
Detecting BGP Instability Using Recurrence

Quantification Analysis (RQA)

Bahaa Al-Musawi1,2, Philip Branch1, and Grenville Armitage1

1CAIA, Swinburne University of Technology, Melbourne, Australia
2University of Kufa, Al-Najaf, Iraq

{balmusawi,pbranch,garmitage}@swin.edu.au

Abstract—The Border Gateway Protocol (BGP) is the default
Internet routing protocol that manages connectivity among
Autonomous Systems (ASes). Although BGP disruptions are
rare, when they occur the consequences can be very damag-
ing. Consequently there has been considerable effort aimed at
understanding what is normal and abnormal BGP traffic and,
in so doing, enable potentially disruptive anomalous traffic to
be identified quickly. In this paper, we make two contributions.
We show that over time BGP messages from BGP speakers
have deterministic, recurrence and non-linear properties, then
build on this insight to introduce the idea of using Recurrence
Quantification Analysis (RQA) to detect BGP instability. RQA
can be used to provide rapid identification of traffic anomalies
that can lead to BGP instability. Furthermore, RQA is able to
detect abnormal behaviours that may pass without observation.

I. Introduction

The Border Gateway Protocol (BGP) is the current inter-

domain routing protocol that maintains and exchanges net-

work reachability information between Autonomous Systems

(ASes). BGP was developed at a time when information

provided by an AS could be assumed to be accurate. Con-

sequently, it includes few security mechanisms [1]. Although

propagation of inaccurate information via BGP is fortunately

rare, when an AS, either deliberately or accidentally prop-

agates incorrect information, the consequences can be very

serious. The process of detecting abnormal data in a series of

BGP update messages represents a challenge for researchers

and operators, especially during unstable periods, as routing

data is complex, noisy, and voluminous. To compound the

challenge, single events such as link failure can produce multi-

ple update messages, affect routing decisions, and erroneously

propagate incorrect destination prefixes [2].

Routing instability has been defined as a fluctuation in

topology information and network reachability [3]. BGP rout-

ing instability appears as fluctuations in the number of BGP

updates and/or path length for an AS [4], [5]. BGP instability

can be a result of different types of disruptions such as hard-

ware failure, misconfiguration, hijacking, software bugs, faulty

equipment, and Denial of Service (DoS) attacks. Instability

affects performance, processing load, and distribution balance

of traffic load for BGP speakers [4]. It is worth noting that it

is not just direct attacks on BGP that can affect its stability.

Although malware such as Nimda and Slammer were directed

at web servers, BGP routing stability was also affected during

these attacks [6].

In the years since it was deployed, many types of disruptions

have threatened BGP stability such as panix.com domain

hijack, TTNet misconfiguration, and Moscow blackout [6]. In

addition to many reported events, other types of events remain

unreported or even unnoticed [7]. Shi et al. in [8] present statis-

tics and trends of BGP anomalies during a period of 1 year

monitoring from May 2012. During this period, around 40k

bogus routes were detected. Among these bogus routes, there

were 193 BGP hijacks and 27 misconfigurations. Furthermore,

about 20% of the hijacking and misconfigurations last less than

10 minutes but with ability to pollute 90% of the Internet in

less than 2 minutes. These statistics demonstrate the need for

a real-time detection of BGP instability caused by different

types of disruptions.

Considerable research has been carried out into BGP sta-

bility. Generally, research work can be classified as improving

stability during route changes caused by link failures [9], [10]

and detecting different types of anomaly which indicate the

likely onset of instability [2]–[4], [6], [8]. Our interest is in

the latter. In particular, we are interested in the rapid detection

of BGP disruptions indicative of routing instability at the AS

level.

BGP is an incremental protocol. BGP updates should reflect

significant network engineering decisions by the AS to add

or remove a network or as a result of a major reachability

issue. However, real-world BGP update traffic is of a sub-

stantial volume that is much larger than might be expected.

There is a substantial background traffic consisting of route

announcements followed soon after by withdrawals that do not

appear related to underlying network management decisions or

events.

The source of this oscillatory behaviour has attracted great

attention. In [11] the authors showed that the widely used multi

discriminator (MED) attribute can lead to persistent oscillatory

behaviour in BGP. In [3] Labovitz et al. examined BGP data

and found that it was overwhelmingly what they described

as ‘pathological updates’ made up of duplicate withdrawal

announcements, oscillating reachability announcements and

duplicate path announcements. Varadhan et al in [12] ob-

served that interdomain routing is prone to persistent route
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oscillations. Others have also identified the phenomenon of

oscillatory behaviour of BGP updates [13].

Regardless of the cause, much of the background traf-

fic of BGP is made of oscillations from different ASes of

different frequencies. Detecting anomalous behaviour in this

environment is challenging. Indeed defining what is and is

not anomalous is difficult. All traffic that does not reflect

underlying network changes can be thought of as anomalous.

Nevertheless, such traffic does not necessarily represent dan-

gerous instability that can lead to disruption. What is needed

is a method that can detect changes to existing patterns of

behaviour. In this paper, we describe the use of Recurrence

Quantification Analysis (RQA) to detect such changes.

We begin by examining traffic volume and message path

length from the ten most active BGP speakers and show

that each generates approximately periodic updates but with

different frequencies. Aggregated, unsynchronised traffic of

this kind has the characteristics of a deterministic, stable

system. RQA is an established technique that has been used

successfully to model the dynamic behaviour of such systems

found in physiology, physics and mechanical engineering. In

this paper, we describe its application to modelling BGP traffic.

We demonstrate that background BGP traffic is well modelled

as a deterministic stable system. We also analyse a recent

significant BGP instability and show that RQA is able to

quickly identify the onset of instability and is able to show

otherwise hidden information about the event.

The rest of this paper is structured as follows. Section

II explores related work in detection of BGP instability.

Section III presents a brief statistical analysis of BGP traffic

from the ten most active ASes and shows that they generate

approximately periodic traffic, but of different frequencies.

Section IV outlines our approach using RQA. Section V is our

results section where we demonstrate the effectiveness of RQA

in analysing BGP traffic. Finally, section VI is our Conclusion

where we summarise the paper and outline future directions

for this work.

II. PreviousWork

In this section we briefly cover BGP research related to our

topic. This has been in two areas: measuring and modeling

BGP behaviour [3], [14], [15] and BGP instability detection

[2], [4], [6].

BGP measurements such as those reported in [3] and

[14] focus on characteristics of BGP updates while modeling

studies such as [15], [16] focus on analysis of BGP ’churn’

in term of its evolution and causes; that is the announcement

and withdrawal of routing updates. One of the earliest efforts

at characterising BGP updates and identifying instability was

by Labovitz et al. [3]. Labovitz observed that much BGP

activity at the core of the Internet was ‘churn’. To detect

BGP instability, the authors applied the Fast Fourier Transform

(FFT) to routing update rates and demonstrated that rapid

changes in routing updates are correlated with instability [3].

In [14], the authors use Wavelet Transforms and Median

Filtering to identify patterns in BGP updates. They observed

BGP traffic as being self-similar and bursty. In addition, they

detected other phenomena such as prolonged oscillations of

updates ranging in duration from hours to months.

Detecting BGP instability has attracted a great deal of

attention [2]–[4], [6], [14]. Huang et al. [2] introduced a

technique to detect BGP node, link, and peer failure. Their

technique uses Principal Component Analysis (PCA) to detect

the failure type. They used BGP update volume as a single

BGP feature extracted every 10 minutes with window size

of 200 minutes. Although the approach is able to detect and

identify BGP node, link, and peer failure, it requires routers

configuration information and is slow, typically taking 9 to 96

minutes.

GLRT is a standard statistical technique used in hypothesis

testing. Deshpande et al. adopted it as an instability detection

technique [6]. Their approach was based on statistical pattern

recognition incorporating the technique. The approach was

evaluated against data collected from notable disruptions in-

cluding the Moscow blackout, the Nimda worm, and the Panix

domain hijack. However, once again this detection approach is

slow, typically requiring around one hour to detect instability.

Haeberlen et al. [4] presented a prototype to detect BGP

faults at the AS level called NetReview. This prototype uses

one year of BGP data to detect BGP faults, where BGP faults

include BGP router and link failure, misconfiguration, policy

violations, and attacks. Although NetReview can quickly de-

tect different types of BGP faults and identify their source

cause, it requires information about each ASes policy config-

uration and requires the storing and processing of large log

files, leading to scalability issues especially for large Internet

Service Providers (ISPs).

In our work we present evidence that BGP updates are

dominated by unsynchronised oscillations and can be mod-

elled very effectively as a dynamical system with RQA. We

demonstrate that RQA is able to quickly detect subtle changes

in the underlying background BGP traffic without needing to

store large amounts of historical data. It is also able to detect

hidden information such as changes to update patterns which

might otherwise pass without observation.

III. Modeling BGP as a dynamical system

In this section, we examine BGP traffic using online repos-

itories to access BGP data, and model a BGP speaker as a

dynamical system based on BGP updates it sends. We show

that BGP speakers show stable, deterministic, and non-linear

behaviour. We also analyse BGP updates sent from most active

ASes and show that ASes are approximately periodic with

unsynchronised oscillations.

A. BGP Dataset

We use publicly available BGP control plane datasets1to

model BGP speakers and detect instability. We refer to BGP

control plane’s traffic as BGP traffic. The RouteViews project

[17] and Réseaux IP Européens (RIPE) Network Coordinate

1Route Information Base (RIB) and BGP update messages



Centre (NNC) [18] are the two most well known repositories

of BGP control plane data. Each of these repositories has

multiple collectors which run BGP sessions with several

routers, referred to as monitors, in many networks.

Figure 1 show an example for BGP topology of the Route-

Views project at collector 4 which was peered with 40 peers on

26th of July 2015. In this example, AS24516 and AS58511

represent monitoring ponits, AS22059 is a source AS, and

AS2764, AS7545, AS6939, AS174, AS11404 are intermediate

ASes. When AS22059 sends a BGP update, AS24526 may

receive multiple copies of this update with different path

lengths such as (6939 22059), (174 11404 22059), and (2764

7545 6939 22059).

Route views

collector 4

  AS

24516

  AS

2764

  AS

22059

  AS

11404

  AS

58511

.

.

.

.

 AS

174

.

.

.

.

.

 AS

6939

 AS

7545

Fig. 1: Simple BGP topology

BGP traffic has been characterised as noisy and bursty [14],

[19]. The substantial background traffic for this behaviour

consists of route announcements followed soon after by with-

drawals or updates that do not appear related to underlying

network management decisions or events. It is not clear

where this behaviour comes from, but there has been some

speculation that it is caused by misconfiguration [14], [19].

B. Modeling

In this section, we model a BGP speaker as a dynamical

system sending BGP updates and path lengths depending on

BGP messages received from neighbors and local routing

policies. When a BGP speaker receives a BGP message that

changes its routing table it will propagate that message to all or

a group of its neighbor based on its local policies. Otherwise,

the message will be terminated.

In a dynamical system, the state changes over time in

different ways. The study of dynamics for different systems

is an important task in many disciplines. It provides a way

of understanding these systems and predicting their behaviour

over time [20]. Formally, a dynamical system is defined by a

phase space, a time evolution law, and continuous or discrete

time. In phase space, all possible states of a system are repre-

sented where each possible state of the system corresponds to

a unique point in phase space. For example, state of a system

at a fixed time t can be specified by d variables to form a

vector x (t) in d-dimensional phase space [20]. This vector

can be described as

~x (t) = (x1 (t) , x2 (t) , . . . , xd (t))T (1)

The time evolution law allows determination of the state

of the system at time t based on previous states. The time

evolution for a continuous time system can be described by a

set of differential equations.

~̇x (t) =
d~x (t)

dt
= ~F
(

~x (t)
)

, F:Rd → Rd (2)

Where vector ~x (t) is a trajectory in phase space [20]. Experi-

mentally, not all components are known or can be measured.

A scalar and discrete time series (ui) can be an alternative

option; ui = u (i△t), where i = 1, . . . , N and △t is a sample

rate. In this case, phase space can be reconstructed using the

time embedding method by

~̂xi =

m
∑

j=1

ui + ( j − 1)τ ~e j, (3)

Where m is the embedding dimension, τ is the time delay, ~e j

are the unit vectors.

For the analysis of time series, the phase space parameters

are represented by embedding dimension and time delay.

These parameters have to be selected carefully. Different

approaches to estimate the smallest sufficient value of em-

bedding dimension are available such as the false nearest-

neighbor algorithm while auto-correlation function and the

mutual information function are used to estimate time delay

[21].

The concept of phase space is powerful in modelling

deterministic systems. For a purely deterministic system all

future states can be determined when its current state is known.

Phase space is also useful for understanding non-deterministic

systems when they are described as a set of states that specify

system transition. To that end, we analyse a BGP speaker as a

dynamical system in terms of type of motion, determinism, and

linearity. These properties help to understand system behaviour

and can be used to detect different transitions that identify

system instability.

C. Type of motion

In dynamical systems, there are different types of motion

such as stable, where a system’s behaviour appears stable

around a point in the phase space, and noise, where the

behaviour is fully random. Identifying the type of motion for

a dynamical system can help to understand system behaviour.

While estimating the type of motion in a dynamical system

is comparatively easy if the equation of motion in the phase

space is available, it is a difficult task when only a series of

data is available. With lack of knowledge about the underlying

dynamics, maximal Lyapunov exponent is a good measure-

ment to estimate the type of motion in dynamical systems

[22], [23].



Different methods have been proposed to find the maxi-

mum Lyapunov exponents, the most well-known methods are

described in [22] and [23]. While the method described in

[23] does not depend on the correct embedding dimension,

the method in [22] does. We use TISEAN [21], a software

package for analysis of time series with methods based on

the theory of nonlinear deterministic dynamical systems, to

estimate maximum Lyapunov exponents based on methods

described in [22] and [23] respectively. If sn1 and sn2 are two

points in phase space with distance sn1−sn2 = △0 ≪ 1, distance

after a time ∆l is δ∆l = sn1+∆l− sn2+∆l. The maximal Lyapunov

exponents represents the slope of the case defined in (4), where

a positive value is an indication of a chaotic system and a zero

slope corresponds to a stable fixed point system.

δ (ǫ,m, t) =

〈

ln

















1

| υn |

∑

sn2∈υn

| sn1+t − sn2+t |

















〉

n

(4)

where m is the embedding dimension, t is time delay, υn is

the ǫ − neighborhood of sn [21].

We estimate the maximal Lyapunov exponents for multiple

ASes on different dates and found the slope is zero which we

interpret as a stable type of motion for BGP speakers. Figure 2

shows values of Lyapunov exponents for multiple dimensions

on the AS10102 where δ (ǫ,m, t) exhibits a flat line which

indicates possible stable behaviour.
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Fig. 2: Lyapunov exponents estimation for AS10102

D. BGP Periodicity

The phase plane behaviour of BGP can be attributed to

underlying unsynchronised periodic behaviour of highly active

BGP speakers. One possible source of periodicity is the

Minimal Route Advertisement Interval (MRAI). The MRAI

refers to the minimum amount of time between two subsequent

advertisements to a particular destination [24], the default

value in Cisco routers is 30 seconds while in Juniper routers

is 0 second.

Periodicity can also be seen in the most active ASes. These

ASes show reasonably periodic behaviour in terms of sending

BGP updates. [25] provides a weekly BGP instability report

for the 50 most active ASes. We analysed the periodicity

of the most active noisy ASes as reported by [25] during

the period 20th to 27th July 2015 and found these ASes
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Fig. 3: periodicity of unstable ASes

periodically sent different numbers of BGP updates with

different time intervals. Figure 3 shows periodicity for the six

most active ASes. For example, AS21669 and AS22059 show

periodicity of 30 seconds, and AS36947 shows periodicity of 5

seconds as observed from monitoring point AS24516 at route-

views4.routeviews.org which was peered with 40 peers on 26th

of July 2015. Figure 4 shows the aggregated BGP updates from

the ten most unstable ASes. The unsynchronised aggregation

of different periodic updates leads to recurrence behaviour in

the underlying system.
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Fig. 4: Unsynchronised aggregation of different periodic updates

E. Determinism and non-linearity

Detecting determinism and linearity properties in a sys-

tem helps to select an appropriate method to predict system

behaviour. Different methods for detecting the existence of

determinism and/or non-linearity in time series are available

such as [26] and [27]. We use delay vector variance (DVV)

described in [27], a method based on the concepts of false

nearest neighbor and Kaplan’s method [26], to examine BGP

data for determinism and non-linearity. The DVV uses an



approach for comparing the characteristics of time series

based on its predictability against those obtained for linearised

versions of the signal.

The DVV requires the proper selection of time delay and

embedding dimension. The examination of determinism and

non-linearity can be interpreted using a DVV plot and DVV

scatter diagram respectively. The examination of determinism

can be observed in a DDV plot by observing DVV plots

converging to unity while non-linearity can be examined in

DVV scatter by deviation from the bisector line. We estimate

determinism and linearity for multiple ASes on different dates

and have found that most BGP speakers show properties of

determinisim and non-linearity. In Figure 5a, we can see the

variance converges to a value of 1 which indicates determinism

while in Figure 5b shows DVV scatter where we can observe

a deviation from the bisector line as an indication of non-

linearity.
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Fig. 5: Estimation of determinism and non-linearity

IV. A non-linear approach to detecting BGP instability

As outlined in the previous section, BGP messages sent

from BGP speakers have been characterized as deterministic,

stable and non-linear. While recurrence is a fundamental

property in many dynamical systems, it is the most important

feature of stable systems.

Different methods and models for analysis of time series

and forecasting are available. The Fourier transform (FT)

and the autoregressive integrated moving average (ARIMA)

model are the most well-known for analysis and forecasting

time series. The FT and the ARIMA have some limitation

for analysis of time series in general and for BGP data in

particular. The limitations of the Fourier transform are time

and frequency positions, non-stationarity or abrupt changes in

a signal can spread out for whole signal as well as resolution.

These drawbacks limit the application of the FT in detecting

short periods of BGP instability. The ARIMA model has two

significant limitations: (1) future values are assumed to be

a linear function of past values and (2) a large amount of

historical data is required to obtain reliable predictions. BGP

data has been characterised in section III as non-linear and

stable. In [14], [15] it is described as a bursty and self-

similarity which motivate us to look for another approach.

Here, we use Recurrence Quantification Analysis (RQA),

a non-linear technique based on a phase plane trajectory, to

detect BGP instability based on calculating RQA measure-

ments for observed BGP data sent from a BGP speaker. RQA

was introduced to quantify the important aspects revealed

by Recurrence Plot (RP). RQA has been developed to find

different transitions between regular, laminar, non-stationarity,

and stable behaviours in complex systems such as those

found in astrophysics and geosciences. This approach has been

introduced to find these transitions using short data series

where most nonlinear techniques are ineffective or require a

long data series [20]. RQA has shown its ability to discover

time correlation between data that do not rely on linear or non-

linear assumptions and are not distinguishable through using

a direct study of one dimension time series.

A. Recurrence Plot

Recurrence Plot (RP) is an advanced nonlinear analysis

technique introduced by Eckmann et al. [28]. The RP was

initially produced to graphically display recurring patterns and

non-stationarity in time series. RP was introduced as a tool to

visualise the time dependent behaviour of the dynamics of a

system as a square matrix where each element corresponds to

a point in time states. With enough data, structural patterns in

the RP can reveal information about the time evolution of the

phase space. RP is not limited to long data sets. It can be used

for short data sets, noisy data, and non-stationary data [29].

RPs can be formally expressed by the matrix R

Ri,j (ε) = Θ

(

ε − ‖−→xi −
−→x j‖
)

, i, j = 1 , . . . , N, (5)

where Ri, j is an element of the recurrence matrix R, N is

the number of measure points, E is a threshold distance, Θ (·)

the Heaviside function and (‖ · ‖) is a normalization operation.

In RP, three parameters have to be selected carefully:

time delay (τ), embedding dimension (m), and threshold (ε).

We use the auto-correlation function to estimate time delay

and false nearest neighbor (FNN) to estimate the embedding

dimension [29]. Finally, threshold value is selected based on

recommendations in [20] where the value of the threshold is

10% of the maximum phase space diameter.

Figure 6 shows a recurrent plot and underlying time se-

ries for aggregated BGP updates sent from the most active

ASes with embedding dimension=3, threshold=1.8 and time

delay=30 seconds.

From the RP structure, we can infer the characteristics of

large and small scale patterns. At the large scale in Figure 6,

we can see periodic recurrent structures indicating an oscillat-

ing system. At the small scale, single isolated points indicate

large fluctuations of stochastic behaviour while vertical and
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Fig. 6: Recurrence plot for top-ten noisy ASes

horizontal lines forming rectangles indicate some states that

do not change or change slowly. This behaviour is expected

as BGP speakers do not continually send BGP updates based

on MRAI timer values.

The large and small scale patterns from Figure 6 support

our outlines in Section III-C and Section III-D, where BGP

speakers show recurrence behaviour caused by unsynchronised

periodicity. However, the visual interpretation of RP requires

some experience; therefore, the quantification of RP was

introduced to offer a more objective way of evaluating the

system under investigation.

B. Recurrence Quantification Analysis

To reduce the difficulty of RP interpretation, Recurrence

Quantification Analysis (RQA) was introduced by Zbilut and

Webber [30] to provide objective quantification of important

aspects revealed by RPs. In RQA, the density of recurrence

points as well as the histograms of the length of the diagonal

and vertical lines in the RP is quantified.

RQA provides several measures of complexity. The first

measurement is Recurrence Rate (RR) which measures the

percentage of recurrent points in the phase space. The second

measurement is determinism (DET) which can be interpreted

as the probability that two closely evolving segments of the

phase space trajectory will remain close in the next time

step. The third measurement is laminarity which measures the

probability that a state will not change (within the ε error) for

the next time step. The fourth measurement is Trapping Time

(TT) which contains information about the vertical structures

in the RP. It can be used to measure how long the system

remains in a specific state [20].

V. Instability Detection with RQA

As noted earlier, we define BGP instability as fluctuations

in the number of BGP updates and/or path lengths for an AS

[4], [5]. We have adopted these two factors in our approach

as an input to measure their fluctuation over time.

The strength of RQA applied to this approach is in its

ability to rapidly distinguish between fluctuations that are part

of normal behavior and fluctuations that indicate instability.

Furthermore, RQA is able to detect behaviour that cannot be

detected with other techniques.

One of the advantage of this approach is that systems based

upon it can be deployed in different scenarios. For example,

it can be used to monitor instability on a particular BGP

router through analysing its BGP updates or monitor unstable

behaviour caused by its neighbors through analysing BGP

messages received from them. It also can be used to remotely

monitor a set of ASes by monitoring BGP messages belonging

to these ASes from different monitoring points.

A. Method

Our approach is based on instability behaviour observed

from a BGP speaker in terms of the number of BGP up-

dates and AS-PATH lengths to detect BGP instability. It is

comprised of two main components. The first is extraction

and analysis of BGP features while the second is calculating

RQA measurements for the BGP features to detect variations

from these features. We use BGP volume (V) and average

length of AS-Path (AL) as BGP features. BGP volume refers

to total number of BGP updates per second while average

AS-Path length refers to the average length of AS-PATH for

BGP announcements per second. These two features can be

calculated as follows:

V = A +W (6)

AL =

[

T A

A

]

(7)

where A is number of announcements, W number of with-

drawals, T A is total AS-PATH length for announcements, and

[] is the nearest integer function.

We have found TT and RR (IV-B) to be very effective

variables for detecting BGP instability. We have adopted

the approach described in [31] and [32] that calculates the

RQA variables TT and RR for both BGP features. These

measurements are calculated every second with a window size

of 300 seconds. There is a tradeoff in window size. A large

window size may fail to identify some transitions in system

behaviour while choosing too small a window can generate

spurious fluctuations in RQA measurements. We have tested

different window sizes such as 100, 180, 300, 600, 900, and

1200 seconds and have found the window size of 300 seconds

is a good choice as a sliding window.



B. Results and Discussion

One of the most recent incidents of BGP instability was

observed on the 12th of July 2015 by Telekom Malaysia (TM-

net) which caused significant network problems for the global

routing system. TMnet (AS4788) accidentally announced ap-

proximately 179,000 prefixes to Level3, the global crossing

AS, leading to significant packet loss and slow Internet service

around the world [33].

We apply our approach based on RQA to detect the effect

of this incident on multiple ASes, in particular on many peers

that are connected to route-views4 in the routeviews project

such as AS10102, AS1299, AS197264, AS3267, and AS58511

[17]. RQA shows its ability to detect BGP instability caused

by high volume of BGP updates as well as hidden abnormal

behaviour using only 300 seconds as a BGP history.

As outlined in Section (IV-B), TT and RR variables measure

fluctuations and recurrence ratio respectively for a given

dataset, where high value of TT indicates a high fluctuation

and low value of RR indicates low recurrence behaviour for a

given dataset.
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Fig. 7: Instability detection for BGP volume feature

Figure 7 shows the number of BGP updates sent from

AS10102 and TT measurement during the TMnet event. RQA

can detect multiple periods of instability caused by high

volume of BGP updates sent during TMnet. Figure 8 shows

the ability of RQA to quickly detect BGP instability where

TT value flagged after one second of rises in BGP volume.

Furthermore, RQA can detect multiple periods of hidden

abnormal behaviour with of RR measurement such as (10000-

20000) and (30000-34000) seconds as shown in Figure 9. The

detection was not caused by a notable changing in AS-PATH

length, but it is related to anomalous behaviour for MRAI

timers. For example, during the period (32200-33200) seconds

the AS10102 sent multiple BGP updates during some seconds,
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Fig. 8: Rapid detection for instability with RQA

which is abnormal behaviour in term of MRAI, instead of 30

seconds as shown in Figure 10.
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Fig. 9: Instability detection for average AS-PATH length feature

VI. Conclusions

In this paper, we model a BGP speaker as a dynamical

system sending different values of BGP updates and AS-

PATH lengths depending on updates received from neighbors

and local routing policies. The analysis of BGP updates sent

from a BGP speaker shows stable, deterministic, and non-

linear behaviour. These characteristics help to explain BGP

behaviour and detect instability which may arise from differ-

ent sources such as hardware failure, misconfiguration, and
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Fig. 10: Anomalous behaviour for MRAI in AS10102

software bugs. We also speculate on possible sources for this

recurrence behaviour, including MRAI and the unsynchronised

aggregation updates for the most active ASes.

The outlined characteristics of our model motivate us to

introduce a new approach to detect BGP instability based

on RQA. RQA is a tool to extract hidden information from

statistics of dynamic non-linear systems. We have shown

that RQA can rapidly identify anomalous fluctuations in the

number of BGP updates and AS-PATH lengths without the

need for a long BGP history. It is also able to detect hidden

anomalous behaviour such as changes to update patterns which

might otherwise pass without observation.

Our work suggests that the approach has the potential to

not just identify the fact of BGP instability but also the type

of disruptions that cause instability. To that end we will be

investigating in more detail different types of disruptions and

RQA measurements using a controlled testbed.
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