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Abstract—The ubiquity of mobile devices has brought forth
the concept of participatory sensing, whereby people can collect
and share data from ambient environment for the benefit of
themselves or community. To encourage participation of all
stakeholders and guarantee system functionality, a privacy-
preserving participatory sensing system should be established
to hide querier’s and participant’s sensitive information(e.g.,
interest, location and content). Meanwhile, it is also imperative
for server to provide an accurate and quick service(match
the “need” with “supply” and retrieve the desired result from
collected data set) for queriers when queries and reports are
encrypted to protect privacy. In this paper, we propose Query
and Report privacy-preserving protocol(QueRe) in participatory
sensing system aiming to protect the query privacy and report
privacy without sacrificing the service quality. Security analysis
and performance simulation show our method achieves superior
performance in privacy protection and service quality. To the best
of our knowledge, our work is first attempt for protecting query
privacy and report privacy while considering server’s service
quality.

I. INTRODUCTION

Now over one billion people carry smart phones. They
not only serve as the key computing and communication
mobile device(e.g., smart phones, tablets, and smart wristband-
s), but it also comes with a rich set of powerful embedded
sensors(e.g., cameras, microphones, accelerometers). Coupled
with ubiquity, developments in smart phone technology have
paved the way for designing new paradigm for accomplishing
large-scale sensing. Different from the typical wireless sensor
networks(WSNs), the idea of participatory sensing(PS) [1]
has enabled the emergence of personal and group sensing
applications in which participants collect and share information
in their environments.

Applications of PS system range from people centric
scenarios to environment centric scenarios. In people centric s-
cenarios, participants can monitor and document health-related
issues, such as diet behaviors [2] and individual exposure and
impact to air pollution [3], [4], physical activities [5] and
sport experiences [6], [7]. In environmental centric scenarios,
participants can crowdsource the data about noise pollution
[8], urban air pollution [9] and bus arrival times [10].

It is undeniable that opportunities and benefits provided
by participatory sensing can significantly revolutionize a large
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number of existing applications and ultimately impact our
everyday lives. However, querier and participant may raise a
question: if I initiate a query or upload my report, will or
will not my privacy [11] be revealed to others(e.g, server)?
From the participatory sensing server’s perspective, correct and
real-time sensory data are vital to any sensing task, and their
absence or deficiency will endanger the success of participato-
ry sensing systems. Therefore, an appealing query and report
privacy protection mechanism is needed to increase the users’
participation and ensure the durability of the participatory
sensing system.

In participatory sensing, the privacy of participants in-
clude location, time, identity, preference and health condition
which can be directly obtained by spatiotemporal information,
pictures and sound samples or indirectly inferred from their
frequent visits or same choices over multiple contributions
to sensing tasks [12], [13]. Common techniques to protect
privacy in participatory sensing are pseudonyms [14], [15], k-
anonymity [14], [16]–[19], [22]–[24] and cryptography [15],
[17], [19]–[21].

For querier, if her choice of an interest and location are
not well protected, say, a history of requests is accumulated
by server, then potentially her destination, activity pattern and
even her identity will be inferred. Similarly for participant, if
his choice of an interest and location are not well protected, his
historical trajectory, active region and even his identity will be
inferred. Therefore, only when privacy concerns(e.g., choice
of an interest, location) are eliminated, should more queriers
and participants join in the participatory sensing system and
do their parts right.

[25] presented private information retrieval(PIR) and k-
anonymity to protect query privacy [26]. However, they did not
consider report privacy and make no effort to hide the users
identity from the location based service. [21] adopted bilinear
mapping to protect query privacy and report unlinkability.
However, a secret z is shared among mobile nodes and
queier’s interest and participant’ interest can be inferred if
ciphertext-only attack is launched and two encrypted message
are matched.

Meanwhile, we have not forgotten the motivation of PS
system which is harness the power of crowds to provide
useful information for information-sharing, decision-making,
personalized recommendation, trend forecasting, etc. Querier

978-1-4673-8590-9/15/$31.00 ©2015 IEEE



and participant can choose to opt in or opt out leverage what
kind of useful can be promised and acquired. Hence, service
quality is another factor we can never overlook if we believe
in the functionality of participatory sensing system.

Intuitively, a good service provided by server for querier
is an accurate and quick service. In this work, we use sym-
metric encryption to match querier’s “need” with participant’s
“supply”, which means the matching process is run over
ciphertexts. This raises a challenge for server if it is expected
to locate the exact result querier requested in an accurate
and quick way. Note that asymmetric encryption is adopted
to protect query privacy and report privacy, since shared key
among participants will violate the report privacy which we
will discuss in section V.

In this work, we propose QueRe: query and report privacy-
preserving protocol to protect query privacy for querier and
report privacy for participants(reporters) without sacrificing the
quality of service which is requested by querier. To summarize,
the contributions of our work include:

1) Stronger query privacy and report privacy are added
when compared with previous work.

2) An accurate and quick matching process over cipher-
texts is proposed to guarantee service of high quality.

The rest of this paper is organized as follows. In section II,
we discuss related works. Section III describes preliminaries.
The detailed design of QueRe: query and report privacy-
preserving protocol is presented in section IV. In section V
and VI, we analyze the privacy and performance of QueRe.
Finally, we conclude this paper in section VII.

II. RELATED WORK

A few works have been focusing on query privacy using
different techniques or in different applications.

[25] presented a technique for private information retrieval
that allows a user to retrieve information from a database
server without revealing what is actually being retrieved from
the server. Their algorithm of using a variable-sized cloaking
region divided into VHC cells resulted in location privacy.
However, they did not consider report privacy and make no
effort to hide the users identity from the location based service.

Bilinear mapping was adopted to protect query privacy and
report unlinkability in [21]. Each querier registered herself
with registration authority and obtained a signature to make
a request and mobile nodes reported with a secret and public
key. However, the secret z is shared among mobile nodes and
queier’s interest and participant’ interest can be inferred if
ciphertext-only attack is launched and two encrypted message
are matched. Moreover, one additional hash function is needed
to compute decryption k.

[27] proposed new metrics to measure users’ query privacy
taking into account user profiles. Furthermore, we design
spatial generalization algorithms(for k-ABS, α-USI, β-EBA
and γ-MIA) to compute regions satisfying users’ privacy
requirements expressed in these metrics. [28] defined and
addressed both query and data privacy in the context of Urban
Sensing. However, a secret key was shared between each

sensor and OWN(owner of the network/querier), which is not
a realistic assumption for participatory sensing.

Query dependency which can be derived from users’ re-
quest history was studied in [29] and an approach was present-
ed to compute the probability for a user to issue a query, by
taking into account both users query dependency and observed
requests. They also proposed new metrics incorporating query
dependency for query privacy, and adapt spatial generalization
algorithms in the literature to generate requests satisfying
users’ privacy requirements expressed in the new metrics.

[30] designed two mechanisms using mobile clouds to
preserve data query privacy in mobile mashups. [31] proposed
a new local data perturbation method called Aroma to protect
data under differential privacy while provide query answers as
accurate as possible. [32] addressed the problem of privacy
preservation if the query returns the histogram of rankings
and the framework of differential privacy is applied to rank
aggregation.

To the best of our knowledge, our work is the first
attempt to look at the protection of query/report privacy while
guaranteeing server service quality in the participatory sensing
context.

III. PRELIMINARIES

In this section, we formalize: (i) the entities and operations
involved in a privacy-preserving participatory sensing model,
(ii) privacy assumption, and (iii) design objectives.

A. System Model

Figure 1 shows our system model, which is similar to the
model in [21]. Entities in our model include:

Participants. Each participant carries a mobile device
equipped with embedded sensors. They can report to server
what he knows or cares about since he is looking forward to
getting paid somehow by a commercial server or just helpful.

Querier For most sensing tasks, participants collaborate to
achieve a common goal such that querier can request server to
acquire their desired results and make more rational decisions.

Server. Server initiates sensing task by issuing a public list
of interests and defining specific requirements(e.g., data type,
data length, duration). Before querier can access the result of
the sensing tasks, server will first match querier’ “need” with
participants’ “supply” and send the encrypted result to querier.

Registration Authority(RA). The Registration Authority
handles the application setup with server, as well as registration
of queriers and participants. By generating and distributing
cryptographic parameters, RA plays an important role in
protecting query privacy and report privacy (which we will
explain in section 3.2).

Network Provider(NP). Network provider manages the
network used to collect and deliver query and sensor re-
port (e.g., they maintain GSM and/or third/fourth generation,
3G/4G, networks). As the network provider already knows the
participants’ location, so involving this role does not increase
the risks for the querier’s or participant’s privacy.

Operations in our model include:
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Fig. 1: Query and Report Privacy Protecting Protocol

Setup. RA and server co-establish and issue a list of
interests(e.g., nearest gas station, cheapest mall, underground
parking spot) and they respectively choose and generate their
own cryptographic parameters(e.g., symmetric encryption al-
gorithm, private key and public key). (RA and server should
also acquire valid certificates from certificate authority.)

Participants Registration. When the list of interests are
issued, participant registers his sensor-equipped device to the
RA and acquires two keys corresponding to his interest and
report time.

Report. Participant send his knowledge about certain inter-
est to the server which stores the encrypted message. Also, no
information about what information is collected or who/where
the participant is should be revealed to the server.

Querier Registration. When the list of interests are issued,
querier registers her device to the RA and acquires a pair
of keys corresponding to her interest and query time(will be
transformed into a time interval for computation).

Query. Queriers initiates an query to the server to obtain a
specific type of result and awaits for the responses containing
her desired result. No information about what information is
needed or who/where the querier is should be revealed to the
server.

Query Execution. Receiving query and report, server
first decrypts the encrypted tag and matches reports with
query subscriptions. As we designed, this should be done
blindly, meaning server cannot know what information is
needed/collected or who/where the querier/participant is.

List Searching. After collecting enough reports, server will
have to first match a new query “need” with stored “supply” in
the growing list of interest and then return the accurate report
to the querier. Note that we require high matching accuracy and
efficiency from the server with powerful computing capability.

List Maintaining. Remember that the pair of keys obtained
by querier is only effective regarding one certain interest and
time. Therefore, server needs to update the list of interest when
new pair of keys are used to issue queries or when it is notified
by the RA.

B. Privacy Assumption

In this paper, we adopt a realistic assumption: the server
cannot be trusted and service fee is charged when querier
initiates a query to server. Before entering the details of our
privacy requirements, we observe that the main purpose of a
participatory sensing application is to allow queriers to obtain
desired result. More importantly, we aim to protect query
privacy and report privacy at the same time. The definition of
correctness, query privacy and report privacy are given below:

Definition 1. (Correctness) Let Qi be the querier of a query
to the server. We say that correctness is guaranteed if upon
subscribing to a query, Qi obtains her desired result (assuming
server has stored corresponding report).

Definition 2. (Query Privacy) Let Qi be the querier of a query
to the server. We say that query privacy is guaranteed if (i)
any malicious adversary has just a negligible advantage over
a random guess of the identity, location, time or query interest
of Qi, (ii) different queries originating by the same querier
cannot be linked to the source and (iii) Q’s interest cannot be
inferred as the same as another querier’s interest.

Definition 3. (Report Privacy) Let Pi be the owner of a report
to the server. We say that report privacy is guaranteed if (i)
any malicious adversary has just a negligible advantage over
a random guess of the identity, location, time or report interest
of Pi, (ii) different reports originating by the same participant
cannot be linked to the source and (iii) P ’s interest cannot be
inferred as the same as another participant’s interest.

Furthermore, we assume the server will not collude with
other stakeholders and querier may be not acquainted with
participants, yet they all can be honest-but-curious. In this
paper, we do not consider the denial-of-service (DoS) attack in
various protocol layers [33], [34] where the adversary prevents
the querier from getting any result at all.

C. Design Objectives

In this paper, we mainly aim to protect query privacy and
report privacy as defined in last subsection. Meanwhile, it is
also imperative that server can still provide service of high
quality when operating on encrypted queries and reports.

Besides the objective on privacy preservation, the design
should also have:

1) high service accuracy: complete the matching process
with a high accuracy of retrieving the result.

2) low service response time: server completes the
matching process with an acceptable period of time.

IV. QUERY AND REPORT PRIVACY-PRESERVING

PROTOCOL

In this section, we present the protocol QueRe: Query
and Report privacy-preserving protocol that satisfies the above
design objectives.

A. A Simple Case

A querier Q wishes to access the participatory sensing
network for information regarding her interest and time (e.g.,



TABLE I: Key Notations

Notation Definition

Q querier Q
P participant P
t time interval

int certain interest
pubkserver public key of server
prikserver private key of server
pubkint,t public key of a int within t
prikint,t private key of int within t

TagQ tag computed by Q to identify interest
TagP tag computed by P to identify interest
Enc asymmetric encryption algorithm
Dec asymmetric decryption algorithm
M integer number reducing the size of the ciphertext
m bit length of M
n maximum number of results per interest
N maximum number of interests that server can store
o number of optional results for each querier(1 < k < n)
b bit length of ciphertext after AES encryption

“Nearest Nearest French Restaurant, Time Square, NYC, 1900-
2100, Mar 10”) in the public list. She first registers with RA
and retrieves a pair of keys < pubKint,t, priKint,t >. Then
she can compute an encrypted tag AESTagQ on her tag TagQ
identifying what she needs:

TagQ = int||t, (1)

AESTagQ = AESAESprikint,t
(TagQ)(TagQ) mod M (2)

and send her query Encpubkserver
(TagQ||r) to server, where

M (= 2m) simply reduces the size of the AES tag for quicker
matching, and it barely affects data retrieving or security and
r is a random number.

Intuitively, a random function which is not invertible can
be used like SHA-1. However, SHA-1 is not as fast as
AES because AES is implemented in hardware on modern
processors.

A voluntary participant P hoping to help others seeking
answers to interest int first registers with RA and retrieves two
keys < pubkint,t, AESprikint,t

(int||t) >. Then he computes
his encrypted tag AESTagP identifying what he offers and
send his report < Enc1, Enc2 > to server where

TagP = intQ||tP , (3)

AESTagP = AESAESprikint,t(TagP )(TagP ) mod M, (4)

Enc1 = Encpubkserver
(AESTagP ||r1), (5)

Enc2 = Encpubkint,t
(data||tP ||r2). (6)

When server receives a query and a report, it first decrypts
the query and the first part of report:

Tag
′

Q = Decprikserver
(Encpubkserver

(AESTagQ||r)), (7)

Tag
′

P = Decprikserver
(Encpubkserver

(AESTagP ||r1)). (8)

If Match(AESTagQ, AESTagP ) = 1(after removing
the two random numbers in the rear of the concatena-
tions), then server sends Encpubkint,t

(data||t||r2) to Q, or
Encpubkint,t

(“Not reported yet”||int||t) is returned.

Store

Decrypt UpdateMatch

Querier

Server

Participants
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Reports

Result

Fig. 2: Work Flow of QueRe

We require that whenever server receives a report, it will
store the real tag after decryption and encrypted result for
further matching. At last, Q can obtain her desired answer
by decrypting Decprikint,t

(Encpubkint,t
(data||t||r2)) and re-

moving random number r2 in the rear of the concatenation.

B. A General Case

When server has collected enough tags and encrypted
results, it can answer a new query (possibly containing tags
encrypted with a previous prikint||t not long ago) by searching
the stored and growing list of real tags and encrypted result.
Note that we induce an integer M to reduce the size of
the ciphertext such that matching process is accelerated and
bandwidth overhead is reduced.

Instead of running full search on the list of tags and results,
Q can obtain her desired result through 1-out-of-N oblivious
transfer (OT) [35]–[37], only if tags and corresponding results
are sorted and the prior knowledge of order is shared between
RA and Q. The general idea of 1-out-of-N OT is receiver
only obtains one secret from sender who has N secrets and
sender does not know which secret is transferred to receiver
while receiver has no information about other secrets when the
interaction is over.

If a match is found and multiple encrypted results are
attached, server can choose to return just one result(which may
not solve querier’s problem) or all of them(which definitely
incurs great communication overhead). Here, we let the querier
have o(o = 5) optional results at most.

As the reports from participants grow with time and
different participants joining in the system, server will certainly
have to maintain the public list of interest and the encrypted
answers in database. A simple solution is to kset a upper bound
to the number answers with same tag and automatically delete
the least “fresh” answers.

Figure 2 shows the general work flow of QueRe.

V. PRIVACY ANALYSIS

We now consider privacy properties of QueRe.

Correctness. Since each participant has
AESprikint,t

(int||t), the understanding of private key of



a querier, from RA, he can use it to generate a tag as same as
the querier’s. Then server can find the matching tags through
decryption and random number removal. Remember that
integer M is induced to reduce the size of the ciphertext and
we will see how this affects correctness in section VI.

Query Privacy. Definition 2 is indistinguishability-based:
at a high level, given two tags and an encryption of one of
these two sets of tags, no polynomial-time adversary can tell
with chance better than half, which of the two sets of tags
were encrypted. In other words, the adversary gains no side
information from the encryption scheme.

Definition 4. (Query Security) Consider a scheme with algo-
rithms (Setup, Enc, Match) and associated message space M.
Let Adv be a p.p.t. stateful adversary with oracle access to
QueRe. Consider the following experiment.

ExpAdv(1
k):

1: k0, k1,K0, ...,Kl−1 ← Setup(1k)
2: QTag0, QTag1 ← Adv(1k)
3: b← {0, 1}, a random bit.
4: c0 ← Enc(k0, QTag0) and c1 ← En(k1, QTag1)
5: Adv(1k)← cb
6: ri ← Enc(Ki, RTagi), i ∈ 0, ..., l − 1
7: Adv(1k)← (r0, ..., rl−1)
8: b′ ← Adv(1k)
9: Let 1 be the output of Match fuction.

If b′ = b, output “Success”, else output “Fail”.

We say that the scheme is secure if for all p.p.t. stateful
adversaries Adv, and for all sufficiently large k:

Pr[ExpAdv(1
k) = “Success”] ≤ 1/2 + negl(k)

In this security definition, the adversary Adv chooses two
queries QTag0 and QTag1, receives an encryption of one
of these at random (the bit b controls which query will be
encrypted) and then tries to guess b by outputting b′. The
adversary succeeds if his guess b′ equals b. and we want to
ensure that the attacker dos not learn anything from the scheme
other than knowing matching has been found.

For preciseness, we provide the construction of the scheme
here too. For simplicity, we consider security after the query
and report are first decrypted into AES tags in server, because
this coincides with the assumption that server cannot be
trusted.

CONSTRUCTION Π
The setup algorithm Setup(1k): Generate AES keys.
The encryption algorithm AES(·,·):
1: For each i ∈ {0, 1}, do:

1.1: keyi = AES(ki, QTagi).
1.2: Compute ci = AESkeyi

(QTagi) mod M.
3: Output ci, i ∈ {0, 1}.

The security of our scheme relies on the standard crypto-
graphic assumption that AES is pseudorandom permutation.

Theorem 1. Assuming that AES is a pseudorandom permuta-
tion, our construction Π is a query secure scheme.

Proof: We now prove security. We prove security through
a hybrid. The hybrid replaces the AES encryption of tags
with deterministic random values, based on the pseudorandom
security property of AES. This results in an experiment in
which the distribution of encryptions of QTag0 and QTag1
are statistically equal and thus indistinguishable, proving our
theorem. Hybrid. The AES algorithm is replaced with random
values. Concretely:

1: For each i ∈ {0, 1}, generate a random value randi in
the ciphertext space of AESk, with the only restriction that it
preserves equality.

2: Compute ci = randi mod M .

3: Output ci, i ∈ {0, 1}.

Lemma 1. LEMMA 2. Assuming AES is a pseudorandom
permutation, for all p.p.t. stateful adversaries Adv, for all
sufficiently large k:
Pr[ExpAdv(1

k) = “Success”] ≤ Pr[ExpAdv,Hybrid(1
k) =

“Success”] + negl(k).

Proof: The proof follows directly from the pseudorandom
property of AES, which means that AESk is computationally
indistinguishable from a random oracle.

Hence, no adversaries from the server end can tell anything
between two AES tags. Note that, additional encryption using
a random number has been put on AES tags such that no
adversaries impersonating participants can learn anything from
the communication between queriers and server. Since inputs
vary with different queries, (ii) and (iii) in Definition 2 can be
guaranteed.

Report Privacy. Definition 3 is also indistinguishability-
based, we do not explicitly prove it here, since it is similar to
the proof procedure above.

VI. PERFORMANCE ANALYSIS

When evaluating QueRe, we aimed to answer questions.
First, what are the setup time for server to be ready for the
first query? Second, what are the performance overheads of
QueRe at server? Third, how is the accuracy of QueRe?

Our prototype of QueRe runs on two server with 2.40 GHz
Intel i5-2430M CPU and 4 GB RAM. All of our experiments
were performed on this testbed. For the asymmetric encryption,
we use RSA and the bit length b of ciphertext after AES
encryption is 1024. In each experiments behind the figures
below, we took an average of a hundred runs.

A. Setup Time

We first look at the setup time for server before it answers
any queries. Here, by setup time, we mean the time consumed
in the collection and decryption of participants’ reports. Figure
3 shows our average setup time for server to collect N reports
and decrypt them to obtain AES tags(then store these tags
in database). From the results we can see that setup time
increases linearly with N . When this phase is complete, server
can hopefully provide information to queriers and inevitably
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expand its database for a wide selection of service. In real
scenarios, server can receive reports and begin matching at
the same time in order to save time.

B. Matching Time

After the setup is finished, we see how quickly server
responses to a query. Now the server has collected enough
reports and obtained the corresponding AES tags. A query
has been initiated to server. Server decrypts the query using
its private key and begin matching with the stored tags. We
conducted in two scenarios where N = 2000 and N = 6000,
both of which are performed with and without mod operation.
As depicted in figure 4, the matching time has dropped about
10% when the nod operation is adopted and it is worthwhile
to note that the time difference between experiments without
mod operation and ones with mod operation will become even
bigger if much larger N is used.

C. Accuracy

To reduce the matching time of “need” with “supply”,
we used an integer number M to shorten the length of
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AES tags and then begin lookup. The advantage has already
been shown in the subsection above, however, doing this will
raise another question: how accurate if the AES tags are
modified? By “accuracy”, we mean the proportion of the exact
report(assuming only one matching report has been stored in
server) to answer the query in all the reports which are matched
and returned. For example, in figure 6, we can see the accuracy
maintains 100% until M = 213 which is quite an acceptable
number for network transmission.

VII. CONCLUSION

When taking part in participatory sensing, queriers and
participants instinctively want to hide their sensitive informa-
tion, making the protection of query privacy and report privacy
essential for functionality in participatory sensing system. The
transformation on original interest and report will lead to
obstacles for server in providing high-quality service. In this
paper, we proposed QueRe to overcome the gap between those
two problems. Security anaysis has prived that QueRe can
protect query privacy and report privacy regarding our strict
definitions. Performance evaluation results have shown that



with an acceptable length of modified tags our scheme can
provide accurate and quick service to the queriers.
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