
Ultra-Lightweight Deep Packet Anomaly Detection

for Internet of Things Devices

Douglas H. Summerville, Kenneth M. Zach and Yu Chen

Department of Electrical and Computer Engineering

State University of New York at Binghamton

Binghamton, NY, USA

{dsummer,kzach1,ychen}@binghamton.edu

Abstract— As we race toward the Internet of Things (IoT),

small embedded devices are increasingly becoming network-

enabled. Often, these devices can’t meet the computational

requirements of current intrusion prevention mechanisms or

designers prioritize additional features and services over

security; as a result, many IoT devices are vulnerable to attack.

We have developed an ultra-lightweight deep packet anomaly

detection approach that is feasible to run on resource constrained

IoT devices yet provides good discrimination between normal

and abnormal payloads. Feature selection uses efficient bit-

pattern matching, requiring only a bitwise AND operation

followed by a conditional counter increment. The discrimination

function is implemented as a lookup-table, allowing both fast

evaluation and flexible feature space representation. Due to its

simplicity, the approach can be efficiently implemented in either

hardware or software and can be deployed in network

appliances, interfaces, or in the protocol stack of a device. We

demonstrate near perfect payload discrimination for data

captured from off the shelf IoT devices.

Keywords—Internet of Things; network anomaly detection;

I. INTRODUCTION

Despite advances in security technology, our current
Internet remains vulnerable. Weakly protected resources are
easily subverted and amassed into distributed collectives whose
power can be turned against high-value targets. As we move
toward an Internet of Things (IoT), threats multiply as the
abundance of small unprotected devices can be aggregated and
leveraged for wrongdoing. Privacy and physical safety are also
at risk as many IoT devices provide a bridge from cyberspace
to the physical world. To make matters worse, as more low-end
devices become Internet-enabled it can be expected that
common computational platforms will emerge, opening the
door to zero-day attacks as large numbers of devices share
common vulnerabilities.

Small, resource-constrained systems, however, often
dedicate what little computing power they have to providing
features or services. Design constraints, such as the need to
increase performance or battery life, may restrict the ability of

system designers to implement security effectively.

The threat from zero-day attacks and the lack of resources
makes the use of signature-based detection approaches
unsuitable in an IoT environment, given the need for a
potentially large database of known attacks. Fortunately, small
resource constrained devices execute fewer and potentially less
complex network protocols than general purpose computing
platforms. This results in less complex patterns of
communication, making it easier to detect when such patterns
have changed. Therefore, anomaly based detection methods,
which attempt to identify deviations in measured statistics
against a normal model of operation of a system, can be
beneficial to use in resource constrained systems—if
computational resource requirements can be kept low.

We have developed a high-performance ultra-lightweight
deep-packet anomaly detection approach that is feasible to run
on the smallest network-enabled embedded devices. Our
approach was designed from the ground up to support low
latency and high-throughput implementation in either hardware
or software, while remaining competitive in terms of size and
detection performance. It can be applied in either a stateless
(packet-based) or stateful (connection-based) configurations,
depending on the point of deployment. It can be implemented
at the application level or in the network stack, network
interface or within any network appliance. The approach is
highly configurable, making it suitable for a wide range of
anomaly detection tasks, yet well-defined, meaning that
detectors may not have to be relearned at each point of
deployment. Finally, protection can scale with available
resources, allowing complex systems with more resources to
implement the increased protection they require.

Our approach uses efficient bit-pattern matching, as in [1],
to perform feature selection. Bit-patterns provide flexibility to
match n-gram sequences for payload modeling and require
little computational overhead. Using a windowing approach,
counts of the sequences are obtained; these define the features
of the detector. These extracted features are used to index a
look-up table which stores a direct binary representation of the
resulting discrete feature space. This efficient and simplistic
detector allows the representation of arbitrary discrete shapes

This work was supported, in part, by the Cyber Research Institute, Rome
NY, USA.

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

in the feature space, which provides excellent ability to
discriminate normal payloads from anomalous ones.

The remainder of this paper is organized as follows.
Section II provides an overview of related work. Section III
describes our anomaly detection approach in detail. Section IV
provides an analysis of the traffic from two IoT devices and an
evaluation of the detection performance of our approach for
common attack scenarios. Section V concludes the paper.

II. RELATED WORK

Although much research has been done in designing
systems for the detection of anomalous packets and intrusions,
only a handful discuss the use of payload analysis to perform
feature selection. To our knowledge, no specific approaches
have been developed for IoT devices.

One early detection scheme, NATE [2], uses packet
headers for feature selection. Another, NETAD [3], used the
first 48 bytes of each packet. Neither are able to provide
enough information to accurately characterize packet payload.

Reference [4] developed a course grained approach that
uses byte frequency distribution over the ranges 0, 1-3, 4-6, 7-
11, 12-15 and 16-155. Thus, creating a service specific
intrusion detection system by combining type, length, and
payload byte distribution as features for statistical modeling of
normal traffic.

In contrast, a fine grained approach called PAYL was
introduced in [5], which uses n-gram analysis to model full
byte frequency distribution over different connection window
sizes. In this approach, when n = 1, a 256-bin histogram of
byte distribution is obtained. Although this histogram gives
the byte frequency distribution, it does not take into account
the relative position of these bytes, which leaves this approach
vulnerable to an attacker adding padding bytes to the payload.

If nı2, one can better model the structure of the payload.

However, the size of the feature space is 256
n
, enormously

increasing computational complexity even for small n.

A few attempts at improving PAYL have been proposed.
Wang [6] developed a system called ANAGRAM which
avoids some of the computational complexity of PAYL.
ANAGRAM implements Bloom filters, one for normal traffic
and one for known attacks. Then, a score is developed for
unobserved n-grams in a payload and weighted by the number
of malicious n-grams in that payload. Despite the
improvement in complexity, effective Bloom filter
implementations may not be possible on resource constrained
embedded devices [9].

Additional approaches at improving computational
complexity have been explored. McPAD [7] measures features
using a sliding window to analyze pairs of bytes that are
distance v apart. Performing this 2-v-gram analysis multiple
times for different values of v, one creates a multiple classifier
system. The resulting MCS approximates n-gram analysis,
with n>2, and limits the dimensions of each classifier's feature
space to 256

2
. HMMPayl [8] also uses a sliding window

approach to extract features from the payload. In this process,
the window is moved only one byte at a time, but varies the

size of the window from one implementation to another. The
set of sequences obtained from this approach is then processed
using a Hidden Markov Model. This approach reduces the
computational complexity as compared to PAYL since larger
window sizes negligibly increases complexity.

Although these improvements obtain solid detection
results, neither are able to reduce computational complexity as
well as our approach. In McPAD, the dimensionality of each
classifier's feature space is 256

2
, but adding more classifiers

increases complexity. HMMPayl attempts to avoid this, but
has a computational complexity of O(n

4
) for each classifier,

where n is the length of the window chosen. However, our
approach only increases linearly as we increase the size of our
feature space.

The precursor to our proposed approach was lightweight
stateless payload inspection, LiSP [1]. LiSP uses bit-patterns
to generate n-gram features from packets, which are mapped to
a two dimensional feature space called a bitmap. Our
approach improves on LiSP in a number of significant ways
that make it better suited for IoT devices. By using a sliding
window the dimensionality of the feature space can be better
controlled. In addition, the sliding window facilitates uniform
detection within payloads. By supporting more than two
dimensions and allowing different n-gram and grid sizes for
each, the proposed approach achieves better detector
discrimination and makes it harder for an attacker to evade
detection. These improvements also allow our approach to
operate in connection-oriented environments and reduce the
complexity of the overall implementation.

III. ULTRA-LIGHTWEIGHT ANOMALY DETECTION

Network payloads are treated as a sequence of bytes,

(bi)i∈Ν. Feature extraction operates on overlapping tuples of
bytes, called n-grams. The value of n can be unique for each
dimension d of the feature space. Fig. 1 illustrates the division
of input bytes into n-grams and n-grams into windows. The n-
gram starting at byte bi, denoted bi

n
, is the n-tuple of bytes

(bi,bi+1,…,bi+n-1). Processing payloads as n-grams, rather than
bytes, makes it more difficult for an attacker to evade detection
by matching the statistical profile of normal payloads though
padding or byte substitution. Allowing each dimension to
process input using its own n-gram size raises the bar even
further, since the attacker has to match the statistical profile of
the payload for every n-gram size in use by the detector.

 The detector operates on a windows of bytes with window
size w and stride length s, as shown in Fig. 1. The j

th
 window

of bytes, Wj, is the byte sequence (bjs, bjs+1, …, bjs+w-1). For
each dimension k of the detector, byte window Wj is processed

bi-1 bi bi+1 bi+2 bi+3 bi+w-2 bi+w-1 bibi+s-1 bi+s bi+s+1

Fig. 1. Payload bytes are processed as n-grams, where each feature
(dimension) can use a different value for n. Feature extraction uses a
windowed approach with window size w bytes and stride length s bytes.

as the sequence of nk-grams:

 . (1)

There can be a small difference in the number of n-grams
processed for each dimension due to fringe effects at the end of
the window. Our ultra-lightweight anomaly detection can be
applied to either connection-oriented (stateful) or packet-based
payload processing, depending on the operating environment at
the point of deployment. In either case, at most a single
window of payload is the only state required to be kept. Both
window size and stride length can be adjusted to optimize
detection based on the characteristics of the payload being
monitored.

A d-element feature vector (c0, c1, … cd-1) is computed for
each window of bytes. Feature ck is a count of nk-grams that
match the bit-pattern associated with dimension k. Bit-
patterns [1] are binary vectors containing don't care positions;
alternatively, bit-patterns are ternary vectors of elements from
the set {0,1,X}, where X means match either a 0 or 1. A match
between a bit-pattern and n-gram occurs when the
corresponding bits match in all positions. For example, the bit-
pattern 010XXXXX matches 1-grams (bytes) in the intervals
[64,95], which for ASCII encoded values is the set containing
predominantly the upper-case letters. Likewise, the bit-pattern
01XXXXXX001XXXXX matches 2-grams whose first byte is
in [64,127] and whose second byte is in [32,63], which for
ASCII encoded data would capture the set of 2-grams
representing predominantly letters followed by numbers or
punctuation. Bit-patterns are not specific to a particular data
encoding (e.g. ASCII) and can be used to model any type of
payload. Bit-patterns were chosen for feature extraction
because they are extremely efficient to compute and intuitive to
interpret.

Let Pk be the bit-pattern associated with feature k of the
detector. Because standard digital hardware cannot store and
process ternary values directly, a bit-pattern is stored as a

mask-value pair (Mk,Dk), each of which is an 8⋅nk bit binary
value. Mk, the mask, encodes the bit positions in the nk-gram
that are to be matched with a 1; alternatively, it encodes the
don’t care positions as 0. Dk encodes the positions of 0’s and
1’s of the bit-pattern. A bit-pattern match operation on
nk-gram, therefore, is given by

 , (2)

where ⋅ represents a bitwise-AND operation. Therefore, the
bit-pattern match requires a single AND operation and a single
equality comparison per n-gram. For the j

th
 window of

payload bytes, element ck of the feature vector is therefore
given by

 . (3)

It is useful to note that the feature space is both discrete and
bounded, with each feature ck falling in the interval [0,w].

Furthermore, each of the finite number of points the discrete
feature space is binary.

The feature extraction method described requires O(d⋅w)
trivial operations (bitwise AND with equality comparison) per
window of n-grams, all of which could potentially be done in
parallel or pipelined. Thus, there is a great potential for
optimization in either hardware or software. Furthermore, a
new match operation can be performed as each payload byte
arrives; thus, real-time implementations are feasible.

A conceptual illustration of a 3-dimensional feature space
is shown in Fig 2. Since the binary feature space is discrete and
finite, as described above, we chose to implement it with a
simple lookup table (requiring at most w

d
 bits) rather than

using a discrimination function that would require additional
computation resources and time. As a result, run-time
evaluation of a feature vector merely requires computing the
index into the multidimensional array and subsequently reading
the binary detection decision. In addition to computational
efficiency, there are performance advantages to this approach
as well. Unlike more complex approaches that use distance
metrics which force the normal region(s) to be constrained to
well-defined mathematical shapes, our approach can represent
arbitrarily shaped regions because each point is individually
mapped to a binary decision. This allows our approach to
potentially represent nnormal regions with more accuracy,
reducing false negatives.

In many cases, the full resolution of d bits per dimension in
not needed. Thus, we allow the resolution in each dimension
to be quantized by some chosen amount. For example, when
using a window size of 256, one dimension could have the full
range [0,255], while another could be reduced by half to
[0,127] by dividing the feature count by 2. This both reduces
storage requirements when a particular region of the space is
unimportant and allows tradeoffs to be made between
performance and storage requirements, if necessary. It is
expected that in the embedded systems for which this approach
is intended, most feature spaces will be low-dimensional and of
relatively low resolution; the largest space we use in this study,
for example, is 64

3
 bits or 32 kilobytes.

Fig 2. Conceptual view of a 3-dimensional feature space. The space can
be represented by a table of binary values, allowing arbitrary shapes to be
modelled.

IV. EXPERIMENTAL EVALUATION

We have evaluated the proposed approach against traffic
obtained from two Internet-enabled devices: a weather station
and an interactive networked video camera. These were
chosen, respectively, to represent an IoT device that primarily
outputs data, which we call a sensor, and one that primarily
receives control commands, which we call an actuator. Since
the Internet of Things will bridge the cyber and physical
worlds, these two types of devices, each representing one
direction of that bridge, are a good starting point for analysis.

The network camera we tested is a Foscam FI8910W Pan
& Tilt IP/Network Camera. The device is controlled through a
series of HTTP GET requests containing the parameters
necessary to manipulate the camera. While the device has two-
way traffic, with the return traffic containing video and audio,
we only evaluated the control traffic destined for the camera.
This is the most likely protection scenario in a real-world
environment. However, additional detectors could be defined
to simultaneously monitor configuration traffic destined for the
device, as well as for outgoing audio or video data.

The weather station, being representative of a network
sensor, generates traffic primarily in the output direction. The
device tested is an Ambient Weather WS-1001-WIFI Observer
solar powered wireless remote monitoring station mounted in
an outdoor location to obtain realistic readings. This device
periodically reports current weather conditions to an Internet
service through a series of HTTP GET requests.

We collected traffic from the two IoT devices, as well as
generic HTTP traffic, to obtain three benchmark data sets: IoT
control device, IoT sensor device, and generic HTTP. The
latter data was collected for the purpose of evaluating the
discrimination ability of the detector, both of which use HTTP
as their underlying protocol. While the 1999 DARPA intrusion
detection benchmarks [10] have been widely used to evaluate
network anomaly detection systems, we chose not to evaluate
the proposed approach against these for three reasons. First, a
bit-pattern based anomaly detection approach has already been
evaluated in [1] and was found to have very good performance.
As the proposed approach represents a superset of that work
we could have simply tuned a detector to match the given
parameters reported and obtained similar results. Secondly, the
anomaly detector proposed in this work is intended for
protection of resource-constrained devices, while the DARPA
benchmarks represent traffic from general-purpose hosts and
servers. Finally, the DARPA benchmarks are over 15 years
old and may not be truly representative of modern network
traffic. The generic web data we collected is likely more
representative or modern payload characteristics.

A. Traffic Analysis

The weather station transmits sensor readings to a server
encoded in HTTP GET request packets. Each packet contains
a TCP payload of approximately 525 bytes encoding a single
vector of readings. During traffic collection, TCP control
packets with no payloads were filtered out of the stream and
18648 packets were collected to represent normal operation,
with an additional 2141 for evaluation of false positives.

The camera receives control packets from user web
browsers, also encoded within HTTP GET request. As before,
TCP control packets with no payloads were filtered out of the
incoming traffic and 4123 packets were collected to represent
normal operation, with an additional 800 for testing of false
positives.

For comparison, generic HTTP payload data was collected
on a network. Outgoing traffic with a destination TCP port of
80 and was collected until 5,000 packets with payloads were
obtained. This traffic included requests to a wide range of sites
and also included multimedia and other user data streams.

 For illustration purposes, Fig 3 shows the distribution of
byte values for the traffic collected from the control device, as
well as the byte distribution for a randomly selected single
packet. No byte values above 127 were observed, as the traffic
represents standard 7-bit ASCII encoded characters. The figure
shows that the distribution of bytes in a single sensor packet is
similar to the aggregate distribution of the entire traffic set,
suggesting that the distribution is similar among packets.

To evaluate this more precisely, the cosine similarity metric
was computed for all pairs of packets in each of the three data
sets. Fig 4 shows the distribution of inter-packet cosine
similarity values for each of the data sets. Fig 4(a) shows that
for the generic web traffic, the packets exhibit a wide-range of
dissimilar distributions. By contrast, the traffic from each of
the IoT devices exhibits a very high degree of similarity among
packets (Fig 4(b) and Fig 4(c)). A summary of the minimum,
maximum and mean cosine similarity values is provided in
Table 1. The IoT sensor displayed the highest degree of
similarity among packets; the IoT control device had slightly
more variability in the types of messages used in its protocol
exchanges and thus had a slightly higher dissimilarity among
packets, though not nearly as much as the generic web traffic.
This data suggests that, as presumed, these IoT devices use few
protocols and that these protocols are not very complex, as
complex protocols would exhibit more dissimilarity among
packets.

0 4 8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

1
2
8

Byte Distribution of Captured Traffic

(a)

0 4 8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

1
2
8

Single Packet Byte Distribution

(b)

Fig 3. (a) Distribution of payload bytes for camera control traffic; (b)
distribution of payload bytes for a randomly selected packet. The single
packet bears a remarkable similarity to the aggregate traffic.

B. Anomaly Detection Performance

To assess the performance of the proposed ultra-
lightweight deep packet anomaly detection approach on the
IoT device traffic, we trained a detector for each device on its
collected normal traffic and evaluated it against various attack
scenarios, including worm propagation, tunneling, SQL code
injection, and directory traversal attacks. The parameters of
each detector were manually tuned based on the payload traffic
patterns observed in the data set. Once bit-patterns, window
size and stride were chosen, collected traffic was trained
against the detector to identify the normal regions of the space.
Subsequently, attacks were developed and evaluated against
the trained detector.

Bit-pattern features were selected intuitively using the
following heuristic. First, n-gram patterns in the payloads were
identified by inspecting the histogram of 2-grams of each
payload. To improve detection accuracy without over-learning
normal payloads, bit-patterns were chosen to match commonly
occurring sequences in the data without being overly specific.
Therefore, don’t cares were introduced into the patterns with
the dual goals of retaining specificity and sensitivity of the
detector. To achieve this we used the following heuristic: if
introducing a don’t care significantly changed the feature count
over the more specific pattern, then its inclusion is rejected.
The motive behind this heuristic was to be very specific on

matching characteristics of normal traffic, but allowing the bit-
patterns to match as broadly as possible on abnormal traffic.
The latter should increase the likelihood that anomalous
payloads would skew the feature vector out of the normal
regions of the feature space. Future research will focus on
automating learning algorithms.

1) IoT Sensor Detection Performance

From the traffic analysis in Fig 4 and Table 1, the weather
station had the most uniform traffic of the devices tested.
Upon inspection, all the packets were found to be
approximately 525 bytes long; therefore, a window size of 256
bytes was chosen with a stride length of 64, allowing multiple
windows of payload to be evaluated within each packet.

By studying the normal payload contents, two types of
2-gram patterns appeared. The first was letters followed by
letters (ASCII codes in the range [65,122], followed by the
same). For these 2-grams, we chose the bit-pattern
01XXXXXX 01XXXXXX, which matches pairs of bytes in
the range [64,127]; however, because the packets contained no
bytes in the range [128,255], we included and extra don’t care
in the most significant bit of the second octet of the 2-gram
pattern, following our feature selection heuristic, to obtain
01XXXXXX X1XXXXXX.

The second pattern of 2-grams we observed were ASCII
encoded “=” characters (code 61) followed a variety of letters
or numbers. For this pattern, we therefore started with
00111101 0XXXXXXX (“=” followed by any value below
128). To reduce the overly specific first octet, we evaluated
the pattern against the normal payloads and found that adding
don’t cares in bit positions 0, 1, 3 and 4 had little effect on the
feature counts. Thus, our final bit-pattern was
001XX1XX 0XXXXXXX.

As a network sensor, the traffic being evaluated by the
detector is that leaving the IoT device. Therefore, we simulated
attacks representing the use case where a compromised sensor
device is attempting to use the network to accomplish its
intended misbehavior. We should note that we have no
knowledge about the implementation of the IoT device or the
server it communicates with; the intent was to simulate
common attack scenarios, not ones that would necessarily
succeed for this device. The attacks include attempting to
establish an encrypted tunnel, an attempted code-injection
attack against the upstream server receiving the sensor data,
and a worm propagation. The tunnel attack was emulated with
traffic captured from a secure shell connection. To emulate a
code-injection attack, we replaced the username=”nobody”
string in one of the packets with the string username= “1;
DROP TABLE passwd”, an attempt to have SQL code
embedded in the HTTP GET request be interpreted by the host.
It should be noted that we have no knowledge of the server’s
underlying system, including whether it uses SQL to store a
database of usernames. To emulate a worm attempting to
propagate to the device, we used the captured payload packets
of the infamous Code Red II worm [11].

Fig 5 shows the feature space of the trained 64x64
detection grid for the selected bit-pattern pair. We started with
a grid size of 64, with the intention of increasing or decreasing

 (a)

 (b) (c)

Fig 4. Distribution of inter-packet cosine similarity values for (a) generic
web traffic; (b) IoT sensor traffic; and (c) IoT control traffic. Note the
different horizontal axes. Packet byte distributions of IoT device traffic are
remarkably uniform across packets. The IoT control traffic had a few
outliers that were not visible in the graphs and were omitted.

Table 1. Summary of cosine similarity values among packets within each
data set. The generic web traffic exhibits a wide range of packet byte
distributions, while the IoT device packets show very high similarity.

Traffic Set
Minimum
Similarity

Maximum
Similarity

Mean
Similarity

Generic Web 0 1.0 0.825
IoT Sensor 0.984 1.0 0.996
IoT Control 0.536 1.0 0.979

it as necessary. The filled-in squares represent those regions of
the space in which normal traffic occurred. Superimposed on
the grid are symbols indicating the regions mapped to by three
different simulated attacks: worm propagation, code injection,
and tunneling attack. The figure illustrates that one or more
windows of payload from each attack were detected by the
trained detector. The code injection attack, being the most
similar to the original traffic, occupied locations in the feature
space that were close to the normal traffic; in fact, one packet
occurs in an anomalous cell that falls within the normal cluster.
This illustrates our claim about the improved discrimination
that comes with using a lookup table detector; using a linear or
elliptical discriminant function, for example, would not have
detected this part of the attack.

The detection performance of the detector is summarized in
Table 2, which shows per window, per packet, and per attack
detection rates. While the main goal is to detect and stop the
attack, the per-window detection rates are important because
they indicate the ability of the detector to discriminate
payloads. The per packet detection rates provide a measure of
how many packets of the attack would be blocked by the
detector. Although blocking only one may be necessary, it is
desirable to block as many as possible. Included in the table is

the normal test data used to assess false positives.

The data shows that not only was every attack detected, but
every packet of each attack had at least one window that was
detected as anomalous by our approach. Furthermore, the per-
window detection accuracies were extremely high for the
worm and tunneling attacks. The Code injection attack was
expected to be the hardest to detect, given that it is
implemented using a single packet that is slightly modified
from a normal packet. Yet, despite this small change 33% of
the data windows were affected enough by the change to be
classified as anomalous. A single false positive occurred on the
normal testing data.

The feature space shown in Fig 5 would require only 4096
bits to represent. A seen from the figure, however, the space is
relatively sparse, particularly in the dimension represented on
the vertical axis of the figure. This prompted us to try reducing
that dimension of the detector from 64 to 32, which would cut
the overall storage requirement in half. The reduced space is
shown in Fig 6. This change caused 2 fewer windows of the
tunnel attack to be detected, reducing the per-window detection
accuracy to 94.0%; the per packet detection rate remained the
same. No other value listed in Table 2 was affected. This
illustrates the ability of our detector to balance performance
and resources, as the change resulted in a small decrease in the
number of windows of payload detected but results in a 50%
reduction in detector storage.

It should be noted that when decreasing the size of the
space, all normal regions in the larger feature space necessarily
map to normal regions in the quantized space; therefore, the
false positive rate can only decrease.

2) IoT Actuator Detection Evaluation

Analysis of IoT actuator traffic showed payload lengths
between 264 and 500. A window size of 128 bytes was
chosen, with a stride length of 32, to allow multiple windows
to be processed for all packets. As a network actuator, the
traffic being evaluated by the detector is that directed to the
IoT device. Therefore, we simulated attacks representing the
use case where the attacker is trying to gain access. The
attacks include an attempted code injection attack, directory
traversal attack, superfluous Unicode attack, worm propagation
and an attempt to perform an unauthorized NVRAM restore.
The code injection and worm propagation attacks were the

Series1 Worm Propagation Code Injection Tunnel

Fig 5. 64x64 feature space for the 2-gram bit-pattern pair
01XXXXXX01XXXXXX, 001XX1XX0XXXXXXXX. For clarity, false-
negatives are not plotted.

Table 2: Number of windows and packets detected for sensor attacks tested. In
all cases, every packet of all the attacks was detected.

Attack Number
Windows

Windows
Detected

Number
Packets

Packets
Detected

Attack
Detected

Worm
Propagation

51 51
(100%)

4 4
(100%)

Yes

Code
Injection

6 2
(33.3%)

1 1
(100%)

Yes

Tunnel 66 64
(97.0%)

25 25
(100%)

Yes

Normal
Testing

12846 1
(0.00%)

2141 1
(0.05%)

n/a

Normal Worm Propagation Code Injection Tunnel

Fig 6. Feature Space from Fig 5, reduced to 64x32.

same as those used in the previous section. The directory
traversal attack used a modified URL including the string
GET ../etc/passwd, (instead of GET /filename) emulating an
attempt to exploit a misconfigured system to gain access to the
file system outside of the root directory of its http server. The
superfluous Unicode attack is similar to the directory traversal
but attempts to bypass filters looking for the “../” pattern by
encoding those three characters in Unicode. The NVRAM
restore attack contained an attempt to restore the device
settings using a previously collected backup file.

By studying the payload contents, two types of 2-gram
patterns appeared. The first was letters followed by letters
(ASCII codes in the range [65,122]). For these two grams, we
chose the bit-pattern 01XXXXXX 01XXXXXX, which
matches pairs of bytes in the range [64,127]. Unlike the IoT
sensor, including additional don’t cares into this pattern did
change the feature counts; therefore, we rejected them based on
our heuristic. The second pattern of 2-grams we observed was
the presence of a large number of ASCII encoded digits in the
range [30,39] followed by a wide range of values. For this
pattern, we selected 0011XXXX 0XXXXXXX. Following our
heuristic, additional don’t cares were not included, as they
changed the feature counts dramatically.

Fig 7 shows the feature space of the trained 64x64
detection grid for the selected bit-pattern pair. We again started
with a grid size of 64x64, with the intention of increasing or
decreasing it as necessary. However, as shown in Table 4, the
performance was very good on all attacks except for the
superfluous Unicode attack, which was not detected.
Increasing the grid size did not improve the performance, so
we suspected that the issue was the higher dissimilarity among
packets for this traffic (as reported in Section 4A). Therefore,
we added a third dimension to the detector, using the bit-
pattern 01XXXXXX, which counts 1-grams in the range
[64,127].

 The results of this test are shown in Table 3. Of the four
attacks not already detected perfectly by the two-dimensional
detector, 3 showed improved performance using the three
dimensional detector. Furthermore, all attacks were detected.

3) Discriminatory Ability of Detectors

We evaluated the ability of each detector to discriminate
the traffic it was trained on from other traffic. The results are
summarized in Table 5. The four detectors correspond to those
used in the previous sections, and the three data sets are the
collected normal data from the two IoT sensors and the generic
web data. Recall that for the IoT sensor, two 2-dimensional
detectors using the bit-patterns 01XXXXXX0XXXXXXX and
001XX1XX0XXXXXXX were evaluated. The difference
between the detectors is only that one used a 64x64 feature
space and the other a reduced 64x32 feature space. Further
recall that for the IoT sensor, a 2-dimensional 64x64 feature
space using the patterns 01XXXXXX01XXXXXX and
0011XXXX0XXXXXXX was evaluated. A 3-dimensional
64x64x64 space expanded on this by extending to a third
dimension using the feature 01XXXXXX.

Normal Directory Traversal Restore Superfluous Worm

Fig 7. Two-dimensional64x64 feature space for IoT actuator using bit-pattern
pair 01XXXXXX01XXXXXX , 0011XXXX0XXXXXXX.

Table 4: Number of windows and packets detected for actuator attacks using
64x64 detector in Fig 7 . One attack was not detected.

Attack Number
Windows

Windows
Detected

Number
Packets

Packets
Detected

Attack
Detected

Worm
Propagation

111 111
(100%)

4 4
(100%)

Yes

Code
Injection

11 2
(18.2%)

1 1
(100%)

Yes

Superfluous 7 0
(0%)

1 0
(0%)

No

Directory
Traversal

7 1
(14.3%)

1 1
(100%)

Yes

Restore 173 144
(83.2%)

9 8
(88.9%)

Yes

Normal
Testing

7290 0
(0.0%)

1215 0
(0.0%)

n/a

Table 3: Number of windows and packets detected for actuator attacks using 3-
dimensional detector obtained by adding a dimension to the detector used in
Table 4. Values showing improvement are in boldface.

Attack Number
Windows

Windows
Detected

Number
Packets

Packets
Detected

Attack
Detected

Worm
Propagation

111 111
(100%)

4 4
(100%)

Yes

Code
Injection

11 5
(45.5%)

1 1
(100%)

Yes

Superfluous 7 4
(57.1%)

1 1
(100%)

Yes

Directory
Traversal

7 4
(57.1%)

1 1
(100%)

Yes

NVRAM
Restore

173 156
(90.2%)

9 9
(100%)

Yes

Normal
Testing

7290 0
(0.0%)

1215 0
(0.0%)

n/a

The results indicate that both detectors developed for the
IoT sensor performed were able to accurately discriminate
against the IoT control traffic, detecting 99.9% of the payload
windows and every packet as abnormal. The detectors for the
IoT actuator, on the other hand, detected slightly fewer
windows of the sensor payloads as being anomalous (92.9%),
but still detected at least one window in each packet for a
perfect packet (and therefore attack) detection rate.

The evaluation on the generic web data can reveal more
information on the discriminatory ability of the detectors, given
its highly dissimilar nature. Both detectors developed for the
IoT sensor could detect 100% of the generic web packets as
being anomalous, and both showed very high per-window
detection accuracy. The results again show that the smaller
64x32 detector exhibited just slightly lower performance as a
tradeoff for the reduction in size. The 2- and 3-dimensional
IoT actuator detectors showed much more variability in the
ability to discriminate the generic web payload windows,
though both had high per packet detection accuracies. In
moving from a 2-dimensional feature space to a 3-dimensional
space, per-window detection accuracy improved from 47.7% to
100%; per-packet accuracies went from 98.4% to 100%. The
3-dimensional detector developed for the IoT actuator was able
to perfectly discriminate the generic web traffic.

V. CONCLUSIONS

We have presented a high-performance ultra-lightweight
deep-packet anomaly detection approach that is feasible to run
on small IoT devices. The approach uses n-gram bit-patterns to
efficiently and flexibly model payloads and allows the n-gram
size to vary by dimension. By using a direct representation of
the feature space for the discrimination function, the detector

can make a fast packet classification decision. The approach
can be implemented in hardware or software and has abundant
parallelism to exploit for effective implementation. The
approach can be deployed in an IoT device’s network interface
or protocol stack, or can be built into network appliances and
firewalls. It can operate in a wide-range of network
environments and is highly configurable and scalable.

The results presented have shown that small IoT devices
use few and relatively simple protocols, leading to network
payloads that are highly similar and therefore amenable to
anomaly detection with an extremely low occurrence of false-
positives. The detectors have been shown to be highly effective
at identifying anomaly packets from a wide-range of attacks,
and have an excellent ability to discriminate device-specific
traffic from other types of Internet traffic.

REFERENCES

[1] N. Nwanze and D.H. Summerville “Detection of anomalous network
packets using lightweight stateless payload inspection”. The 33rd IEEE
Conf. On Local Computer Networks, 2008.

[2] C. Taylor and J. Alves-Foss, NATE- Network Analysis of Anomalous
Traffic Event, A Low Cost Approach, In Proceedings of the NSPW'01,
Sept 10-13, 2001, pp. 89-96.

[3] M. Mahoney, Network Traffic Anomaly Detection Based on Packet
Bytes, In Proceedings of the 18th ACM Symp. Applied Computing, pp.
346-350, 2003.

[4] C. Kruegel, T. Toth, and E. Kirda, Service Specific Anomaly Detection
for Network Instrusion Detection, Symp. On Applied Computing (SAC).
ACM Digital Library, Spain, Mar 2002.

[5] K. Wang and S.J. Stolfo. Anomalous Payload-based Network Intrusion
Detection, in: Recent Advances in Intrusion Detection (RAID), 2004.

[6] K. Wang and S.J. Stolfo, Anagram, a content anomaly detector resistant
to mimicry attack, in: Recent Advances in Intrusion Detection (RAID),
2006.

[7] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, W. Lee, McPAD: A multiple
classifer system for accurate payload-based anomaly detection,
Computer Networks 53, pp. 864-881, 2009.

[8] D. Ariu, R. Tronci, G. Giancinto, HMMPayl: An intrusion detection
system based on Hidden Markov Models, Computer & Security 30, pp.
221-241, 2011.

[9] H. Chen, Y. Chen, and D. Summerville, "A Survey on the Application
of FPGAs for Network Infrastructure Security," the IEEE
Communications Surveys and Tutorial, Vol. 13, No. 4, 2011.

[10] Lippmann, R. and Haines, J.W. and Fried, D.J. and Korba, J. and Das,
K., "The 1999 DARPA off-line intrusion detection evaluation",
Computer Networks, vol. 34, no. 4, 2000.

[11] John C. Dolak, The Code Red Worm, Security Essentials Version 1.2e,
2001.

Table 5: Analysis of discriminatory ability of the four detectors on three data
sets. Reported for each combination is the detection rate per window of
payload, and per packet of payload.

Data Set

Detector IoT
Sensor

IoT
Control

Generic
Web

IoT Sensor
64x64 n/a

Window: 99.9%
Packet: 100%

Window: 96.2%
Packet: 100%

IoT Sensor
64x32 n/a

Window: 99.9%
Packet: 100%

Window: 93.5%
Packet: 99.8%

IoT Actuator
64x64

Window: 92.9%
Packet: 100% n/a

Window: 47.7%
Packet: 98.4%

IoT Actuator
64x64x64

Window: 92.9%
Packet: 100% n/a

Window: 100%
Packet: 100%

