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Abstract—The popularity of mobile devices has far expand-
ed the application scenarios of spatial crowdsensing, due to
its ability to provide fine-grained multi dimensional sensor
readings associated with location information. Privacy is one
of the fundamental issues in crowdsensing, as these location-
based sensor readings may reveal identities or activities of
participants. In this paper, we adopts the state-of-art location
privacy definition geo-indistinguishability, provide an efficient
and effective privacy preserving histogram aggregation mech-
anism BFMM (Bit Flipping Matrix Mechanism) for fine-grained
multi dimensional location-based data. Theoretical analyses and
experimental results demonstrate the efficiency and effectiveness
of our approach for fine-grained multidimensional location-based
data. Specifically, the aggregation accuracy of our approach
averagely outperforms existing methods by a factor of number
of buckets in the histogram.

I. INTRODUCTION

Stimulated by the popularity of personal mobile devices,

spatial crowdsensing has recently been a fast growing paradig-

m for gathering and learning from data. With the engage-

ments of a crowd of participants equipped with sensor-rich

mobile devices, spatial crowdsensing enables a plenty of

location-based collective applications ranging from people-

centric scenarios (e.g. crowd mobility monitoring in [1]) to

environmental-centric scenarios (e.g. urban noise mapping in

[2], bus arrival time prediction in [3]). In many of these

collective applications, histogram aggregates are the funda-

mental intermediate results between gathered location-based

data and high-level distilled information. Such as, histograms

representing multi dimensional joint distributions (e.g. counts

of location-noise pairings for urban noise mapping), and his-

tograms representing transition matrix (e.g. counts of location-

location transitions for crowd mobility monitoring).

As the demand for more functionalities and better quality

of services (QoS) grows in spatial crowdsensing applications,

fine-grained multi dimensional sensing data is needed to

feed these applications. As a consequence, big histograms

(histograms with reasonably large number of buckets) are

emerging in spatial crowdsensing. Specifically, to achieve

better quality of services, spatial crowdsensing applications

call for high-resolution location and other sensing data from

participants. Moreover, usually a bunch of sensor readings (e.g.

temperature, noise and ambient light) is being collected simul-

taneously to deliver rich functionalities in these applications.

On the other hand, privacy is a fundamental issue in crowd-

sensing, and collecting fine-grained multi dimensional sensing

data from participants makes it even more severe. These

high-resolution location data precisely reveals participants’

whereabouts or even identities. What’s worse, other readings

of sensors may also implicitly leak sensitive information of

participants [4].

Several pieces of methods have been proposed in the

literature to preserve privacy in spatial crowdsensing. Many

of them use spatial cloaking techniques (e.g. in [5]) by

generalizing exact locations with coarse-grained ones, some

(e.g. [6]) further impose k-anonymity or l-diversity constraints

to adaptively choose the degree of granularity of locations.

However, k-anonymity or l-diversity model along with data

generalization techniques is volatile to privacy adversaries

with background knowledge, and spatial cloaking sacrifices

granularity of locations thus makes high-resolution location

retrieval nearly impossible.

Recently, geo-indistinguishability [7] is proposed to achieve

the state-of-art differential privacy for locations, and guides an-

other piece of methods that use data perturbation techniques to

preserving location privacy. In [7], Laplacian noises is added to

a location’s coordinates to preserving geo-indistinguishability,

further in [8] and [9], randomized response techniques are used

to obtain optimal location utility in location-based systems

(LBSs) under geo-indistinguishability constraints. Unfortu-

nately, these methods involve high computational overheads

and achieve poor aggregation accuracy for fine-grained high

dimensional data, where big histogram aggregates are needed.

In concise, existing methods for privacy preserving spatial

crowdsensing are not suitable for applications demanding fine-

grained high dimensional sensing data, for their limited privacy

protection or poor accuracy performance.

In this paper, we aim at designing an efficient and effec-

tive privacy preserving histogram aggregation mechanism for

fine-grained and (or) high dimensional location-based data.

As opposed to existing geo-indistinguishability mechanisms

that randomized response with locations or location-based

data in the original domain, bit flipping matrix mechanism

(BFMM) proposed in this paper randomized response with

a location set. As a result, occurrence rate of each location

is less constrained by number of locations, and much better

estimation accuracy is achieved for big histogram. In our

mechanism, privacy of both location and other sensor readings

is considered. Same as locations itself, sensor readings may

potentially risk participants’ privacy, thus distinguishability is

also limited for sensor readings in our mechanism. The main

contribution of this work is summarized as follows:

– We proposed a geo-indistinguishability histogram aggre-

978-1-4673-8590-9/15/$31.00 ©2015 IEEE



gation mechanism BFMM for multi dimensional data.

Privacy for both location and multi dimensional sensing

data is considered in the mechanism.

– We offer efficient algorithms implementing the BFMM

mechanism along with analyses of their theoretical error

bounds for histogram estimation.

– We conduct extensive experiments to evaluate proposed

mechanism and algorithms. The experimental results

demonstrate that the histogram estimation accuracy of

our approach averagely outperforms existing approaches

by a factor of |S|, which is the number of buckets of the

histogram.

The remaining of the paper is organized as follows. Sec-

tion II introduces our aggregation system model and privacy

definition for multi dimensional location-based data. Section

III proposes BFMM mechanism. Section IV provides efficient

algorithmic implementations of BFMM and their theoretical

error bounds. Section V gives experimental results of our

approach on various spatial crowdsensing scenarios. Section

VI reviews related privacy preserving approaches for spatial

crowdsensing. Section VII concludes the whole paper.

II. DEFINITIONS

In this section, we introduce our privacy preserving aggrega-

tion system model for location-based data, and formal privacy

definition for locations and multi dimensional sensing data.

A. System Model

There are N participants and one aggregator in the aggre-

gation system, and the aggregator needn’t to be trustable for

participants. Let ui denotes the i-th participant in the system,

and li be the truly location of ui, mi be the spatial data ui

observed, where li ∈ L and L is the set of points of interests

(POIs), mi ∈ M and M is the set of all possible discrete

sensor readings.

The spatial data mi here may represents multi dimensional

sensing data or even location, e.g. mi is the pairing of air

temperature and ambient light on location li or the next move

of the participant since being location li. Without loss of

generalization, we simply denote data associated with location

li as mi for participant ui.

Since directly informing the aggregator the truly location-

based data si = (li,mi) breaches privacy (as the aggregator

might be a privacy adversary), the participant ui releases only

a sanitized random data s′i probabilistically by applying a geo-

indistinguishability mechanism K̃ on (li,mi). As illustrated

in Fig 1, sanitized data s′i = K̃(li,mi) in our mechanism

is a bit array representing a subset of domain of (li,mi).
After receiving all N sanitized reports from participants, the

aggregator estimate statistical information (e.g. frequencies

over domain of si) about locations and spatial data from

{s′1, s
′
2, ..., s

′
N}.

Note that the aggregator is not a trustable party for par-

ticipants in our system model, and every participant takes

responsibility for privacy protection of their own location-

based data. The participants sanitize their location-based data
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Fig. 1: Spatial crowdsensing aggregation model.

locally and independently before sending it to the aggregator,

thus privacy is protected without relying on the aggregator or

other participants.

B. Privacy Definition

Geo-indistinguishability [7] is a notion for location privacy,

it provides quantified indistinguishability of reported answers

between any pairing of truly locations. Let metric d(La, Lb)
denotes the distance between location La ∈ L and Lb ∈ L,

d(La, Lb) will be used to control the relative level of indis-

tinguishability between sanitized random data S′
a = K̃(La)

and S′
b = K̃(Lb). The d(La, Lb) is usually set as Euclidean

distance between location La and Lb though it can be any

distance metric.

Definition 1 (ǫ-geo-indistinguishability [7]): A randomized

mechanism K̃ gives ǫ–geo-indistinguishability iff for all pos-

sible pairings La and Lb belong to L, and all T ⊆ range(K̃),

Pr[K̃(La) ∈ T ] ≤ exp(ǫ · d(La, Lb)) · Pr[K̃(Lb) ∈ T ].

Metric d(La, Lb) in ǫ-geo-indistinguishability implies that

we should report relatively similar answers when La and Lb

is close due to privacy concern, and report distinguishable

answers when La and Lb is far away from each other. By

contrast, in the definition of differential privacy [10], indistin-

guishability metric d(La, Lb) is identical for all possible pair-

ings, thus isn’t suitable for locations. Metric d(La, Lb) defines

relative distance or indistinguishable level between locations,

meanwhile ǫ serves as a resilient multiplicative parameter to

designate absolute indistinguishable levels. The choice of ǫ
may differ in variety spatial crowdsensing scenarios, we can

choose smaller ǫ for more rigid privacy preserving, and choose

larger ǫ for potentially better data utility.

Intuitively, geo-indistinguishability is a generalization of

differential privacy, and can be taken as privacy definition for

universal data (as in [11], also known as data obfuscation [9]),

including multi dimensional location-based data. For preserv-

ing privacy of other sensor readings besides location itself,

here we slightly extends ǫ-geo-indistinguishability towards a

unified and elastic privacy definition for multi dimensional

location-based data s = (l,m).
Similar as for location data l, indistinguishable levels (or

distances) between multi dimensional location-based data s
should firstly be defined. For a pair of location-based data

sx = (La,Mc) and sy = (Lb,Md), Euclidean distance or



Manhattan distance of sx and sy can be used as indistin-

guishability metric. Specially, since different sensor readings

has different levels of sensitivity for participants’ privacy,

usually relative weights are assigned for different dimensions

of location-based data in distance metric. A relatively small

weights for a sensor reading specify that relatively small

indistinguishability is allowed for different readings of the

sensor, hence relatively rigid privacy constraints are applied.

Therefore, a relatively small weights should be assigned for

location dimension as it’s highly sensitive information for a

participant, and we can assign relatively large weights for

air temperature or ambient light readings. Formally, we may

define distance metric between multi dimensional location-

based data sx = (La,Mc) and sy = (Lb,Md) as follows:

d(sx, sy) = ‖(wl · La − wl · Lb, wm ·Mc − wm ·Md)‖c ,

where c is dimensionality of metric, when c = 1, Manhattan

distance is applied, and when c = 2, Euclidean distance is

applied. The wl is the relative weights for location data, wm

denotes the relative weights for other sensor readings. We now

propose our privacy definition for multi dimensional location-

base data in definition 2.

Definition 2 (ǫ-geo-indistinguishability for location-

based data): A randomized mechanism K̃ gives ǫ-geo-

indistinguishability iff for all possible pairings sx = (La,Mc)
and sy = (Lb,Md) belong to L×M , and all T ⊆ range(K̃),

Pr[K̃(La,Mc) ∈ T ] ≤ exp(ǫ ·d(sx, sy)) ·Pr[K̃(Lb,Md) ∈ T ].

Despite the domain of data under consideration, there is

no difference between ǫ-geo-indistinguishability in definition

2 and definition 1. The ǫ-geo-indistinguishability for location-

based data in definition 2 simply replaces location data l ∈ L
with multi dimensional location-based data s ∈ S, where S =
L×M denotes the set of all possible value of s. Therefore, in

the following sections, only the more general location-based

data s ∈ S and its distance metric d = {d(sx, sy) | sx, sy ∈ S}
are discussed.

III. BIT FLIPPING MATRIX MECHANISM

Recall that in our system model, a participant ui holds secret

location-based data si of domain S, then releases a sanitized

data s′i = K̃(si) that satisfying ǫ-geo-indistinguishability

to the aggregator, the aggregator learns frequencies over

domain S (namely histogram over S) from sanitized set

{s′1, s
′
2, ..., s

′
N} contributed by N participants.

We now introduce Bit Flipping Matrix Mechanism (BFMM)

as geo-indistinguishable mechanism K̃. We firstly charac-

terize bit flipping matrix, then its constraints under ǫ-geo-

indistinguishability.

A. Bit Flipping Matrix

In BFMM, taken as input the secret location-based data

si ∈ S, a subset of S is randomly chosen as output with

well-designed probability mass assignment. Denote the a-th

element of S as Sa, we can represent Sa as a bit array, e.g.,

Sa ∈ {0, 1}|S|, where the a-th bit of Sa is set as 1, while

other bits are set as 0. To satisfy constraints due to ǫ-geo-

indistinguishability, BFMM flips every bit in the bit array of

Sa. Specifically, for every bit array Sa ∈ S, BFMM flips the

k-th bit in the array to 1 with a probability Fa,k ∈ [0, 1], where

a, k ∈ {1, ..., |S|}.

Algorithm 1 Bit Flipping Matrix Mechanism

Input: Bit flipping matrix F ∈ [0, 1]|S|×|S|, a participant’s

location-based data si, where si = Sa ∈ S
Output: A bit array s′i = S′

a ∈ {0, 1}|S| after bit flipping

1: for k = 1 to |S| do

2: S′
a,k = 0

3: Set S′
a,k = 1 with probability Fa,k

4: end for

5: return S′
a

Formally, we define bit flipping matrix F ∈ [0, 1]|S|×|S| as

the matrix of probabilities to flip each secret bit in array Sa

to 1, and Fa,k is the probability flipping the k-th bit of array

for location-based data Sa to 1. Conventionally, Fa,a ≥ 0.5,

and Fa,k ≤ 0.5 when a 6= k, that is, the ones in bit array Sa

remains one with a relatively high probability, and the zeros

in bit array Sa remains zero with a relative high probability.

Given bit flipping matrix F , as presented in Algorithm 1,

BFMM flips k-th bit of Sa to 1 with probability Fa,k.

B. Privacy Constraints

In the former subsection, algorithm 1 establishes the basic

technique in BFMM towards ǫ-geo-indistinguishability, further

in theorem 1, we formalize constraints of bit flipping matrix

F for achieving ǫ-geo-indistinguishability under matric d.

Theorem 1 illustrates that for all pair of rows in F , the differ-

ences of flipping probability must be limited by exponential

absolute distance between the corresponding location-based

data Sa, Sb ∈ S.

Theorem 1: The bit flipping matrix F for domain S satis-

fies ǫ-geo-indistinguishability under indistinguishability metric

d = {d(Sa, Sb) | Sa, Sb ∈ S}, iff for all possible pairings Sa

and Sb belong to S,

∏

k=1..|S|

max{
Fa,k

Fb,k
,
1− Fa,k

1− Fb,k
} ≤ exp(ǫ · d(Sa, Sb)). (1)

Proof: Let S′
a and S′

b denotes the sanitized version of

Sa and Sb that randomized with bit flipping matrix F , where

Sa, Sb ∈ S and a 6= b, then we have:

max{
Pr[S′

a = t]

Pr[S′
b = t]

| t ∈ {0, 1}|S|}

= max{
∏

k=1..|S|

(
Fa,k

Fb,k
)[tk=1] · (

1− Fa,k

1− Fb,k
)[tk=0] | t ∈ {0, 1}|S|}

=
∏

k=1..|S|

max{(
Fa,k

Fb,k
)[tk=1] · (

1− Fa,k

1− Fb,k
)[tk=0] | tk ∈ {0, 1}}

=
∏

k=1..|S|

max{
Fa,k

Fb,k
,
1− Fa,k

1− Fb,k
}.



iff) We have max{
Pr[S′

a=t]

Pr[S′

b
=t]

| t ∈ {0, 1}|S|} ≤ exp(ǫ · d(Sa, Sb)),

hence
∏

k=1..|S| max{
Fa,k

Fb,k
,
1−Fa,k

1−Fb,k
} ≤ exp(ǫ · d(Sa, Sb)).

if) We have
∏

k=1..|S| max{
Fa,k

Fb,k
,
1−Fa,k

1−Fb,k
} ≤ exp(ǫ · d(Sa, Sb)),

hence max{
Pr[S′

a=t]

Pr[S′

b
=t]

| t ∈ {0, 1}|S|} ≤ exp(ǫ · d(Sa, Sb)).

IV. IMPLEMENTATION

In bit flipping matrix mechanism, there are unlimited po-

tential choices of bit flipping matrix F satisfying ǫ-geo-

indistinguishability. Among them all, we seek for best choices

regarding error bounds for histogram estimation under com-

putational constraints. Naturally, finding the optimal choices

of bit flipping matrix F can be formalized as an optimization

problem under privacy constraints in theorem 1 minimizing

histogram estimation error. However, the original optimization

problem involves with |S|2 constraints on |S|2 variables, and

the objective function is non-linear, whereas, our goal is to

provide an efficient and effective aggregation mechanism for

big histogram where the location-based data domain |S| is

relatively large, thus it is not practical for implementation.

Actually, even finding a feasible bit flipping matrix F under

ǫ-geo-indistinguishability constraints meanwhile with reason-

able utility guarantee is not explicit. Though constructing the

bit flipping matrix F under the definition of differential privacy

where (d(Sa, Sb) ≡ d∗) is kind of trivial as all Sa ∈ S
are symmetry. Under the notion of ǫ-geo-indistinguishability

where distance d(Sa, Sb) may differs for different pairings,

such bit flipping matrix F is relatively hard to construct.

In this section, we focus on efficient approaches to concrete-

ly construct bit flipping matrix F with histogram estimation

utility guarantee, two algorithms are presented, one has |S|2

computational complexity, the other has |S|2 log(|S|) compu-

tational complexity. We also provide detailed computational

complexity analyses of our approaches and theoretical error

bounds of constructed bit flipping matrix.

A. A Greedy Approach

There are |S|2 ǫ-geo-indistinguishability constraints on bit

flipping matrix F as implied in theorem 1, each limits 2 ·
|S| flipping probabilities in two rows of F , this makes those

constraints pretty complicate. Hence, in our greedy approach,

we further inject symmetry constraints to bit flipping matrix F ,

to simplify the original ǫ-geo-indistinguishability constraints,

formally, the symmetry constraints are as follows:
{

Fk,k ≥ 0.5, for k ∈ 1, 2, ..., |S|;

Fa,k = 1− Fk,k, for a, k ∈ 1, 2, ..., |S| and a 6= k.
(2)

As a result, the constraints in equation (1) are reduced as

follows:
∏

k=1..|S|

max{
Fa,k

Fb,k
,
1− Fa,k

1− Fb,k
}

=
Fa,a

Fb,a
·
1− Fa,b

1− Fb,b

=
Fa,a

1− Fa,a
·

Fb,b

1− Fb,b

≤ exp(ǫ · d(Sa, Sb)).

(3)

In addition, the number of independent variables in F is

reduced to |S|.
Follow the reduced constraints in equation (3), we now pro-

ceed to present our greedy approach to construct bit flipping

matrix F in algorithm 2. The algorithm greedily finding the

closest elements of a element Sj in domain S, and apply

the minimum distinguishability distance to its bit flipping

probability Fj,j .

Algorithm 2 A Greedy Constructing Algorithm

Input: Privacy budget ǫ ∈ R+,

distance metric d ∈ R|S|×|S|.
Output: A bit flipping matrix F satisfying ǫ-geo-

indistinguishability

1: for j = 1 to |S| do

2: dj,min = min{dj,1, dj,2, . . . , dj,j−1, dj,j+1, . . . , dj,|S|}
3: Fj,j =

1
exp(−ǫ·dj,min/2)+1

4: for k = 1 to |S| and k 6= j do

5: Fk,j = 1− Fj,j

6: end for

7: end for

8: return F

Theorem 2: The bit flipping matrix F constructed by

Algorithm 2 for domain S satisfies ǫ-geo-indistinguishability

under indistinguishability metric da,b = d(Sa, Sb).
Proof:

∏

k=1..|S|

max{
Fa,k

Fb,k
,
1− Fa,k

1− Fb,k
}

=
Fa,a

1− Fa,a
·

Fb,b

1− Fb,b

= exp(ǫ ·min{da,1, da,2, . . . , da,a−1, da,a+1, . . . , da,|S|}/2)

· exp(ǫ ·min{db,1, db,2, . . . , db,b−1, db,b+1, . . . , db,|S|}/2)

≤ exp(ǫ · da,b/2) · exp(ǫ · db,a/2)

≤ exp(ǫ · da,b).

The ǫ-geo-indistinguishability guarantee of constructed bit

flipping matrix F is presented in theorem 2.

B. A Heuristic Approach

The proposed approach to construct bit flipping matrix F
in algorithm 2 has the potential for further optimization with

additional computational overhead. By relaxing distinguisha-

bility distance between settled elements and unsettled elements

in domain S, we propose a heuristic approach in algorithm 3

based on algorithm 2.

Lets SC denotes the set of settled elements, the heuristic

constructing algorithm greedily find the closest pair inside set

SC or between set SC and S − SC in line 4, after adding

new element(s) in the pair into the settled set SC in line 6
and 16, the flipping probability of the new element(s) is settled

in line 10 and 20, then, the temporary distance metric d′ is



Algorithm 3 A Heuristic Constructing Algorithm

Input: Privacy budget ǫ ∈ R+,

distance metric d ∈ RM×M .
Output: A bit flipping matrix F satisfying ǫ-geo-

indistinguishability

1: SC = Φ
2: d′ = d
3: while SC 6= {1, 2, ..., |S|} do

4: d′a,b = min{ d′j,k | j 6= k and j /∈ SC }
5: if a /∈ SC then

6: SC = SC ∪ {a}
7: for k = 1 to M and k /∈ SC do

8: d′k,a = 2 · d′k,a − d′a,b
9: end for

10: Fa,a = 1
exp(−ǫ·d′

a,b
/2)+1

11: for k = 1 to |S| and k 6= a do

12: Fk,a = 1− Fa,a

13: end for

14: end if

15: if b /∈ SC then

16: SC = SC ∪ {b}
17: for k = 1 to |S| and k /∈ SC do

18: d′k,b = 2 · d′k,b − d′a,b
19: end for

20: Fb,b =
1

exp(−ǫ·d′

a,b
/2)+1

21: for k = 1 to |S| and k 6= b do

22: Fk,b = 1− Fb,b

23: end for

24: end if

25: end while

26: return F

heuristically relaxed in line 7 and 17. The iterative greedy

procedure stops when all elements in domain S is settled.

The ǫ-geo-indistinguishability guarantee of constructed bit

flipping matrix F is presented in theorem 3.

Theorem 3: The bit flipping matrix F constructed by

Algorithm 3 for domain S satisfies ǫ-geo-indistinguishability

under indistinguishability metric da,b = d(Sa, Sb).
Proof: See appendix B.

Apparently, the bit flipping matrix Fh constructed by

heuristic approach in algorithm 3 exploits relaxations of F g

constructed by the greedy approach in algorithm 2, thus

we have Fh
k,k ≥ F g

k,k, as a result, the expected histogram

estimation accuracy of Fh is always no less favourable than

F g .

C. Histogram Estimator

Randomization with bit flipping matrix F may introduces

bias, e.g. E[S′
a] 6= Sa when F is not identical. In this

subsection, we aim to eliminating bias introduced by bit

flipping.

Let H denotes the histogram of secret set {s1, s2, ..., sN}
of N participants over domain S, H ′ denotes the observed

histogram, that is, the sum of sanitized set {s′1, s
′
2, ..., s

′
N}.

Actually, for bit flipping matrix F satisfying symmetry con-

straints as in equation (2), since the expectation of k-th bucket

in H ′
k is given as follows:

E[H ′
k]

=
∑

j=1..|S|

Hj · Fj,k

= Hk · Fk,k + (N −Hk) · (1− Fk,k),

there is an efficient unbiased histogram estimator as showed

in algorithm 4.

Algorithm 4 Unbiased Histogram Estimator

Input: Sanitized set {s′1, s
′
2, ..., s

′
N} from N participants that

randomized with bit flipping matrix F that satisfies equa-

tion (2).

Output: Unbiased estimation of H , where H is the histogram

of secret set {s1, s2, ..., sN} over domain S.

1: H ′ = ~0
2: for i = 1 to N do

3: H ′ = H ′ + s′i
4: end for

5: for k = 1 to |S| do

6: H ′′
k =

H′

k−N ·(1−Fk,k)
2·Fk,k−1

7: end for

8: return H ′′

D. Error Bounds for Histogram Estimation

Let H denotes the truly histogram of participants’ secret

data set {s1, s2, ..., sN} over domain S, we have H =
sum{s1, s2, ..., sN}. Let H ′ denotes the observed histogram

of sanitized data set {s′1, s
′
2, ..., s

′
N} over domain S, we have

H ′ = sum{s′1, s
′
2, ..., s

′
N}. The least square error bounds of

constructed bit flipping matrix F in the greedy and heuristic

approach is given in theorem 4.

Theorem 4: For participants’ secret data set {s1, s2, ..., sN}
from domain S, each element in the set is independently ran-

domized with bit flipping matrix F constructed by algorithm

2 or 3, and estimated histogram H ′′ given by algorithm 4, we

have:

E[‖H ′′ −H‖22] ≤
∑

k=1..|S|

N ·
exp(ǫ · dk,min/2)

(exp(ǫ · dk,min/2)− 1)2
.

Where dk,min = min{dk,1, dk,2, . . . , dk,k−1, dk,k+1, . . . , dk,|S|}.

Proof: See appendix A.

E. Computational Overheads

To demonstrate the efficiency of our approaches, we now

give detailed analyses of computational overheads of mech-

anism implementation, including overheads of constructing

bit flipping matrix (denoted as constructor), overheads of

randomizing bit array (denoted as randomizer) and overheads

of estimating the histogram (denoted as estimator). We also



TABLE I: Average Computational Complexities

Approach constructor randomizer estimator

LP mechanism
O(|S|2Poly(|S|3)) O(|S|) O(N + |S|3)

in [8] [9]

Exponential
O(|S|2) O(|S|) O(N + |S|3)

mechanism

Greedy approach
O(|S|2) O(|S|) O(N · |S|+ |S|)

in algorithm 2

Heuristic approach
O(|S|2 log |S|) O(|S|) O(N · |S|+ |S|)

in algorithm 3

provide comparison with existing mechanisms (e.g. in [8] [9])

in table I.

Constructor: Apparently the one pass greedy approach in al-

gorithm 2 constructing a bit flipping matrix in time O(|S|2), in

contrast, the heuristic approach in algorithm 3 stops after most

|S| iterations, each iteration involving one min operation in

distance oracle d and O(|S|) distance updating operations, thus

has overall average computational complexity O|S|2 log(|S|).
Randomizer: The randomizer in algorithm 1 flips each bit

of location-base data Sa ∈ {0, 1}|S|, hence the computational

overheads is O(|S|).
Estimator: The histogram estimator in algorithm 4 simply

estimate each Hk with H ′
k, therefore the computational com-

plexity is O(N · |S|+ |S|).
Complexity Comparison: As comparison, the previous ǫ-geo-

indistinguishability linear programming (LP) mechanism in [8]

and [9] that output with a single location-based data instead of

a set of location-based data in BFMM, are modeled as linear

programming problem optimizing for single location reporting

utility in Location-Based Services (LBSs),it involves with

|S|3 constraints on |S|2 perturbing probabilities. Consequently,

averagely Poly(|S|3) iterations and O(|S|2) arithmetic oper-

ation in each round is needed in LP mechanism, its average

constructor computational complexity is O(|S|2) ·Poly(|S|3).
Additionally, in LP mechanism, perturbing a truly location-

based data in domain costs O(|S|), eliminating bias in esti-

mator costs O(|S|3).
Another approach may achieve ǫ-geo-indistinguishability is

the exponential mechanism [12] that is initially proposed for

differential privacy preserving. By treating the distance of a

pair of location-based data as loss function, the probability of

perturbing the truly location-based data Sa to Sb in exponential

mechanism is as follows:

Pr[Sb|Sa] =
exp(−d(Sa,Sb)

2 )
∑

k=1..|S| exp(−
d(Sa,Sk)

2 )
. (4)

In exponential mechanism(EM), the computational complexity

of computing perturbation probabilities is O(|S|2), the costs

of randomizer and estimator is the same as LP mechanism.

In concise, the greedy approach in BFMM mechanism has

much lower computational complexities than LP mechanism

and EM mechanism respecting domain size |S|, and the heuris-

tic in our mechanism achieves better histogram estimation

TABLE II: Summary of synthetic spatial crowdsensing scenarios,
including the short name of the setup, the spatial map of the scenario,
the discrete locations in the map, and the domain of data for
histogram aggregation.

Code Map Locations L Domain S

1DUS

a line of [0, 1]

|L| locations uniformly
scattered in the line

L

1DUM L× L

1DRS |L| locations uniform
randomly scattered in the

line

L

1DRM L× L

2DUS

a square of
[0, 1]× [0, 1]

|L| locations uniformly
scattered in the square

L

2DRSX |L| locations uniform
randomly scattered in the

square

L

2DRSY L

2DRSZ L

accuracy with only slightly more overheads on bit flipping

matrix constructing.

V. EXPERIMENTS

In this section, we evaluate our BFMM mechanism on

numerous spatial crowdsensing scenarios, mainly focus on his-

togram aggregation accuracy under ǫ-geo-indistinguishability

privacy preserving, with comparison to the LP mechanism

from [8] and [9] and exponential mechanism (EM) in equation

(4).

The synthetic spatial crowdsensing scenarios include learn-

ing of histograms over locations scattered in 1-dimensional

lines or 2-dimensional squares. As summarized in table II, in

the 1-dimensional line scenario, two typical cases of are stud-

ied, in one case, |L| locations are uniformly scattered in the

line, and in the other case, |L| locations are uniform randomly

scattered in the line. We consider histogram aggregation over

both the domain of locations and domain of location pairs

(the transition matrix in section I) in the 1-dimensional line

scenario; in the 2-dimensional square scenario, histogram ag-

gregation over grid and uniform randomly scattered locations

are studied.

All experiments simulate with N = 100000 participants

with uniform distribution over domain S, and the Euclidean

distance is used as distance metric d, the privacy budget ǫ is 5,

which is an intermediate value as ǫ ranges from 0.01 to 10 in

the literature [13]. The histogram estimation accuracy metric

in our experiments is the square error ‖H′′−H
N ‖22 or its natural

logarithm.

We implement the greedy approach (Gre) in algorithm 2

and the heuristic approach (Heu) in algorithm 3 for these

experiments, and compare them with LP mechanism in [8] [9]

and exponential mechanism (EM) in equation (4). However,

in our 68 out of 92 experiments, the perturbing probability

matrix constructed by LP mechanism is not invertible, due

to fact that it optimizes for single report utility and tends to

report central locations, thus can’t eliminating bias of observed

histogram, making the square error of its histogram estimation

extremely large (e.g. ≥ 1010). Hence, the experimental results

of LP mechanism is not showed in following figures.
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Fig. 2: Experiments of scenarios in line [0, 1].

The scenarios of histogram estimation over locations scat-

tered in line [0, 1] is showed in Figure 2, which demonstrate

that the greedy and heuristic approach in our mechanism

significantly outperforms the EM mechanism, and usually by

a factor of
|S|
4 for reasonably large |S| (e.g. |S| ≥ 10).

The scenarios of histogram estimation over locations scat-

tered in square territory [0, 1] × [0, 1] is showed in Figure 3,

which demonstrate that the greedy and heuristic approach in

our mechanism significantly outperforms the EM mechanism,

and usually by a factor of
|S|
5 for reasonably large |S| (e.g.

|S| ≥ 16).

VI. RELATED WORK

There are mainly three streams of methods for privacy

preserving in crowdsensing: cloaking, perturbation and en-

cryption.

Encryption: Encryption technique resort to cryptographic

tools to keep participant’s data secret, e.g. in [14], mechanisms

in [15] [16] couple cryptographic with distributed noise gen-

eration to ensure differential privacy. However, these methods
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Fig. 3: Experiments of scenarios in square [0, 1]× [0, 1].

have high computational demanding, making them hard to

implement in mobile devices, moreover, encrypted distributed

noise is safe only for computational bounded adversaries and

may be volatile to collusion between the aggregator and other

participants. By contrast, the notion of geo-indistinguishability

preserves participants’ privacy information-theoretically and

locally, without relying on any other party.

Cloaking: Cloaking technique protects participants’ location

or sensing data by generalizing location with a coarse one

in [5], or further collaboratively imposing k-anonymity or l-
diversity constraints on participants’ coarse locations in [6].

However, its privacy guarantee is quite experimental, and is

volatile to privacy adversaries with auxiliary information even

with k-anonymity or l-diversity constraints [10].

Perturbation: Perturbation technique randomized response

with participants’ truly location or sensing data with limited

probability. The approaches in [17] adopts negative survey for

privacy preserving, it report truly data with zero probability

to reduce computational overheads. However, it privacy guar-

antee is limited compared to rigorous differential privacy or



geo-indistinguishability definition. Recently, conforming the

definition of differential privacy or geo-indistinguishability,

[8] and [9] obfuscate truly data with optimized single data

reporting utility.

Unfortunately, previous privacy preserving methods that

perturbing data in the original domain achieves poor his-

togram estimation accuracies. In [18] and [13], randomized

responding in the superset of original domain is proposed

for histogram estimation under differential privacy constraints.

However, differential privacy is not appropriate for location-

based data as discussed in section II, as contrast, our

work follows the generalized differential privacy notion geo-

indistinguishability for privacy preserving.

VII. CONCLUSION

We propose a privacy preserving big histogram aggregation

mechanism BFMM for spatial crowdsensing, it guarantees ǫ-
geo-indistinguishability for multi dimensional location-based

data. By representing the truly data and sanitized data as

bit array of the domain size |S|, our mechanism output a

subset of domain S. The efficiency and effectiveness of our

mechanism is demonstrated by theoretical and experimental

analyses, theoretical analyses illustrate that our mechanism

implementation has much lower computational complexity

than existing approaches, experimental results further illustrate

that the aggregation accuracy outperforms existing approach

averagely by a factor of |S| for big histogram.

ACKNOWLEDGMENT

This paper is supported by the China Postdoctoral Science Founda-

tion No.2015M570545, National Science Foundation of China under

No. U1301256, 61170058, 61272133, Special Project on IoT of

China NDRC (2012-2766), Research Fund for the Doctoral Program

of Higher Education of China No. 20123402110019, and Jiangsu

Planned Projects for Postdoctoral Research Funds No.1501085C.

REFERENCES

[1] A. Stopczynski, J. E. Larsen, S. Lehmann, L. Dynowski, and M. Fuentes,
“Participatory bluetooth sensing: A method for acquiring spatio-temporal
data about participant mobility and interactions at large scale events,”
in PerCom. IEEE, 2013.

[2] E. DHondt, M. Stevens, and A. Jacobs, “Participatory noise mapping
works! an evaluation of participatory sensing as an alternative to standard
techniques for environmental monitoring,” PerCom. IEEE, 2013.

[3] P. Zhou, Y. Zheng, and M. Li, “How long to wait?: predicting bus arrival
time with mobile phone based participatory sensing,” in MobiCom.

ACM, 2012.

[4] D. Christin, “Privacy in mobile participatory sensing: Current trends and
future challenges,” Journal of Systems and Software, 2015.

[5] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A peer-to-peer spatial cloaking
algorithm for anonymous location-based service,” in SIGSPATIAL GIS.

ACM, 2006.

[6] H. Hu and J. Xu, “Non-exposure location anonymity,” in ICDE. IEEE,
2009.

[7] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in CCS. ACM, 2013.

[8] N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Optimal
geo-indistinguishable mechanisms for location privacy,” in CCS. ACM,
2014.

[9] R. Shokri, “Privacy games: Optimal user-centric data obfuscation,”
PETS. Springer, 2015.

[10] C. Dwork, “Differential privacy,” in ICALP. Springer, 2006.
[11] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi,

“Broadening the scope of differential privacy using metrics,” in PETS.

Springer, 2013.
[12] F. McSherry and K. Talwar, “Mechanism design via differential privacy,”

in FOCS. IEEE, 2007.
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APPENDIX

A. The proof of error bounds in theorem 4

Since H ′′
k =

H′

k−N ·(1−Fk,k)
2·Fk,k−1 and H ′

k is a bernoulli variable,

we have:

E[‖H ′′
k −Hk‖

2
2] = var[H ′′

k ]

=
1

(2 · Fk,k − 1)2
· var[H ′]

=
1

(2 · Fk,k − 1)2
·

∑

j=1..|S|

Hj · Fk,j · (1− Fk,j)

=
1

(2 · Fk,k − 1)2
·N · Fk,k · (1− Fk,k)

≤ N ·
exp(ǫ · dk,min/2)

(exp(ǫ · dk,min/2)− 1)2
.

B. The proof of privacy guarantee in theorem 3

Inductively consider the settled set SC, we firstly prove

that, if the bit flipping probabilities of SC satisfy ǫ-geo-

indistinguishability at the start of an iteration, then the set-

tled set SC satisfies ǫ-geo-indistinguishability at the end

of the iteration. Apparently d′a,b = 2 · da,b − 2
ǫ log

Fb,b

1−Fb,b
,

thus for all possible a ∈ S − SC and b ∈ SC, let

Fa,a = 1
exp(−ǫ·d′

a,min(SC)
/2)+1 as in line 10 and 20, where

d′a,min(SC) = min{d′a,b | b ∈ SC}, we have:

∏

k=1..|S|

max{
Fa,k

Fb,k
,
1− Fa,k

1− Fb,k
}

=
Fa,a

1− Fa,a
·

Fb,b

1− Fb,b

= exp(
ǫ · d′a,min(SC)

2
+ log

Fb,b

1− Fb,b
)

≤ exp(
ǫ · d′a,b

2
+ log

Fb,b

1− Fb,b
)

≤ exp(ǫ · da,b).

Secondly, the empty set SC = Φ at starting satisfies ǫ-
geo-indistinguishability, hence the final settled set SC = S
satisfies ǫ-geo-indistinguishability.


