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Abstract— As we race toward the Internet of Things (IoT), 

small embedded devices are increasingly becoming network-

enabled. Often, these devices can’t meet the computational 

requirements of current intrusion prevention mechanisms or 

designers prioritize additional features and services over 

security; as a result, many IoT devices are vulnerable to attack.  

We have developed an ultra-lightweight deep packet anomaly 

detection approach that is feasible to run on resource constrained 

IoT devices yet provides good discrimination between normal 

and abnormal payloads. Feature selection uses efficient bit-

pattern matching, requiring only a bitwise AND operation 

followed by a conditional counter increment.  The discrimination 

function is implemented as a lookup-table, allowing both fast 

evaluation and flexible feature space representation. Due to its 

simplicity, the approach can be efficiently implemented in either 

hardware or software and can be deployed in network 

appliances, interfaces, or in the protocol stack of a device. We 

demonstrate near perfect payload discrimination for data 

captured from off the shelf IoT devices.     
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I. INTRODUCTION 

Despite advances in security technology, our current 
Internet remains vulnerable. Weakly protected resources are 
easily subverted and amassed into distributed collectives whose 
power can be turned against high-value targets. As we move 
toward an Internet of Things (IoT), threats multiply as the 
abundance of small unprotected devices can be aggregated and 
leveraged for wrongdoing.  Privacy and physical safety are also 
at risk as many IoT devices provide a bridge from cyberspace 
to the physical world. To make matters worse, as more low-end 
devices become Internet-enabled it can be expected that 
common computational platforms will emerge, opening the 
door to zero-day attacks as large numbers of devices share 
common vulnerabilities.   

Small, resource-constrained systems, however, often 
dedicate what little computing power they have to providing 
features or services.  Design constraints, such as the need to 
increase performance or battery life, may restrict the ability of 

system designers to implement security effectively.  

The threat from zero-day attacks and the lack of resources 
makes the use of signature-based detection approaches 
unsuitable in an IoT environment, given the need for a 
potentially large database of known attacks.  Fortunately, small 
resource constrained devices execute fewer and potentially less 
complex network protocols than general purpose computing 
platforms. This results in less complex patterns of 
communication, making it easier to detect when such patterns 
have changed. Therefore, anomaly based detection methods, 
which attempt to identify deviations in measured statistics 
against a normal model of operation of a system, can be 
beneficial to use in resource constrained systems—if 
computational resource requirements can be kept low. 

We have developed a high-performance ultra-lightweight 
deep-packet anomaly detection approach that is feasible to run 
on the smallest network-enabled embedded devices. Our 
approach was designed from the ground up to support low 
latency and high-throughput implementation in either hardware 
or software, while remaining competitive in terms of size and 
detection performance. It can be applied in either a stateless 
(packet-based) or stateful (connection-based) configurations, 
depending on the point of deployment.  It can be implemented 
at the application level or in the network stack, network 
interface or within any network appliance.  The approach is 
highly configurable, making it suitable for a wide range of 
anomaly detection tasks, yet well-defined, meaning that 
detectors may not have to be relearned at each point of 
deployment.  Finally, protection can scale with available 
resources, allowing complex systems with more resources to 
implement the increased protection they require. 

Our approach uses efficient bit-pattern matching, as in [1], 
to perform feature selection.  Bit-patterns provide flexibility to 
match n-gram sequences for payload modeling and require 
little computational overhead. Using a windowing approach, 
counts of the sequences are obtained; these define the features 
of the detector.  These extracted features are used to index a 
look-up table which stores a direct binary representation of the 
resulting discrete feature space.   This efficient and simplistic 
detector allows the representation of arbitrary discrete shapes 
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in the feature space, which provides excellent ability to 
discriminate normal payloads from anomalous ones.  

The remainder of this paper is organized as follows.  
Section II provides an overview of related work.  Section III 
describes our anomaly detection approach in detail.  Section IV 
provides an analysis of the traffic from two IoT devices and an 
evaluation of the detection performance of our approach for 
common attack scenarios.  Section V concludes the paper. 

II. RELATED  WORK 

Although much research has been done in designing 
systems for the detection of anomalous packets and intrusions, 
only a handful discuss the use of payload analysis to perform 
feature selection.  To our knowledge, no specific approaches 
have been developed for IoT devices. 

One early detection scheme, NATE [2], uses packet 
headers for feature selection.  Another, NETAD [3], used the 
first 48 bytes of each packet.  Neither are able to provide 
enough information to accurately characterize packet payload.   

Reference [4] developed a course grained approach that 
uses byte frequency distribution over the ranges 0, 1-3, 4-6, 7-
11, 12-15 and 16-155.  Thus, creating a service specific 
intrusion detection system by combining type, length, and 
payload byte distribution as features for statistical modeling of 
normal traffic.   

In contrast, a fine grained approach called PAYL was 
introduced in [5], which uses n-gram analysis to model full 
byte frequency distribution over different connection window 
sizes.  In this approach, when n = 1, a 256-bin histogram of 
byte distribution is obtained.  Although this histogram gives 
the byte frequency distribution, it does not take into account 
the relative position of these bytes, which leaves this approach 
vulnerable to an attacker adding padding bytes to the payload.  

If nı2, one can better model the structure of the payload. 

However, the size of the feature space is 256
n
, enormously 

increasing computational complexity even for small n. 

A few attempts at improving PAYL have been proposed.  
Wang [6] developed a system called ANAGRAM which 
avoids some of the computational complexity of PAYL.  
ANAGRAM implements Bloom filters, one for normal traffic 
and one for known attacks.  Then, a score is developed for 
unobserved n-grams in a payload and weighted by the number 
of malicious n-grams in that payload.  Despite the 
improvement in complexity, effective Bloom filter 
implementations may not be possible on resource constrained 
embedded devices [9].  

Additional approaches at improving computational 
complexity have been explored.  McPAD [7] measures features 
using a sliding window to analyze pairs of bytes that are 
distance v apart.  Performing this 2-v-gram analysis multiple 
times for different values of v, one creates a multiple classifier 
system.  The resulting MCS approximates n-gram analysis, 
with n>2, and limits the dimensions of each classifier's feature 
space to 256

2
.  HMMPayl [8] also uses a sliding window 

approach to extract features from the payload.  In this process, 
the window is moved only one byte at a time, but varies the 

size of the window from one implementation to another.  The 
set of sequences obtained from this approach is then processed 
using a Hidden Markov Model.  This approach reduces the 
computational complexity as compared to PAYL since larger 
window sizes negligibly increases complexity. 

Although these improvements obtain solid detection 
results, neither are able to reduce computational complexity as 
well as our approach.  In McPAD, the dimensionality of each 
classifier's feature space is 256

2
, but adding more classifiers 

increases complexity.  HMMPayl attempts to avoid this, but 
has a computational complexity of O(n

4
) for each classifier, 

where n is the length of the window chosen.  However, our 
approach only increases linearly as we increase the size of our 
feature space. 

The precursor to our proposed approach was lightweight 
stateless payload inspection, LiSP [1].  LiSP uses bit-patterns 
to generate n-gram features from packets, which are mapped to 
a two dimensional feature space called a bitmap.   Our 
approach improves on LiSP in a number of significant ways 
that make it better suited for IoT devices.  By using a sliding 
window the dimensionality of the feature space can be better 
controlled.  In addition, the sliding window facilitates uniform 
detection within payloads.  By supporting more than two 
dimensions and allowing different n-gram and grid sizes for 
each, the proposed approach achieves better detector 
discrimination and makes it harder for an attacker to evade 
detection.  These improvements also allow our approach to 
operate in connection-oriented environments and reduce the 
complexity of the overall implementation. 

III. ULTRA-LIGHTWEIGHT ANOMALY DETECTION 

Network payloads are treated as a sequence of bytes, 

(bi)i∈Ν.  Feature extraction operates on overlapping tuples of 
bytes, called n-grams.  The value of n can be unique for each 
dimension d of the feature space. Fig. 1 illustrates the division 
of input bytes into n-grams and n-grams into windows.  The n-
gram starting at byte bi, denoted bi

n
, is the n-tuple of bytes 

(bi,bi+1,…,bi+n-1). Processing payloads as n-grams, rather than 
bytes, makes it more difficult for an attacker to evade detection 
by matching the statistical profile of normal payloads though 
padding or byte substitution.  Allowing each dimension to 
process input using its own n-gram size raises the bar even 
further, since the attacker has to match the statistical profile of 
the payload for every n-gram size in use by the detector.   

  The detector operates on a windows of bytes with window 
size w and stride length s, as shown in Fig. 1.  The j

th
 window 

of bytes, Wj, is the byte sequence (bjs, bjs+1, …, bjs+w-1).  For 
each dimension k of the detector, byte window Wj is processed 

bi-1 bi bi+1 bi+2 bi+3 bi+w-2 bi+w-1 bibi+s-1 bi+s bi+s+1

Fig. 1.  Payload bytes are processed as n-grams, where each feature 
(dimension) can use a different value for n.  Feature extraction uses a
windowed approach with window size w bytes and stride length s bytes.  



as the sequence of nk-grams: 

 . (1) 

There can be a small difference in the number of n-grams 
processed for each dimension due to fringe effects at the end of 
the window.  Our ultra-lightweight anomaly detection can be 
applied to either connection-oriented (stateful) or packet-based 
payload processing, depending on the operating environment at 
the point of deployment. In either case, at most a single 
window of payload is the only state required to be kept.  Both 
window size and stride length can be adjusted to optimize 
detection based on the characteristics of the payload being 
monitored.   

A d-element feature vector (c0, c1, … cd-1) is computed for 
each window of bytes.  Feature ck is a count of nk-grams that 
match the bit-pattern associated with dimension k.  Bit-
patterns [1] are binary vectors containing don't care positions; 
alternatively, bit-patterns are ternary vectors of elements from 
the set {0,1,X}, where X means match either a 0 or 1.  A match 
between a bit-pattern and n-gram occurs when the 
corresponding bits match in all positions.  For example, the bit-
pattern 010XXXXX matches 1-grams (bytes) in the intervals 
[64,95], which for ASCII encoded values is the set containing 
predominantly the upper-case letters. Likewise, the bit-pattern 
01XXXXXX001XXXXX matches 2-grams whose first byte is 
in [64,127] and whose second byte is in [32,63], which for 
ASCII encoded data would capture the set of 2-grams 
representing predominantly letters followed by numbers or 
punctuation.  Bit-patterns are not specific to a particular data 
encoding (e.g. ASCII) and can be used to model any type of 
payload.  Bit-patterns were chosen for feature extraction 
because they are extremely efficient to compute and intuitive to 
interpret.   

Let Pk be the bit-pattern associated with feature k of the 
detector.  Because standard digital hardware cannot store and 
process ternary values directly, a bit-pattern is stored as a 

mask-value pair (Mk,Dk), each of which is an 8⋅nk bit binary 
value.  Mk, the mask, encodes the bit positions in the nk-gram 
that are to be matched with a 1; alternatively, it encodes the 
don’t care positions as 0.  Dk encodes the positions of 0’s and 
1’s of the bit-pattern.  A bit-pattern match operation on 
nk-gram, therefore, is given by  

 , (2) 

where ⋅ represents a bitwise-AND operation.  Therefore, the 
bit-pattern match requires a single AND operation and a single 
equality comparison per n-gram.   For the j

th
 window of 

payload bytes, element ck of the feature vector is therefore 
given by 

 . (3) 

It is useful to note that the feature space is both discrete and 
bounded, with each feature ck falling in the interval [0,w].  

Furthermore, each of the finite number of points the discrete 
feature space is binary.   

The feature extraction method described requires O(d⋅w) 
trivial operations (bitwise AND with equality comparison) per 
window of n-grams, all of which could potentially be done in 
parallel or pipelined. Thus, there is a great potential for 
optimization in either hardware or software.  Furthermore, a 
new match operation can be performed as each payload byte 
arrives; thus, real-time implementations are feasible.   

A conceptual illustration of a 3-dimensional feature space 
is shown in Fig 2. Since the binary feature space is discrete and 
finite, as described above, we chose to implement it with a 
simple lookup table (requiring at most w

d
 bits) rather than 

using a discrimination function that would require additional 
computation resources and time. As a result, run-time 
evaluation of a feature vector merely requires computing the 
index into the multidimensional array and subsequently reading 
the binary detection decision.  In addition to computational 
efficiency, there are performance advantages to this approach 
as well.  Unlike more complex approaches that use distance 
metrics which force the normal region(s) to be constrained to 
well-defined mathematical shapes, our approach can represent 
arbitrarily shaped regions because each point is individually 
mapped to a binary decision.  This allows our approach to 
potentially represent nnormal regions with more accuracy, 
reducing false negatives.   

In many cases, the full resolution of d bits per dimension in 
not needed.  Thus, we allow the resolution in each dimension 
to be quantized by some chosen amount.  For example, when 
using a window size of 256, one dimension could have the full 
range [0,255], while another could be reduced by half to 
[0,127] by dividing the feature count by 2. This both reduces 
storage requirements when a particular region of the space is 
unimportant and allows tradeoffs to be made between 
performance and storage requirements, if necessary.  It is 
expected that in the embedded systems for which this approach 
is intended, most feature spaces will be low-dimensional and of 
relatively low resolution; the largest space we use in this study, 
for example, is 64

3
 bits or 32 kilobytes.     

 

Fig 2.  Conceptual view of a 3-dimensional feature space.  The space can 
be represented by a table of binary values, allowing arbitrary shapes to be 
modelled. 



IV. EXPERIMENTAL EVALUATION 

We have evaluated the proposed approach against traffic 
obtained from two Internet-enabled devices: a weather station 
and an interactive networked video camera. These were 
chosen, respectively, to represent an IoT device that primarily 
outputs data, which we call a sensor, and one that primarily 
receives control commands, which we call an actuator.  Since 
the Internet of Things will bridge the cyber and physical 
worlds, these two types of devices, each representing one 
direction of that bridge, are a good starting point for analysis. 

The network camera we tested is a Foscam FI8910W Pan 
& Tilt IP/Network Camera.  The device is controlled through a 
series of HTTP GET requests containing the parameters 
necessary to manipulate the camera.  While the device has two-
way traffic, with the return traffic containing video and audio, 
we only evaluated the control traffic destined for the camera.  
This is the most likely protection scenario in a real-world 
environment.  However, additional detectors could be defined 
to simultaneously monitor configuration traffic destined for the 
device, as well as for outgoing audio or video data.      

The weather station, being representative of a network 
sensor, generates traffic primarily in the output direction.  The 
device tested is an Ambient Weather WS-1001-WIFI Observer 
solar powered wireless remote monitoring station mounted in 
an outdoor location to obtain realistic readings.  This device 
periodically reports current weather conditions to an Internet 
service through a series of HTTP GET requests.   

We collected traffic from the two IoT devices, as well as 
generic HTTP traffic, to obtain three benchmark data sets: IoT 
control device, IoT sensor device, and generic HTTP.  The 
latter data was collected for the purpose of evaluating the 
discrimination ability of the detector, both of which use HTTP 
as their underlying protocol. While the 1999 DARPA intrusion 
detection benchmarks [10] have been widely used to evaluate 
network anomaly detection systems, we chose not to evaluate 
the proposed approach against these for three reasons.  First, a 
bit-pattern based anomaly detection approach has already been 
evaluated in [1] and was found to have very good performance.  
As the proposed approach represents a superset of that work 
we could have simply tuned a detector to match the given 
parameters reported and obtained similar results.  Secondly, the 
anomaly detector proposed in this work is intended for 
protection of resource-constrained devices, while the DARPA 
benchmarks represent traffic from general-purpose hosts and 
servers.  Finally, the DARPA benchmarks are over 15 years 
old and may not be truly representative of modern network 
traffic.  The generic web data we collected is likely more 
representative or modern payload characteristics. 

A. Traffic Analysis 

The weather station transmits sensor readings to a server 
encoded in HTTP GET request packets.  Each packet contains 
a TCP payload of approximately 525 bytes encoding a single 
vector of readings.  During traffic collection, TCP control 
packets with no payloads were filtered out of the stream and 
18648 packets were collected to represent normal operation, 
with an additional 2141 for evaluation of false positives.   

The camera receives control packets from user web 
browsers, also encoded within HTTP GET request.  As before, 
TCP control packets with no payloads were filtered out of the 
incoming traffic and 4123 packets were collected to represent 
normal operation, with an additional 800 for testing of false 
positives.   

For comparison, generic HTTP payload data was collected 
on a network.  Outgoing traffic with a destination TCP port of 
80 and was collected until 5,000 packets with payloads were 
obtained.  This traffic included requests to a wide range of sites 
and also included multimedia and other user data streams. 

 For illustration purposes, Fig 3 shows the distribution of 
byte values for the traffic collected from the control device, as 
well as the byte distribution for a randomly selected single 
packet.  No byte values above 127 were observed, as the traffic 
represents standard 7-bit ASCII encoded characters. The figure 
shows that the distribution of bytes in a single sensor packet is 
similar to the aggregate distribution of the entire traffic set, 
suggesting that the distribution is similar among packets.   

To evaluate this more precisely, the cosine similarity metric 
was computed for all pairs of packets in each of the three data 
sets.  Fig 4 shows the distribution of inter-packet cosine 
similarity values for each of the data sets.  Fig 4(a) shows that 
for the generic web traffic, the packets exhibit a wide-range of 
dissimilar distributions.  By contrast, the traffic from each of 
the IoT devices exhibits a very high degree of similarity among 
packets (Fig 4(b) and Fig 4(c)).  A summary of the minimum, 
maximum and mean cosine similarity values is provided in 
Table 1.  The IoT sensor displayed the highest degree of 
similarity among packets; the IoT control device had slightly 
more variability in the types of messages used in its protocol 
exchanges and thus had a slightly higher dissimilarity among 
packets, though not nearly as much as the generic web traffic.  
This data suggests that, as presumed, these IoT devices use few 
protocols and that these protocols are not very complex, as 
complex protocols would exhibit more dissimilarity among 
packets.   
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Fig 3.  (a) Distribution of payload bytes for camera control traffic; (b) 
distribution of payload bytes for a randomly selected packet.  The single 
packet bears a remarkable similarity to the aggregate traffic.   



 

B. Anomaly Detection Performance 

To assess the performance of the proposed ultra-
lightweight deep packet anomaly detection approach on the 
IoT device traffic, we trained a detector for each device on its 
collected normal traffic and evaluated it against various attack 
scenarios, including worm propagation, tunneling, SQL code 
injection, and directory traversal attacks.  The parameters of 
each detector were manually tuned based on the payload traffic 
patterns observed in the data set.  Once bit-patterns, window 
size and stride were chosen, collected traffic was trained 
against the detector to identify the normal regions of the space.  
Subsequently, attacks were developed and evaluated against 
the trained detector. 

Bit-pattern features were selected intuitively using the 
following heuristic. First, n-gram patterns in the payloads were 
identified by inspecting the histogram of 2-grams of each 
payload. To improve detection accuracy without over-learning 
normal payloads, bit-patterns were chosen to match commonly 
occurring sequences in the data without being overly specific.  
Therefore, don’t cares were introduced into the patterns with 
the dual goals of retaining specificity and sensitivity of the 
detector.  To achieve this we used the following heuristic: if 
introducing a don’t care significantly changed the feature count 
over the more specific pattern, then its inclusion is rejected.  
The motive behind this heuristic was to be very specific on 

matching characteristics of normal traffic, but allowing the bit-
patterns to match as broadly as possible on abnormal traffic.  
The latter should increase the likelihood that anomalous 
payloads would skew the feature vector out of the normal 
regions of the feature space.  Future research will focus on 
automating learning algorithms.   

1) IoT Sensor Detection Performance 

From the traffic analysis in Fig 4 and Table 1, the weather 
station had the most uniform traffic of the devices tested.  
Upon inspection, all the packets were found to be 
approximately 525 bytes long; therefore, a window size of 256 
bytes was chosen with a stride length of 64, allowing multiple 
windows of payload to be evaluated within each packet.   

By studying the normal payload contents, two types of 
2-gram patterns appeared.  The first was letters followed by 
letters (ASCII codes in the range [65,122], followed by the 
same). For these 2-grams, we chose the bit-pattern 
01XXXXXX 01XXXXXX, which matches pairs of bytes in 
the range [64,127]; however, because the packets contained no 
bytes in the range [128,255], we included and extra don’t care 
in the most significant bit of the second octet of the 2-gram 
pattern, following our feature selection heuristic, to obtain 
01XXXXXX X1XXXXXX.    

The second pattern of 2-grams we observed were ASCII 
encoded “=” characters (code 61) followed a variety of letters 
or numbers.  For this pattern, we therefore started with 
00111101 0XXXXXXX (“=” followed by any value below 
128).  To reduce the overly specific first octet, we evaluated 
the pattern against the normal payloads and found that adding 
don’t cares in bit positions 0, 1, 3 and 4 had little effect on the 
feature counts. Thus, our final bit-pattern was 
001XX1XX 0XXXXXXX. 

As a network sensor, the traffic being evaluated by the 
detector is that leaving the IoT device. Therefore, we simulated 
attacks representing the use case where a compromised sensor 
device is attempting to use the network to accomplish its 
intended misbehavior. We should note that we have no 
knowledge about the implementation of the IoT device or the 
server it communicates with; the intent was to simulate 
common attack scenarios, not ones that would necessarily 
succeed for this device.  The attacks include attempting to 
establish an encrypted tunnel, an attempted code-injection 
attack against the upstream server receiving the sensor data, 
and a worm propagation.  The tunnel attack was emulated with 
traffic captured from a secure shell connection.  To emulate a 
code-injection attack, we replaced the username=”nobody” 
string in one of the packets with the string username= “1; 
DROP TABLE passwd”, an attempt to have SQL code 
embedded in the HTTP GET request be interpreted by the host. 
It should be noted that we have no knowledge of the server’s 
underlying system, including whether it uses SQL to store a 
database of usernames.  To emulate a worm attempting to 
propagate to the device, we used the captured payload packets 
of the infamous Code Red II worm [11].     

Fig 5 shows the feature space of the trained 64x64 
detection grid for the selected bit-pattern pair.  We started with 
a grid size of 64, with the intention of increasing or decreasing 

  
 (a) 

   
 (b) (c) 

Fig 4.  Distribution of inter-packet cosine similarity values for (a) generic 
web traffic; (b) IoT sensor traffic; and (c) IoT control traffic.  Note the 
different horizontal axes. Packet byte distributions of IoT device traffic are 
remarkably uniform across packets.  The IoT control traffic had a few 
outliers that were not visible in the graphs and were omitted. 

Table 1.  Summary of cosine similarity values among packets within each 
data set.  The generic web traffic exhibits a wide range of packet byte 
distributions, while the IoT device packets show very high similarity. 

Traffic Set 
Minimum 
Similarity 

Maximum 
Similarity 

Mean 
Similarity 

Generic Web 0 1.0 0.825
IoT Sensor 0.984 1.0 0.996
IoT Control 0.536 1.0 0.979



it as necessary.  The filled-in squares represent those regions of 
the space in which normal traffic occurred.  Superimposed on 
the grid are symbols indicating the regions mapped to by three 
different simulated attacks:  worm propagation, code injection, 
and tunneling attack.  The figure illustrates that one or more 
windows of payload from each attack were detected by the 
trained detector.  The code injection attack, being the most 
similar to the original traffic, occupied locations in the feature 
space that were close to the normal traffic; in fact, one packet 
occurs in an anomalous cell that falls within the normal cluster.  
This illustrates our claim about the improved discrimination 
that comes with using a lookup table detector; using a linear or 
elliptical discriminant function, for example, would not have 
detected this part of the attack.  

The detection performance of the detector is summarized in 
Table 2, which shows per window, per packet, and per attack 
detection rates.  While the main goal is to detect and stop the 
attack, the per-window detection rates are important because 
they indicate the ability of the detector to discriminate 
payloads.  The per packet detection rates provide a measure of 
how many packets of the attack would be blocked by the 
detector.  Although blocking only one may be necessary, it is 
desirable to block as many as possible.  Included in the table is 

the normal test data used to assess false positives.   

The data shows that not only was every attack detected, but 
every packet of each attack had at least one window that was 
detected as anomalous by our approach.  Furthermore, the per-
window detection accuracies were extremely high for the 
worm and tunneling attacks.  The Code injection attack was 
expected to be the hardest to detect, given that it is 
implemented using a single packet that is slightly modified 
from a normal packet.  Yet, despite this small change 33% of 
the data windows were affected enough by the change to be 
classified as anomalous. A single false positive occurred on the 
normal testing data. 

The feature space shown in Fig 5 would require only 4096 
bits to represent.  A seen from the figure, however, the space is 
relatively sparse, particularly in the dimension represented on 
the vertical axis of the figure.  This prompted us to try reducing 
that dimension of the detector from 64 to 32, which would cut 
the overall storage requirement in half.  The reduced space is 
shown in Fig 6.  This change caused 2 fewer windows of the 
tunnel attack to be detected, reducing the per-window detection 
accuracy to 94.0%; the per packet detection rate remained the 
same.  No other value listed in Table 2 was affected.  This 
illustrates the ability of our detector to balance performance 
and resources, as the change resulted in a small decrease in the 
number of windows of payload detected but results in a 50% 
reduction in detector storage. 

It should be noted that when decreasing the size of the 
space, all normal regions in the larger feature space necessarily 
map to normal regions in the quantized space; therefore, the 
false positive rate can only decrease.     

2) IoT Actuator Detection Evaluation 

Analysis of IoT actuator traffic showed payload lengths 
between 264 and 500.  A window size of 128 bytes was 
chosen, with a stride length of 32, to allow multiple windows 
to be processed for all packets.  As a network actuator, the 
traffic being evaluated by the detector is that directed to the 
IoT device. Therefore, we simulated attacks representing the 
use case where the attacker is trying to gain access.  The 
attacks include an attempted code injection attack, directory 
traversal attack, superfluous Unicode attack, worm propagation 
and an attempt to perform an unauthorized NVRAM restore. 
The code injection and worm propagation attacks were the 

Series1 Worm Propagation Code Injection Tunnel

Fig 5.  64x64 feature space for the 2-gram bit-pattern pair 
01XXXXXX01XXXXXX, 001XX1XX0XXXXXXXX. For clarity, false-
negatives are not plotted. 

Table 2: Number of windows and packets detected for sensor attacks tested.  In 
all cases, every packet of all the attacks was detected. 

Attack Number 
Windows 

Windows 
Detected 

Number 
Packets 

Packets 
Detected 

Attack 
Detected

Worm 
Propagation 

51 51 
(100%) 

4 4 
(100%) 

Yes

Code 
Injection 

6 2 
(33.3%) 

1 1 
(100%) 

Yes

Tunnel 66 64 
(97.0%) 

25 25 
(100%) 

Yes

Normal 
Testing 

12846 1 
(0.00%) 

2141 1 
(0.05%) 

n/a

Normal Worm Propagation Code Injection Tunnel

 

Fig 6.  Feature Space from Fig 5, reduced to 64x32.  



same as those used in the previous section. The directory 
traversal attack used a modified URL including the string 
GET ../etc/passwd, (instead of GET /filename) emulating an 
attempt to exploit a misconfigured system to gain access to the 
file system outside of the root directory of its http server.  The 
superfluous Unicode attack is similar to the directory traversal 
but attempts to bypass filters looking for the “../” pattern by 
encoding those three characters in Unicode. The NVRAM 
restore attack contained an attempt to restore the device 
settings using a previously collected backup file.     

By studying the payload contents, two types of 2-gram 
patterns appeared.  The first was letters followed by letters 
(ASCII codes in the range [65,122]).  For these two grams, we 
chose the bit-pattern 01XXXXXX 01XXXXXX, which 
matches pairs of bytes in the range [64,127].  Unlike the IoT 
sensor, including additional don’t cares into this pattern did 
change the feature counts; therefore, we rejected them based on 
our heuristic. The second pattern of 2-grams we observed was 
the presence of a large number of ASCII encoded digits in the 
range [30,39] followed by a wide range of values.  For this 
pattern, we selected 0011XXXX 0XXXXXXX.  Following our 
heuristic, additional don’t cares were not included, as they 
changed the feature counts dramatically. 

Fig 7 shows the feature space of the trained 64x64 
detection grid for the selected bit-pattern pair. We again started 
with a grid size of 64x64, with the intention of increasing or 
decreasing it as necessary.  However, as shown in Table 4, the 
performance was very good on all attacks except for the 
superfluous Unicode attack, which was not detected.  
Increasing the grid size did not improve the performance, so 
we suspected that the issue was the higher dissimilarity among 
packets for this traffic (as reported in Section 4A).  Therefore, 
we added a third dimension to the detector, using the bit-
pattern 01XXXXXX, which counts 1-grams in the range 
[64,127].   

 The results of this test are shown in Table 3.  Of the four 
attacks not already detected perfectly by the two-dimensional 
detector, 3 showed improved performance using the three 
dimensional detector.  Furthermore, all attacks were detected. 

3) Discriminatory Ability of Detectors  

We evaluated the ability of each detector to discriminate 
the traffic it was trained on from other traffic.  The results are 
summarized in Table 5.  The four detectors correspond to those 
used in the previous sections, and the three data sets are the 
collected normal data from the two IoT sensors and the generic 
web data.  Recall that for the IoT sensor, two 2-dimensional 
detectors using the bit-patterns 01XXXXXX0XXXXXXX and 
001XX1XX0XXXXXXX were evaluated. The difference 
between the detectors is only that one used a 64x64 feature 
space and the other a reduced 64x32 feature space.  Further 
recall that for the IoT sensor, a 2-dimensional 64x64 feature 
space using the patterns 01XXXXXX01XXXXXX and 
0011XXXX0XXXXXXX was evaluated. A 3-dimensional 
64x64x64 space expanded on this by extending to a third 
dimension using the feature 01XXXXXX. 

Normal Directory Traversal Restore Superfluous Worm

 

Fig 7.  Two-dimensional64x64 feature space for IoT actuator using bit-pattern 
pair 01XXXXXX01XXXXXX , 0011XXXX0XXXXXXX.  

Table 4: Number of windows and packets detected for actuator attacks using 
64x64 detector in Fig 7 .  One attack was not detected. 

Attack Number 
Windows 

Windows 
Detected 

Number 
Packets 

Packets 
Detected 

Attack 
Detected

Worm 
Propagation

111 111 
(100%) 

4 4
(100%) 

Yes

Code 
Injection 

11 2 
(18.2%) 

1 1
(100%) 

Yes

Superfluous 7 0 
(0%) 

1 0
(0%) 

No

Directory
Traversal 

7 1 
(14.3%) 

1 1
(100%) 

Yes

Restore 173 144 
(83.2%) 

9 8
(88.9%) 

Yes

Normal 
Testing

7290 0 
(0.0%) 

1215 0
(0.0%)

n/a

 

Table 3: Number of windows and packets detected for actuator attacks using 3-
dimensional detector obtained by adding a dimension to the detector used in 
Table 4.  Values showing improvement are in boldface. 

Attack Number 
Windows 

Windows 
Detected 

Number 
Packets 

Packets 
Detected 

Attack 
Detected

Worm 
Propagation

111 111 
(100%) 

4 4
(100%) 

Yes

Code 
Injection 

11 5 
(45.5%) 

1 1
(100%) 

Yes

Superfluous 7 4 
(57.1%) 

1 1
(100%) 

Yes

Directory
Traversal

7 4 
(57.1%) 

1 1
(100%)

Yes

NVRAM
Restore 

173 156 
(90.2%) 

9 9
(100%) 

Yes

Normal 
Testing 

7290 0 
(0.0%) 

1215 0
(0.0%) 

n/a

 



The results indicate that both detectors developed for the 
IoT sensor performed were able to accurately discriminate 
against the IoT control traffic, detecting 99.9% of the payload 
windows and every packet as abnormal.  The detectors for the 
IoT actuator, on the other hand, detected slightly fewer 
windows of the sensor payloads as being anomalous (92.9%), 
but still detected at least one window in each packet for a 
perfect packet (and therefore attack) detection rate. 

The evaluation on the generic web data can reveal more 
information on the discriminatory ability of the detectors, given 
its highly dissimilar nature.  Both detectors developed for the 
IoT sensor could detect 100% of the generic web packets as 
being anomalous, and both showed very high per-window 
detection accuracy.  The results again show that the smaller 
64x32 detector exhibited just slightly lower performance as a 
tradeoff for the reduction in size.  The 2- and 3-dimensional 
IoT actuator detectors showed much more variability in the 
ability to discriminate the generic web payload windows, 
though both had high per packet detection accuracies.  In 
moving from a 2-dimensional feature space to a 3-dimensional 
space, per-window detection accuracy improved from 47.7% to 
100%; per-packet accuracies went from 98.4% to 100%.  The 
3-dimensional detector developed for the IoT actuator was able 
to perfectly discriminate the generic web traffic.   

V. CONCLUSIONS 

We have presented a high-performance ultra-lightweight 
deep-packet anomaly detection approach that is feasible to run 
on small IoT devices. The approach uses n-gram bit-patterns to 
efficiently and flexibly model payloads and allows the n-gram 
size to vary by dimension.  By using a direct representation of 
the feature space for the discrimination function, the detector 

can make a fast packet classification decision. The approach 
can be implemented in hardware or software and has abundant 
parallelism to exploit for effective implementation. The 
approach can be deployed in an IoT device’s network interface 
or protocol stack, or can be built into network appliances and 
firewalls.  It can operate in a wide-range of network 
environments and is highly configurable and scalable. 

The results presented have shown that small IoT devices 
use few and relatively simple protocols, leading to network 
payloads that are highly similar and therefore amenable to 
anomaly detection with an extremely low occurrence of false-
positives. The detectors have been shown to be highly effective 
at identifying anomaly packets from a wide-range of attacks, 
and have an excellent ability to discriminate device-specific 
traffic from other types of Internet traffic.   
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Table 5: Analysis of discriminatory ability of the four detectors on three data 
sets.  Reported for each combination is the detection rate per window of 
payload, and per packet of payload. 

Data Set 

Detector IoT  
Sensor 

IoT 
Control 

Generic 
Web 

IoT Sensor 
64x64 n/a 

Window: 99.9% 
Packet: 100% 

Window: 96.2%
Packet: 100% 

IoT Sensor 
64x32 n/a 

Window: 99.9% 
Packet: 100% 

Window: 93.5%
Packet: 99.8%

IoT Actuator 
64x64 

Window: 92.9% 
Packet: 100% n/a 

Window: 47.7%
Packet: 98.4% 

IoT Actuator 
64x64x64 

Window: 92.9% 
Packet: 100% n/a 

Window: 100%
Packet: 100%  


