
Fincher: Elephant Flow Scheduling based on Stable
Matching in Data Center Networks

Yuxiang Zhang, Lin Cui and Qiao Chu
Department of Computer Science

Jinan University

Guangzhou, China

Email: samuelzyx0924@gmail.com, tcuilin@jnu.edu.cn, logan chu@outlook.com

Abstract—With the development of cloud computing in recent
years, data center networks have become a hot topic in both
industrial and academic communities. Previous studies have
shown that elephant flows, which usually carry large amount of
data, are critical to the efficiency of data centers. In this paper,
we study the flow scheduling problem in data centers with a
focus on elephant flows. By applying stable matching theory,
the scheduling problem is modeled and some useful method is
complemented. Then, we propose Fincher, an efficient scheme
leveraging Software-Defined Networking (SDN) to reduce latency
and avoid congestions in data centers.

I. INTRODUCTION

Driven by modern Internet applications and cloud com-

puting technologies, data centers are being built dramatically

around the world. To obtain high bandwidth and achieve fault

tolerance, Data Center Networks (DCNs) are often designed

with multiple paths between any two servers[1][2]. Multiple

paths are not only useful in dealing with potential failures,

but can also be exploited to enhance network performance.

Especially, when the traffic load get large, the scheduling of

any pairs of servers communication becomes more important.

Grouping data into flows helps researchers to get a better

view of data transmissions in data centers. Flow schedul-

ing solves the reordering problem introduced by multi-path

routing. The data packets in the same flow are transferred

sequentially without being reordered. And when a flow has

a lot of data or lives a long period, we call it elephant

flow. Otherwise, it is referred as mice flow. Elephant flows

scheduling is a challenging problem in data centers, which

can cause congestion and occupy large resource. In previous

years, many research works and solutions have been proposed

to schedule elephant flows[1][2].

Among all solutions, Equal Cost Multi-Path routing (ECM-

P) is the state-of-the-art for multi-path routing and load-

balancing in DCNs. However, ECMP, which is based on flow

hashing, would cause congestion when hash collisions occur

and perform poorly in asymmetric topologies[3].

Based on fat-tree topology, Al-Fares et al. [1] propose a

centralized flow scheduler, which schedules elephant flows

with assigning a path without reserved path to each elephant

Corresponding Author: Dr. Lin Cui (tcuilin@jnu.edu.cn)
This work is supported by the “Fundamental Research Funds for the Central

Universities” No.21614330 and NSFC No. 61402200.

flow. However, it assumes that at most one elephant flow

originates from one host at a time, which is impractical in cur-

rent data centers. Hedera, another centralized flow scheduling

system for fat-tree, is proposed in [2]. Hedera detects large

flows at edge switches, and selects a path according to the

result of the estimated demand of large flows. However, due

to only considering bandwidth limitation, Hedera may cause

unbalanced traffic or congestions.

In this paper, we use stable matching theory to handle

the scheduling problem for elephant flows in data centers.

According to the characteristic of stability, we present Finch-

er, a novel stable matching based elephant flow scheduling

algorithm, which provides high utilization and low latency in

data centers. Fincher leverages the global information of data

centers to generate the preference list of flows and switches.

By obtaining an optimal stable matching between flows and

switches, Fincher can match all flows to their appropriate paths

and achieve optimal performance of the network. The stability

of output matching enables Fincher to avoid congestion, which

are caused by elephant flows, effectively. We have preliminary

evaluation for Fincher in Mininet and Fincher’s performance is

better than ECMP and Hedera in flow completion time (FCT).

II. FINCHER SCHEME

In data center networks, there are two main objects needed

to be considered carefully when performing flow scheduling :

1) Switch: a set of switches which can receive packets, store

packets in memory and forward packets; 2) Flow: a set of flows

which transfer data between two end hosts. Flows occupy

switches memory and demand for resources. In practical data

center, fat-tree is commonly implemented. A k-pod fat-tree

topology is considered, which means each switch has k ports.

For inter-pod flows, there are (k/2)2 possible paths between

any given pair of hosts in the network [1]. Each of these paths

corresponds to a unique core switch. Thus, when a new flow

arrives, we need to assign an appropriate core switch to this

flow and this chosen core switchs corresponding path becomes

flows chosen path. A similar operation can be performed for

intra-pod elephant flows, i.e., assigning a unique aggregation

switch to represent the path for intra-pod flow.

The description above reminds us the Stable Matching The-

ory which originates from SM (Stable Marriage) problem[4].

We want to apply the stable matching theory in elephant flow

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

scheduling to solve the confliction between switches and flows

to avoid congestion. First, we should build a preference list

for both flows and switches. In this paper, we focus on data

rate and unoccupied memory as the main factor of both flows’

and switches’ preference lists. Each flow has a preference list

of switches P(fi) = {s1, s2, ... , sk}, where each switch can

forward the fi and its capacity is sufficient (cj > ri), the k is

the number of these switches. The order of the preference list

can be determined by the descendant order of the length of

switches unoccupied memory. Each switch has a preference

list of flows P(si) = {f1, f2, ... , fk}, where each flow can

be transferred to the switch and its data rate does not exceed

the switch’s capacity(cj > ri), where k is the number of these

flows. The sequence order of this list can be determined by

the descendant order of the data rates of flows. Moreover, to

avoid congestion, switches’ memory can not be overflowed. It

means that switch should follow the constraint: a switch can

accept multiple flows as long as the total flow data rate does

not exceed its capacity.

Under the preference lists for both flows and switches with

the switchs memory occupancy constraint, our objective is to

find an optimal matching between flows and switches, in which

for each flow, no better switch can receive it, and for each

switch, no larger flow is rejected when it still can accept flows.

To solve the conflict between flows and switches, and find

stable matching between them, we present our modified Gale-

Shapley algorithm[5], which we called Fincher algorithm: ele-

phant flow scheduling based on stable matching in data center

networks. Fincher is guaranteed to find a stable matching for

a given problem. The key idea is to ensure that, whenever a

flow is rejected, any less preferable flows will not be accepted

by a switch, even if it has enough capacity to do so.

When we implemented our scheme, we found that directly

apply DA (Deferred Accept) algorithm in flows scheduling

may cause congestion and it would output a greed matching.

In order to overcome this challenge, we set a threshold for each

switch which can balance load among switches as evenly as

possible. And our threshold’s definition is as follow.

T =

∑
cj −

∑
ri

|S|
− ranked (|F |+ 1− |S|)flow’s data rate

(1)

We believe that the definition of threshold like above can

assure no free flows which no switch can accept it and avoiding

greedy matching.

III. PRELIMINARY EVALUATION

We have evaluated the performance of Fincher in a relatively

large scale with higher path diversity on a Mininet[6] and

POX platform. Fincher algorithm is running on the POX

controller module, which is connected to the Mininet through

a LAN. We use the workload with traffic patterns provided

in [1] and Hedera [2]. We compare our Fincher scheme to

ECMP and Hedera. We use flow completion time (FCT) as

the performance metric throughout the evaluation.

Figure 1 shows each elephant flows average FCT of ECMP,

Hedera and Fincher in our experiment. From the Figure 1 we

Fig. 1. CDF of FCT

can know that Fincher achieve reduction in FCT effectively.

By calculating the reduction rate in FCT, we know that Fincher

achieves 14% to 35% reduction in the FCT of elephant flow

compared to ECMP and average 29% reduction in the FCT

of elephant flow, meanwhile, Fincher achieves 10% to 28%

reduction in the FCT of elephant flow compared to Hedera

and average 21% reduction in the FCT of elephant flow.

The effectiveness of avoiding congestion and load balancing

contributes to the effectiveness of Fincher in scheduling. The

experiment result also proves that stable matching is a strong

method in flow scheduling.

IV. CONCLUSION

In this paper, we studied the challenge of elephant flow

scheduling problem and proposed a solution, Fincher, by

applying stable matching theory. Through finding a stable

matching between elephant flows and core/aggregation switch-

es, Fincher can effectively improve the performance of large

flow and avoids congestion. Preliminary Evaluation shows that

Fincher’s effectiveness on utilizing the capacity of the network

and reducing the completion time of the flows. Future work

is needed to improve the performance of the algorithm and a

further study of the data center network.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-

cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.
[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in Pro-

ceedings of the 7th USENIX conference on Networked systems design

and implementation, 2010, pp. 19–19.
[3] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,

“Presto: Edge-based load balancing for fast datacenter networks,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on

Data Communication. ACM, 2015, pp. 465–478.
[4] K. Iwama and S. Miyazaki, “A survey of the stable marriage problem

and its variants,” in Informatics Education and Research for Knowledge-

Circulating Society, 2008. ICKS 2008. International Conference on.
IEEE, 2008, pp. 131–136.

[5] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” American mathematical monthly, pp. 9–15, 1962.

[6] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,” in
Proceedings of the 8th international conference on Emerging networking

experiments and technologies. ACM, 2012, pp. 253–264.

