
Self-Adaptive Anonymous Communication Scheme
Under SDN Architecture

Tingting Zeng∗, Meng Shen∗†, Mingzhong Wang‡, Liehuang Zhu∗, Fan Li∗
∗Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications,

School of Computer Science, Beijing Institute of Technology, P. R. China
†Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, P. R. China

‡Faculty of Arts and Business, University of the Sunshine Coast, Queensland, Australia

Email: {wilmaztt, shenmeng, liehuangz, fli}@bit.edu.cn; mwang@usc.edu.au

Abstract—Communication privacy and latency perceived by
users have become great concerns for delay-sensitive Internet
services. Existing anonymous communication systems either pro-
vide high anonymity at an expense of prolonged latency (e.g.,
mix-net), or offer better real-time performance by sacrificing
the ability against traffic analysis attacks (e.g., Onion Routing).
The emerging Software-Defined Networking (SDN) introduces
additional challenges to communication anonymity, due to the
existence of a centralized controller that has a global view of the
entire network traffic.

In this paper, we propose a new anonymous communication
scheme for delay-sensitive services under SDN scenarios, which
can simultaneously protect communication privacy and reduce
the end-to-end latency. A self-adaptive method based on the mix-
net framework is designed to dynamically modify the waiting
threshold of mix nodes, which helps to reduce the communication
latency. In order to preserve the degree of anonymity, the
self-adaptive method is incorporated with a random walking
strategy for packets forwarding. Both theoretical analysis and
experimental results prove that our scheme provides a moderate
degree of anonymity and effectively reduces the latency derived
from mix-net by up to 50%.

Index Terms—Privacy Preservation; Self-Adaptive; Anony-
mous Communication; Software-Defined Networking (SDN)

I. INTRODUCTION

The diversification of network services and applications has

imposed great challenges on the traditional rigid network-

ing architectures. As an emerging approach to meet these

challenges, Software-Defined Networking (SDN) appears to

be more flexible, dynamic and future-proofing. Among the

leading reference implementations of SDN, OpenFlow [2, 3]

defines a standard for communications between control and

data planes. In the OpenFlow protocol, a centralized controller,

which has a global view of the entire network, is employed

to calculate appropriate routes for each flow. Functions of

switches degenerate to only deal with data packets passively

according to forwarding rules made by the controller. The

tremendous power of controllers raises privacy concerns when

user traffic traverses the network based on OpenFlow. If

network operators are curious about the interactions between

endpoints, they could easily perform traffic analysis on records

collected at the controller.
In traditional networking scenarios, anonymous communi-

cation has attracted much research attention. A variety of

anonymous communication systems have been proposed to

hide the relationship between a user and its communication

correspondences. The mix-net is referred to as the first anony-

mous communication system [4]. The basic idea of mix-net

is to batch relaying messages through a path of “mixes” by

wrapping them in layers of public-key cryptography, and hide

the correspondence between the input and output of each

mix by delaying and re-ordering. Although anonymity is well

protected, it introduces relatively high latency. Therefore, this

scheme can only be applied to delay-tolerant applications, such

as e-mails.

In order to improve communication efficiency, anonymous

communication systems with low latency are proposed. The

most popular one is Tor [8], which is derived from onion

routing. In Tor, each onion router knows only its predecessor

and successor. Therefore, any individual router cannot infer

the ultimate source or destination of a message. However,

Chakravarty et al [12] put forward a method that can reveal

the actual sources of anonymous traffic. This approach is

based on correlation analysis of network traffic and achieves

81.4% accuracy in real-world experiments. These findings

raise an increasing number of privacy concerns, because the

assumption of controlling a particular server in [12] is no

longer necessary in SDN scenarios.

Based on the discussions above, it is clear that for

latency-sensitive applications (e.g., web browsing), achieving

anonymity and real-time performance simultaneously remains

a great challenge in SDN scenarios. In this paper, we present

the design of an anonymous communication scheme, which

can resist global traffic analysis attacks and provide low

communication latency.

Inspired by the mix-net system, we also employ the mix

strategy at intermediate nodes to provide high anonymity.

The end-to-end latency in mix-net is mainly caused by the

traffic-agnostic forwarding policy at mix nodes, i.e., each

mix node keeps the received packets for a fixed amount of

time before sending them out, unaware of the traffic load.

Based on this observation, we introduce a self-adaptive method

that dynamically modifies the waiting threshold of mix nodes

according to varying traffic loads.

Since the source routing strategy is adopted in both mix-
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net and Tor systems, the self-adaptive method may reduce

the confusion caused by mixing operations and thereby in-

crease the risk of traffic analysis attacks. To address this

challenge, we employ the random walking strategy, instead of

the source routing, to avoid the communication relationships

being deanonymized when forwarding reply messages back

to the source. The self-adaptive method incorporated with the

random walking strategy can achieve the goals of our design.

To evaluate the effectiveness of the proposed scheme, we

verify the degree of anonymity on the basis of Shannon

entropy and theoretically analyze its anonymity against node

collusion. In addition, we implement the scheme in Mininet

and conduct extensive simulations on the impact of the self-

adaptive strategy. Experimental results demonstrate that our

scheme can provide high degree of anonymity and reduces

the communication latency.

The main contributions of this paper can be summarized as

follows:

• We propose a new anonymous communication scheme

for delay-sensitive services under SDN scenarios, which

ensures both anonymity and real-time performance.

• We put forward a self-adaptive method to dynamically

modify the packet forwarding threshold at mix nodes, ac-

cording to real-time network loads and user preferences.

• We theoretically analyze the degree of anonymity in

our scheme, which shows our superiority in anonymity

compared with the classic Crowds system.

• We conduct experiments using real user traffic data to

show the efficiency of our scheme, which reduces the

latency by at most 50%.

The remainder of this paper is organized as follows. Section

2 summarizes the related works in the fields of anonymous

communication systems. Then we elaborate our anonymous

communication scheme in Section 3. The theoretical and ex-

perimental evaluations of our scheme are presented in Sections

4 and 5. Finally, we conclude this paper in Section 6.

II. BACKGROUND AND RELATED WORK

In traditional networking scenarios, the field of anonymous

communication has attracted a considerable amount of re-

search attention. Motivated by the need for anonymity in net-

work communications, a variety of anonymous communication

systems have been proposed, which can be roughly classified

into two categories. The first category is designed for high-

latency anonymity networks, including mix-based systems like

Mix-nets [4], Babel [19], Mixmaster [21] and Mixminion [20],

which tries to increase the anonymity at the cost of prolonging

communication latency. The second category is proposed for

latency-sensitive scenarios. Typical designs include Onion

Routing [7, 8, 13] and P2P-based schemes (e.g., DC-nets [6],

Crowds [5], MorphMix [22] and Tarzan [9]). Compared to

the first category, these systems can provide better real-time

performance, but are more fragile in face of traffic analysis

attacks.

Mix-net. Proposed in 1981, Mix-net is the first anonymous

communication system [4]. The basic idea of Mix-net is

to batch relaying messages through a path of “mixes” by

wrapping them in layers and delaying for hours and re-

ordering in each mix. Although the anonymity is securely

protected, it introduces relatively high latency. Therefore, this

scheme can only be applied to delay-tolerant applications, such

as e-mails.

Onion Routing. The most popular communication system

with low latency is the second-generation Onion Routing, i.e.,

Tor [8], improved by Dingledine. Tor is the most widely used

volunteer-run network distributed across the world [14]. This

scheme is based on circuit established by a number of proxy

nodes called Onion Routers (ORs) and each OR knows only

the predecessor and successor in a circuit. Therefore, any

individual OR cannot infer the ultimate source or destination

of a message.

Although Tor introduces few artificial delays to guarantee

the real-time performance, the approach is obviously vulner-

able to traffic analysis attacks. After a number of previous

works, i.e., [11, 12, 14, 17], Chakravarty et al [12] proposed a

new method to reveal the actual source of anonymous traffic

by performing a statical correlation analysis on Netflow data,

which can be collected by most Cisco routers with traffic

monitoring functionalities. This approach achieves 100% ac-

curacy in lab and 81.4% in real-world experiments. It is worth

mentioning that, this approach can be implemented more easily

in SDN scenarios, because the assumption of controlling a

particular server in [12] is no longer necessary.

Compared with previous works, we insist that the main

contributions of our research is to give consideration to both

the real-time performance and the ability to resist a global

traffic analysis attack of delay-sensitive services under SDN

scenarios.

III. SYSTEM DESIGN

In this section, we start by outlining our design goals,

then have a discussion on the threat model and assumptions,

and finally describe our system model in details. In addition,

we also develop a method to achieve trade-offs between

anonymity and real-time performance.

A. Design Goals

Our scheme seeks to frustrate attackers in their attempt to

link communication partners or to link a certain user with mul-

tiple communications. The most important two requirements

of the communication under SDN architecture are real-time

performance and the ability to resist a powerful global traffic

analysis attack. So the main goal of our scheme is to achieve

a higher anonymity than the existing low-latency schemes

while make a suitable and tolerable compromise to real-time

performance.

B. Threat Model and Assumptions

First of all, the target application of our design is web

browsing under SDN architecture. We aim to protect user’s

communications privacy against curious attackers. So in this

work, we mainly focus on the adversary on the side of a SDN



Controller. We consider the adversary is global and powerful-

enough that can take advantage of the logging information

collected from OpenFlow switches to perform passive traffic

analysis attacks which resembles to the method of Chakravarty

et al [12]. In addition, we assume that the Controller-side

adversary would not perform active attacks such as deviating

from the protocol or selectively denying service to some

requests, in the consideration of the fact that he is an internet

service provider who need to guarantee the usability of the

network.
Secondly, our scheme is based on social relations, and

more specifically, on the foundation of group organized by

a number of people who are in the same organization, such as

a department or a school. The fact that there may be someone

who are curious about others’ communication privacy should

be considered, but an honest member in the group can be

trusted not to leak or share the information he knows.

C. System Model

Our scheme is to establish an overlay network based on mix-

net and random walking. The network consists of a number of

nodes as members within a certain group. Each node registers

only once and is associated with a local public-private key pair.

The legality of each node can be verified by the organizer in

the process of registration.
Each node has three kinds of identities listed as follows.

• Client node, from whom the traffic originates;

• Proxy node, who is responsible for collecting data re-

quested by a client node;

• Mix node, who stores and shuffles the received messages,

and forwards them to another mix node or a proxy node.

Messages are classified into 5 types: RELAY, REQUEST,

REPLY, KEY and KEYBACK as shown in Table I.

TABLE I: Format of Each Type of Messages

RELAY Local ID Rest Length Proxy IP Data

REQUEST Source ID Transaction ID Data

REPLY Transaction ID Pieces Count Piece ID Data

KEY Circuit ID KEY or ProxyID||E(gx)

KEYBACK Circuit ID KEYBACK or gy ||H(k||SourceID)

Before the nodes exchange transaction messages, they first

choose a number of proxy nodes from all the others in the

group, and negotiate a session key with each proxy node using

the key establishing messages similar to Tor, one hop at a time,

so that the proxy node would receive a key negotiating request

but not get the identity of the clients. The proxy nodes also

need to assign a Source ID to each client node, in order to

recognize where a corresponding reply should be sent back.

Besides the session keys negotiated with their chosen proxy

nodes, each node also shares a symmetric key with others for

basic communications. For convenience, we define the first

type of key as P-key, and the latter one as S-key.

pqt  The path of REQUEST messages and REPLY messages

r          Downloading files from server

s          Sending the files back to the corresponding rendezvous

Mix Node 1

Client Node

Mix Node 2

Mix Node 3

 (rendezvous)

Proxy Node

Fig. 1: The process of message interaction in our scheme

When a client node intents to browse a web page, it need to

send a HTTP request to the corresponding web server to fetch

the pages. In our scheme, as shown in Fig. 1, this process goes

through five steps:

Step 1. The client node randomly selects a proxy node PN
and construct a REQUEST message. The Source

ID indicates which P-key should be used by PN ,

and the Transaction ID is for receiving the reply

messages. The client node encrypts its HTTP re-

quest with the corresponding P-key as the data field,

and wraps the REQUEST message in a RELAY

message with a Local ID. Here the Local ID is

a tag for recognizing which are the corresponding

reply messages. Each Mix node maintains a map of

< LocalID,LastID >. When a mix sends reply

messages back to a previous node, it should look up

the map, and tell its previous node which the replies

belong to. The value in the rest length field is used

as a time-to-live counter, which should be decreased

by one before the data being forwarded to another

mix node.

Step 2. Note that the client node is also a mix node. Thus,

before sending out the new RELAY, the node needs

to check whether it has received several batches

of indeterminate amount of RELAY messages from

other nodes. Every mix node should follow such a

strategy, as shown in Algorithm 1. There are two

parameters maintained in every node, a threshold

N and a timeout T . During a period of T , denote

the number of messages a mix node Mi receives

and stores as ni. If ni is greater than or equal to

N , the mix node sends all the messages to their

corresponding proxy nodes. Otherwise, the mix node

continues to wait. Once the timeout is triggered, the

mix node either sends the stored messages directly to

their corresponding proxy nodes with a probability

of ni

N
, or relays the messages to another randomly

selected mix node with a probability of 1− ni

N
. Any



message with the Rest Length field being 0 should

be discarded immediately. We refer to the last mix

node before the proxy as rendezvous.

Step 3. When receiving a REQUEST message, the proxy

decrypts it with the corresponding P-key, relays it to

the actual destination and fetches the required web

pages from the servers.

Step 4. The proxy divides the pages into pieces, which have

different sizes and are labeled with a sequence of

Piece IDs. Then these pieces are distributed to mul-

tiple mix nodes and relayed back to the rendezvous

of the client. The forwarding strategy at each mix

node is the same as described in Step 2.

Step 5. The rendezvous re-orders all the received pieces and

checks the completeness of the required pages. If they

are incomplete, the rendezvous requests the missed

pieces; Otherwise, it sends the ordered REPLY mes-

sages to the client via the same path.

Algorithm 1 Forwarding Strategy of a Mix Node

Require: N : the current value of threshold N
Require: T : the current value of timeout T
Require: Sequence : a sequence of messages coming into a mix

node during the last period
1: while TRUE do
2: ni ← getLength(Sequence)
3: tc ← getCurrentT ime()
4: if ni ≥ N then
5: Send all Sj in Sequence to their proxy node
6: else
7: if tc − S0.time > T then
8: if

ni

N
> random(0, 1) then

9: Send all Sj in Sequence to their proxy node
10: else
11: Send all Sj (Sj .RestLength = 0) in Sequence

to their proxy node
12: Send all Sj (Sj .RestLength 6= 0) in Sequence

to another mix node

D. Trade-offs Between Latency And Anonymity

Based on the above process, the dominant latency is caused

by the mixing and random walking phases in Steps 2 and

4. Each relay along the random walk path might introduce

delays by collecting sufficient messages to maximize the effect

of confusion. Therefore, the latency is mainly determined

by three factors, namely the length of the relay path L, the

threshold N and the timeout T at each mix node.

The length of the relay path L is initially set by the client

node in the field of Rest Length in RELAY message, and

plays an important role in limiting the basic latency of the

random walking. The other two factors are controlled by

each mix node. Considering that our scheme is based on the

interaction between users in the group, more active interactions

will definitely lead to communications with better anonymity,

however, at an expense of longer delays. In order to make our

scheme more applicable to real-time sceneries, we propose a

self-adaptive method to dynamically and periodically change

these two parameters.

The challenge here is how to determine the density of

activity of a group in a certain period of time. Once a mix node

meets any condition of forwarding the messages, we refer to it

as a saturated transmission if the threshold N is reached, or

an unsaturated transmission, otherwise. Because every next-

hop node is selected randomly, a single node cannot accurately

predict the time sequence of the following messages coming

into it, we thus choose to take measures on rough estimation.

More specifically, we record the count of each saturated

and unsaturated transmissions in a certain period of t seconds,

and calculate the proportion of the saturated transmission to

represent the fitness of the current two parameters. The fitness

indicator is used to adjust the above parameters.

Algorithm 2 Calculating Parameter Values for Next Period

Require: Sequence : a time sequence of messages coming into a
mix node during the last n periods

Require: S : a evaluation criterion to decide the range in which to
change the values

Require: [Nmin, Nmax] : a tolerable range of threshold N
Require: [Tmin, Tmax] : a tolerable range of timeout T
Require: Nc : the current value of threshold N
Require: Tc : the current value of timeout T

1: Tupper = Tmax

2: Tlower = Tmin

3: Rs ← countSaturated(Sequence)
⊲ Calculate the proportion of saturated transmission

4: if Rs > S then

5: if
(Rs+1−2S)N

1−S
> Nmax then

6: Nupper = Nmax

7: else

8: Nupper = (Rs+1−2S)N
1−S

9: Nlower = Nc

10: else

11: if
(Rs+S)N

2S
< Nmin then

12: Nlower = Nmin

13: else

14: Nlower = (Rs+S)N
2S

15: Nupper = Nc

16: Nbound = (Nlower, Nupper)
17: Tbound = (Tlower, Tupper)

18: for k = 0 through kmax (exclusive) do
19: Tem← temperature(k/kmax)
20: (Nrand, Trand)← pick(Nbound, Tbound)

⊲ Pick up a pair of value randomly
21: dE = E(Nrand, Trand, Sequence)−E(Nc, Tc, Sequence)
22: if dE ≥ 0 or exp(dE/Tem) > random(0, 1) then
23: (Nc, Tc) = (Nrand, Trand)

return the final result (Nc, Tc)

Algorithm 2 depicts the process of how to calculate proper

values for these parameters in the next period, based on the

information collected in the last n periods.

At the beginning, all members in the group need to deter-



mine several indictors for the parameter adjustment, including

a metric S, the weight of real-time performance wr, the weight

of mix performance wm = 1 − wr, and the range of N and

T that they could tolerate. If the proportion of the saturated

transmission Rs is larger than S, we enlarge the threshold N
to at most 2N . On the contrary, if the proportion Rs is less,

N will be reduced a little to a minimum of N
2 .

Then we employ another factor, i.e., timeout T . In order

to balance the effect of these two parameters, we apply

simulated annealing algorithm in our scheme. The search

space of T is just the whole range, which has already been

determined by users. Then we limit the search space of N to

[N, (Rs+1−2S)N
1−S

] for Rs > S, or [ (Rs+S)N
2S , N ] for Rs ≤ S.

Therefore, the threshold achieves its maximum value of 2N
when Rs = 1 and its minimum value of N/2 when Rs = 0.

The cost function of a pair of values in simulated annealing

algorithm can be defined as follow:

E(Nrand, Trand, Sequence) = wr t̄+ wm

Nmax −Nrand

Nmax
(1)

where the t̄ is the average latency in a mix node during the

last n periods in the condition that the threshold is Nrand and

the timeout is Trand.

The weight of these two parts is set by users, which

enables flexible adjustment between latency and anonymity.

For instance, if users prefer to lower latency, they can set

wr larger than wm. On the contrary, if they consider the

mix performance to be more important, they can increase

the weight of the second part. After several iterations, the

Algorithm can calculate desired values of the two parameters.

IV. THEORETICAL ANALYSIS

In this section, we evaluate the proposed scheme by the-

oretical analysis on anonymity against collaborating nodes,

and make several comparisons between the effects in different

conditions.

A. Evaluation Model

To quantify the anonymity against collaborating nodes pro-

vided by our scheme, we use the entropy metric [23] in the

following discussion. Entropy metric considers attacker that

obtains probabilistic information about users. After observing

the anonymous network, the attacker assigns to the different

users as being the originator of a message. The most widely

used mechanism for analyzing anonymous communication is

Shannon entropy, which is computed as:

H(X) =
N
∑

i=1

−pilog2(pi) (2)

where i corresponds to each possible sender being the origi-

nator of a message in the anonymity set of size N , and pi is

their corresponding probability assigned by attackers after the

attack has taken place.

We denote the entropy of the whole network by H(X) and

the maximum entropy by HM . For an actual size of anonymity

set, the HM will be log2N when all users in the anonymity

set appear as being the originator with the same probability of
1
N

in an ideal situation. The information an attacker benefits

from the observation can be expressed by HM −H(X), and

the degree of anonymity of the network can be defined as:

d = 1−
HM −H(X)

HM

=
H(X)

HM

(3)

where d quantifies the amount of information leaked to the

attackers ranging from 0 to 1. The combined degree of

anonymity across all possibilities is calculated as

d =
K
∑

i=1

pidi (4)

where K is the number of all possibilities, di is the degree

obtained in different situation and pi is the occurrence proba-

bility of each situation.

On this basis, we consider the scenario where a message

arrives at a malicious mix node Am which is collaborating

with the corresponding proxy node Ap. A client chose a

proxy node randomly from his trust list, while this proxy

node may be a malicious node which is curious about the

identity of the client. We assume that Ap organizes a group

of collaborating nodes G. Let N be the number of users, and

C be the number of collaborators in the collaborating group

including Ap. Taking account of the fact that the nodes in

G controlled by collaborators should be excluded from the

anonymity set, the size of anonymity set is N − C, and the

maximum entropy HM should be equal to log2(N − C).
As shown in our scheme discussed above, the first col-

laborating mix node in the path knows only the identity of

its immediate predecessor. We denote the predecessor by M ,

and its probability of being one of the originators of the

messages by pM . As prepared, we denote by Hk the event

that the first collaborator occupies on the k-th position of the

path, where the originator occupies on the 0-th position. Then

Hk+ = Hk∨Hk+1∨ . . .∨Hl, where l is the maximum length

of the path. Let O denote the event that the first collaborator

Am is directly preceded by the originator. On this basis, we

can define the probability that the predecessor of a collaborator

node is the originator as P (O|H1+). Here pM = P (O|H1+).
To calculate P (O|H1+), we first note that the probability

of Am occupying on the i-th position is

P (Hi) =
C

N
(
N − C

N
)i−1

i−1
∏

j=0

Pf j
(5)

where Pf j
is the probability of forwarding of the j-th node on

the path. Based on Eq. 5 , we can deduce that the probability

of Am occupying behind the first and second position are

P (H2+) =
C

N

l
∑

k=2

P (Hk)

=
C

N

l
∑

k=2



(
N − C

N
)k−1

k−1
∏

j=0

Pf j



 (6)



P (H1+) = P (H1) + P (H2+)

=
C

N

l
∑

k=1



(
N − C

N
)k−1

k−1
∏

j=0

Pf j



 (7)

Then based on Eq. 6 and the intuitive fact that P (O|H1) = 1
and P (O|H2+) =

1
N−C

, the probability of Am being directly

preceded by the originator P (O) can be derived as follows

P (O) = P (H1)P (O|H1) + P (H2+)P (O|H2+)

=
C

N
Pf 0 +

1

N − C
P (H2+) (8)

Finally, we can get the probability of the predecessor of Am

being the originator :

pM = P (O|H1+) =
P (O)P (H1+|O)

P (H1+)
=

P (O)

P (H1+)
(9)

and the probability assigned to other honest nodes is

pmi =
1− pM

N − C − 1
(10)

Similarly, we denote the predecessor node of Ap by D, and

lkey the length of path in key negotiation prase. We can obtain

the probability of D being the originator assigned by Ap:

pD =
C + 1− qlkey−1

N(1− qlkey )
(11)

and the probability assigned to other honest nodes is

pdi =
1− pD

N − C − 1
(12)

where q = N−C
N

represents the probability of choosing a

honest node as the successor node on the key negotiation path.
Next, we have to consider the benefit obtained from both

Ap and Am. Let E denote the event that the originator is

immediately preceded by at least one of Ap and Am, and Bi

denote the event that node i is the originator.
So if M and D are the same node, the probability of the

each honest node i being the originator assigned by attackers

can be expressed as:

pi = P (Bi|E) =















pM + pD − pMpD
∑N−C

i=1 P (E|Bi)
i = M

pmi + pdi − pmipdi
∑N−C

i=1 P (E|Bi)
i 6= M

If M and D are different, then the probability of each honest

node i can be expressed as:

pi = P (Bi|E) =



































pM + pdi − pMpdi
∑N−C

i=1 P (E|Bi)
i = M

pmi + pD − pmipD
∑N−C

i=1 P (E|Bi)
i = D

pmi + pdi − pmipdi
∑N−C

i=1 P (E|Bi)
i 6= M and i 6= D

The entropy H(X) is:

H(X) =

N−C
∑

i=1

−pilog2(pi) (13)

so given that a collaborator of the corresponding malicious

proxy node is on the path, the degree of anonymity is

dC =
1

N − C

H(X|M = D)

HM

+
N − C − 1

N − C

H(X|M 6= D)

HM

=
H(X|M = D) + (N − C − 1)H(X|M 6= D)

(N − C)HM

(14)

Furthermore, the situation where the message goes only

through honest mix nodes also need to be considered. The

probability is

PH =

l
∑

i=0



(1− pf i)(
N − C

N
)i

i−1
∏

j=0

pf j)



 (15)

and the degree of anonymity in such a situation will be dH = 1
because the collaborators cannot obtain any information of the

originator.

Therefore, the combined degree of anonymity

d = pH + (1− pH)dC (16)

B. Comparison between different parameter settings

For illustration purposes, we compare the four primary

factors influences, including N , C, l and lkey .

Firstly, we explore the benefits from different lkey and C, as

shown in Fig. 2. For convenience, the horizontal axes in the

figures are the forwarding probabilities of each node which

are assigned consistently. In both Figs. 2a and 2b, where

the percentage of collaborators is respectively 10% and 40%,

the degree of anonymity is proportional to lkey and inversely

proportional to C. But taken as a whole, our scheme can

provide a much higher degree of anonymity than Crowds [5].

In addition, we can find that the effect of lkey gets smaller

as the amount of collaborators C increases. In short, a larger

lkey can provide users a higher degree of anonymity, but only

in a proper range.
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Fig. 2: Degree of Anonymity with different lkey and consistent

Pf in each nodes (N = 500, l = 5)

Secondly, we compare the benefits from different l in Fig.

3a. It shows that the variation of d when N = 500, C = 100
and lkey = 10. We can discover that the degree of anonymity

is in proportion to the maximum length of the forwarding path



l when pf > 0.5. In spite of the fact that the effect of pf for a

particular l is unfixed, it is convergent if l is large enough. In

addition, by comparing Figs. 3a and 3b, we can find that the

degree of anonymity is inversely proportional to the quantity

of clients when the value of C/N is fixed. But it will have no

significant effect until N is more than 1000. Similar with lkey ,

the increase of l is also a promotion impact to users’ privacy

protection to some extent.
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Fig. 3: Degree of Anonymity with different l and consistent

Pf in each nodes (lkey = 10)

Finally, we find the relationship between the percentage of

collaborators and degree of anonymity. In Fig. 4a, we make a

comparison between results obtained using consistent Pf and

randomly distributed Pf . Here we randomly assign l different

values of forwarding probability to each node on the relaying

path, and calculate an average degree of anonymity among

10000 various combinations. As shown in Fig. 4a, it is similar

to the case where Pf = 0.5. Both Figs. 4a and 4b show that

d is inversely proportional to the ratio of collaborators, but it

still keeps a level higher than 0.5, in spite of the percentage

of collaborators reaching up to 50%.
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V. SIMULATION AND EVALUATION

In this section, we evaluate the proposed scheme by sim-

ulative experiments using real-world user traffic data [22] to

show the efficiency of our scheme, including the resistance to

traffic analysis attack and the performance of web browsing.

A. Simulation Model

To evaluate our scheme, we construct a virtual network with

30 virtual hosts using the well-known simulator Mininet [24].

Each host is referred to as a client. The web browsing behavior

log data set for Internet users is publicly available in [22],

which provides 1000 randomly selected user behavior logs

between May 7th and August 12th in 2012. To simulate the

web browsing behavior in the data set, we run an automated

HTTP browser on each client to download the index pages.

Clients firstly request the HTML page and then recursively

request the dependent assets, such as CSS, JS and images. All

experiments run on a computer with an Intel Core 2 CPU and

2GB memory.

B. Resistance to Traffic Analysis Attack

Except the kind of adversary discussed in previous section,

another adversary model that needs to be considered is the

global eavesdropper. In this paper, we assume that SDN

Controller is actually a powerful global eavesdropper, who can

observe all the traffic flows traversing the network. Motivated

by the mix-net, we employ the mixing phrase to eliminate

potential correlations between the traffic entering into and

leaving from an individual node. We simulate a communica-

tion between a client and a server. The client requests a page in

the size of 10M from the server. During their communication,

we use SDN to control the pattern of the traffic flow out of

the server. Without anonymous method, the traffic pattern back

into the client will be similar to the controlled pattern [12].

Then we make a comparison between effects of our mix-based

design and the non-mix design, as shown in Fig. 5. The non-

mix design, where nodes forward traffic without the mixing

phase, exhibits high similarity between the traffic from the

server and to the client node. Therefore, the adversary can

infer it is the real client from its maximum similarity with the

controlled pattern. The correlation between the two types of

traffic flows has been disturbed by our scheme.
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Fig. 5: Comparison between mix-based and non-mix designs

C. Web Browsing Performance

The results in Fig. 6a indicate that, it takes 20 seconds on

average to download 1MB of web content with no anonymiza-

tion, about 40 seconds with our scheme if the parameters of



0.0 0.5 1.0 1.5 2.0 2.5

0
2

0
4

0
6

0
8

0
1

0
0

Size (MB) of all page content

T
im

e
 (

s
) 

to
 d

o
w

lo
a

d
 p

a
g

e

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●
●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

No Anonymity

w=0.2

w=1

fixed N = 50

(a) Download times

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

HTML Pages Download Time (s)
C

D
F

No Anonymity

w=0.2

w=0.5

w=1

fixed N = 50

(b) CDF

Fig. 6: Download times for Web pages with different options

mix-net are fixed to N = 50 and T = 3s. Then we introduce

trade-off strategy to other anonymized cases, and let the N
ranges from 10 to 100, and T from 1 to 5 seconds. We make a

comparison between the fixed trade-off strategies, and vary the

w from 0.2 to 1. In these cases, the consume can be minimized

to 25 seconds when the weight of real-time performance in the

trade-off strategy is set by 1.

Fig. 6b shows a CDF of the page download times. In a

non-anonymity situation, the first 50% of web pages can be

downloaded within 10 seconds. While in the situation where

the parameters of mix-net are fixed, the first 50% of web pages

takes a little more than 30 seconds. Through the adjustment of

our trade-off strategy, the download times of the first 50% of

web pages can be minimized from 25 seconds to 15 seconds

when wr varies from 0.2 to 1. Furthermore, in 20 seconds, the

N-fixed method only received about 30% content, while our

scheme can reach up to 70%. Our scheme allows the users to

flexible adjustment according to their own experience.

VI. CONCLUSIONS

In this paper, we propose a self-adaptive anonymous com-

munication scheme to protect user’s communications privacy

when their network is being observed and controlled by

OpenFlow Controllers. To meet the requirements on real-time

performance and anonymity, we combine mix-nets and random

walks method to eliminate the threat of traffic correlation

analysis, and propose a self-adaptive method to maximize the

real-time performance to a certain extent. Our experimental

results demonstrate that our scheme can actually cover the

shortages on high latency which result from mix-nets. In the

future, we plan to extend our scheme to more applications and

evaluate the proposed scheme in real SDN environments.
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