout[20] 
puts last-level private cache around cores and L1 private cache, 
and last-level shared cache is surrounded by cores and L1 
private cache. These two layouts have the disadvantages of 
poor scalability, which may cause long access latency from 
cores to cache resources. Tile-structured layout[21][22] is then 
widely used in CMPs because of its simplicity and scalability. 
Therefore, the proposed latency optimization strategy is based 
on tile-structured layout. 

The basic structure of tile-structured CMP is illustrated in 
Fig. 1. Each tile contains one or multiple cores, private L1I/D 
cache, shared L2 cache, directory structure for cache coherence 
and a router for interconnection. Since L2 cache is shared, L2 
cache located in a certain tile may be accessed by cores in other 
tiles. To make the cache access latency as low as possible, the 
network distance between each core and its corresponding 
cache resources should be as near as possible. 

The basic idea of fine-grained cache management scheme 
based on eviction probability is to select a victim block from 
cache resources which are governed by cores who have non-
zero eviction probabilities and then transform the victim blocks 
to the target core. If the victim blocks are selected without 
considering latency optimization, they can be selected 
randomly. However, this method would influences the overall  

TotalProfit = 0; 
TotalT = 0; 
/*Dependency upon cache resources of a core is determined by 
calculating the hit difference between stand-alone mode and shared 
mode */ 
for (i = 1; i <= N; i++) begin 
 Profit[i] = StandAloneHits[i] – SharedHits[i]; 
 TotalProfit += Profit[i]; 
end 
/*Calculate the expected cache resources of each c=ore */ 
for (i = 1; i <= N; i++) begin 
 T[i] = C[i] × (1 + (Profit[i] ÷ TotalProfit)); 
 TotalT += T[i]; 
end 
/*Normalize Ti*/ 
for (i = 1; i <= N; i++) 
 T[i] = T[i] ÷ TotalT; 
Compute Ei using (1); 
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Fig. 1. Basic structure of tile-structured CMP 

performance. To optimize the cache access latency, the 
selection of victim blocks should be guided with additional 
methods. 

This paper incorporates location distribution of cores and 
cache resources into the cache management scheme for 
reducing cache access latency. Each tile maintains a look-up 
table, denoted as E-Table. E-Table in a certain tile stores all 
core IDs who own part of cache resources in the current tile. 
The eviction probabilities of these cores are also stored in the 
E-Table. In a tiled CMP, Tile(i, j) denotes the tile located in the 
ith row and the jth column, and Core(i, j) denotes the core in this 
tile. When Core(i, j) needs to get more cache resources from 
other cores, it is clear that the best candidates should be the 
cache resources in the current tile. To achieve this, the victim 
core is selected from the E-Table instead of from the entire 
CMP, since the cores who can be found in the E-Table own 
part of cache resources in the Tile(i, j). Therefore, if a core can 
be identified in the E-Table and the corresponding eviction 
probability is non-zero, this core is a candidate of the victim 
core. The selection among these candidates can be random, or 
the one with the highest eviction probability is selected. After 
this, a victim block is identified from the part of cache 
resources which belongs to the victim core in Tile(i, j) by using 
the underlying cache replacement policy. If at least one victim 
block can be found in Tile(i, j) for replacement, this victim 
block is reassigned to Core(i, j) from the victim core. 
Otherwise, if no victim block can be found in Tile(i, j), the 
search scope is expanded to its neighboring tiles. E-Tables in 
the neighboring Tile(i±1, j±1) are searched to find the victim 
cores. As long as the required victim blocks are acquired, the 
expansion of search scope stops. Fig. 2 illustrates the proposed 
cache partitioning optimization for low access latency based on 
E-Table. In Fig. 2, cache resources in Tile(i, j) are currently 
used by Core(i, j), Core(i-1, j), Core(i-1, j+1) and Core(i, j+1). 
Therefore, the IDs of Core(i-1, j), Core(i-1, j+1), Core(i, j+1) 
and their eviction probabilities are stored in the E-Table of 
Tile(i, j). By searching this E-Table, a victim core can be 
selected from these cores with non-zero eviction probability, 
for example, Core(i, j+1). Then victim blocks are selected with 

existing replacement policy(such as DIP[16]) from cache 
resources owned by Core(i, j+1) in Tile(i, j). The selection of 
victim blocks will not expand to other tiles unless no victim 
block is found in all cache resources in Tile(i, j). In this way, 
most of cache accesses of a certain core can be kept in the 
current tile or the neighboring tiles, which guarantees the 
spatial locality among each core and its corresponding cache 
resources, and therefore reduces the overall cache access 
latency. 

C. Low Cost Consideration about Hardware Implementation 
of the Proposed Method 
For the hardware implementation of the proposed method, 

only little additional hardware changes to traditional cache 
structure is required. In practice all cache accesses need to be 
tagged with the unique-ID of the core causing the access so that 
the cache-controller is able to keep track of occupancy. Since 
these requirements are common to all the cache 
partitioning/management schemes, the implementation costs of 
these requirements are not considered as additional costs of the 
proposed method. 

As for the computation of eviction probability, only some 
hardware counters need to be deployed to provide the number 
of cache blocks occupied by each core and the number of 
misses during the previous interval for computing Ci and Mi. 
These counters are either already present in modern processors 
or proposed in earlier works[17]. In addition, it is possible to 
round off TotalProfit to the nearest power of 2 and convert the 
division to a shift operation. In this way, Ei and Ti can be 
computed using addition and shift operations on integers as 
long as N and W is a power of two. In Algorithm I, the total 
computations(arithmetic operations) performed by this 
algorithm ranges from 20 for 4-cores to 160 for 32-cores. 

In each tile, the E-Table needs some additional space to 
store the IDs and the corresponding eviction probability values 
of the cores who has part of cache resources in the current tile. 
To reduce the hardware cost, this work stores the eviction 
probability values as integers. Experimental results show that 
the performance with 6, 8, 10 and 12 bits is very similar to that 
of using floating point to represent probability. Hence it is 
enough to use only 6 or 8 bits for eviction probability. 

IV. EXPERIMENTAL RESULTS 

M5 simulator[18] is used in this work to evaluate the 
proposed cache management scheme. PriSM[14], Vantage[10], 
UCP[8], and PIPP[12] are studied together with our proposal 
for comparison. The configuration parameters of the simulator 
are listed in TABLE II.  Core numbers of 4/8/16/32 are 
simulated. Cache line size is 64B. L1 cache has 64KB and is 
configured as 2 way. L2 cache is the last-level cache. For 4-
core and 8-core system, L2 cache has 4MB and is configured 
as 16 way. For 16-core system, L2 cache has 8MB and is 
configured as 32 way. For 32-core system, L2 cache has 16MB 
and is configured as 64 way. This paper uses a set of multi-
programmed workloads to evaluate the proposed method, 
including 71 workloads: 21 4-core workloads, 16 8-core 
workloads, 20 16-core workloads and 14 32-core workloads. 
Detailed simulation is carried out until all the programs execute  
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Fig. 2. Illustration of cache partitioning optimization based on E-Table 

200M instructions. The experimental methodology and the 
number of instructions simulated are in line with earlier 
works[8][10][12][14]. We use Average Normalized 
Turnaround Time (ANTT)[15] to summarize performance. 
ANTT is defined as 

� �� � ����

where  is the stand-alone IPC of program in Corei and 

 is its IPC when run as a part of the workload. ANTT is 

a lower-is-better metric. 

A. Performance Comparison with PriSM, UCP and PIPP 
Fig. 3 gives the results of performance comparison with 

PriSM, UCP and PIPP in terms of ANTT (normalized to that of 
LRU). It can be seen that our proposal achieves an average 
gain of 19%, 16%, 22.7% and 15% over LRU in the case of 4, 
8, 16 and 32 cores respectively. Also our work outperforms 
UCP and PIPP at higher core counts. This work achieves 4.9% 
and 6.8% gain over PriSM for 16 and 32 cores scenarios. The 
main reason why our proposal outperforms related works 
includes: 

TABLE II.  CONFIGURATION PARAMETERS OF M5 

Parameter Value 

Issue 4 

Clock Frequency 4GHz 

ROB/IssueQueue/LQ/SQ 96/32/32/32 

L1 D/I Cache 64KB 64B Cache Line 2 way 

L2 Cache (LLC) 4MB/8MB/16MB 64B Cache Line 16/32/64 

way 

Number of Cores 4/8/16/32 

Parameter Value 

Memory Controllers 1/2/4/8 

Main Memory Latency 50 cycles 

� Fine-grained cache partitioning based on eviction 
probability allows each cache set to make its own 
decision so as to fully exploit the potential of every 
single cache block to gain maximal performance. 

� Cache partitioning optimization for low access latency 
based on location distribution tracks the relative 
spatial information between cores and cache blocks to 
always keep the required cache blocks near to the 
target cores, therefore reduces the cache access time 
of each core. 

It can be seen in Fig. 3 that our proposal achieves more 
performance improvements for systems with higher core 
numbers. The reason is that our proposal only selects victim 
cores from a subset of all cores instead of the entire set of cores. 
The higher the core number is, the smaller the proportion of 
candidate victim cores to all cores is. Therefore the cache 
resources are more convergent to their corresponding target 
cores, which consequently achieves more latency optimization. 

Fig. 4 shows the detailed performance comparison of this 
work with PriSM, UCP and PIPP by using 4-core and 32-core 
workloads. The results suggest that our work outperforms 
related works for most workloads, such as Q7, Q11, T5, T7, T8. 

B. Implementation Cost Analysis of Locating Victim Caches 
The selection and locating of victim cache blocks directly 

influences the overall performance of the proposed cache 
partitioning scheme. If the victim blocks can be found in the 
local tile, high locality and low latency can be clearly 
guaranteed. Otherwise, if the victim blocks fail to be 
determined in a single iteration, more iterations are required to 
locate the victim blocks by searching the current E-Table for 
the other cores in the current tile. If failures happen again, the 
E-Tables in the neighboring tiles are then searched. More 
iterations mean more additional costs and less locality. 
Therefore, the number of iterations should be analyzed to 
evaluate the implementation costs. 

This paper evaluates the implementation costs by using the 
ratio of the number that E-Table items are accessed to the  

Fig. 3. Performance comparison with PriSM, UCP and PIPP 



(a) Results of 4-core system 

(b) Results of 32-core system 

Fig. 4. Detailed performance comparison with PriSM, UCP and PIPP for 4-

core and 32-core system 

number of cache misses. This ratio is defined as R. The number 
that E-Table items are accessed can be retrieved by deploying 
hardware counters in each E-Table. Fig. 5 gives the mean 
values of R for all cores in 4/8/16/32-core system during 200M 
instructions. It can be seen that R value grows a little while the 
number of cores grows. Although the proposed method 
introduces some additional implementation costs, the cache 
access latency are also reduced significantly because of the 
improved spatial locality. Therefore, the proposed method still 
outperforms related works despite this additional 
implementation costs, as described in the previous section. 

V. CONCLUSIONS 

This paper proposed a low-latency fine-grained dynamic 
shared cache management scheme for chip multi-processor, 
which proved to outperform related works. The proposed 
scheme migrates cache resources among different cores at the 
granularity of cache blocks, instead of ways. Fine granularity is 
guaranteed by maintaining an eviction probability for each core. 
Furthermore, to optimize the cache partitioning scheme for 
lower cache access latency, this work introduced innovate E-
Table structure in CMP to record the location distribution of 
caches and cores. With the help of E-Tables, the proposal 
achieves low-latency accesses by always keeping the required 
cache blocks near to the target cores. This paper also 
considered reducing hardware costs of the proposal. Only little 
additional hardware changes to traditional cache structure is  

(a)4-core system 

(b)8-core system 

(c)16-core system 

(d)32-core system 

Fig. 5. Implementation cost analysis of locating victim caches in 4/8/16/32-

core system 

required. Simulation results suggest significant performance 
improvements over related works. 
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