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Abstract—The performance of storage subsystem of super-
computers can not meet the demands of complex applications
running on them. One of its major causes is that the bandwidth
of storage hardware has not been utilized efficiently due to the
complex and changing application I/O behavior. Therefore, I/O
characterization tools are vital to application development and
orchestration of storage system.

This paper proposes an I/O characterization tool called F-
Tracer. It captures I/O traces and performs traces analysis at
runtime. In order to provide more flexible analysis, this FTracer
allows users to vary the analysis instances at runtime. This
mechanism ensures users get what exactly they want about the
I/O characteristics of their applications when applications are
running. In this work, we characterize MADbench2 benchmark
to demonstrate the ability of FTracer.

I. INTRODUCTION

I/O characterization tools are vital to application develop-

ment and the orchestration of storage system[1], [2]. Many

studies[3], [4] have proved that I/O characteristic is useful

to improve caching efficiency and accuracy of prediction.

Tuning file system parameters to achieve good performance

can get profit from I/O characteristic as well. The tools to

perform I/O characterization of applications can be classified

into two categories. For the first type, tracing tools capture

I/O traces and write them to files, such as Recorder, RIOT

and //TRACE etc. For the second one, profiling tools provide

statistical summaries by using counter at runtime trading off

detailed traces for low storage and runtime overhead, such as

Darshan[5].

There are three reasons promote us to design a new tracing

and analyzing framework. First, many applications running

on supercomputer are not written in MPI. We observed from

TH-1A that some data-intensive applications in oil seismic

exploration area and climate simulate are not written in MPI.

Darshan can only profile file operations of MPI applications.

For the initialization work of tracing I/O operation needed

are done in MPI_Init operations. Second, the software I/O

stack of many current supercomputers is abundant and is

composed of several levels as shown in Figure 1. Each level

provides end users portable data abstractions and performance

optimization. Unfortunately, the inadequate combination of

optimization strategy at each level can cause performance

decrease of applications. Capture the I/O traces at all levels and

do analysis refers to large amount of work, designers needs to

re-implement all the interfaces of all levels. And the resulting

trace files are big, which incurs extra overheads on storage

system. Actually, capture I/O traces at all levels is unnecessary,

all the I/O calls invoked in each level are ultimately processed

by the VFS layer of the operating system and underlying file

systems. Only tracing I/O calls at VFS level is sufficient to get

the I/O access characteristics of applications and to check the

effect of combination of optimization strategy. Third, Most

analysis tools are post-processed after applications running,

which incurs extra I/O workloads and computation.

In this paper, we present a I/O characterizing tool called

FTracer. It captures I/O traces of applications at VFS level by

using FUSE framework and perform on-line analysis on traces

to get I/O characteristics of parallel applications. FTracer is

flexible for the following reasons. In tracing, the traces can

be kept to storage or discarded at runtime by modifying a

parameter in configure file. In online analysis, the analysis

instance can be replaced when application is running, therefore

users can adjust the perspective of on-line analysis.

II. DESIGN AND IMPLEMENTATION OF FTRACER

A. Fuse-based tracer

FTracer is implemented in user-space with FUSE. FUSE

is an easy-to-use framework for users of Unix-like operating

systems to create their own file system in user space without

modifying kernel code. The FUSE framework is comprised

of two mayor components as shown in Figure 1 with orange

blocks: the fuse kernel module and the libfuse library. The fuse

kernel module interacts with the VFS interface, intercepts the

I/O operations and handles them with the kernel level interface.

The libfuse library provides a high level API to develop file

system in user space.

Figure 1 illustrates the design of our Fuse-based trace tool,

called FTracer. In essence, FTracer is a file system and should

be mounted on the operating system firstly before used. After

mounted, I/O operations to files on FTracer will be handled

by the routines we defined in user-space. The I/O routines

FTracer implemented are quite simple, it first records the I/O

traces in a buffer allocated when FTracer is mounted, then

redirects the I/O requests to other file systems to carry on the

real open, read or write operations.
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Fig. 1. The software stack of supercomputer and design overview of
FTracer
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Fig. 2. The cooperation of main thread and analysis thread to finish
tracing and analysis

B. Online Analysis

The on-line analysis to traces is taken by a daemon thread.

When FTracer starts, it creates a thread and blocks it. FTracer

keeps two equal size buffers to store traces. As soon as one

trace buffer is full-filled, the other trace buffer is used to store

traces. Meanwhile, master thread signals the daemon thread

and arises it to analyze traces in the fullfilled buffer. After

analysis finished, the buffer is cleared and ready to record

traces. Figure 2 illustrates the cooperation of main thread

and analysis thread to finish tracing and on-line analysis.

The buffer size can be configured before FTracer is mounted,

in our implementation is 16MB and about 50000 traces

accommodated. The two buffers mechanism guarantees the

concurrency of the recording and analysis of traces. The two

threads have no effect on each other, therefore, analyzing the

traces to obtain I/O characteristic of the running application

on-line do not incur extra overhead of tracing. In addition, the

analyzing thread is blocked while there is no full-filled buffer

to be processed. In other word, the analyzing thread is blocked

most of the time and the waste of CPU resources is avoided.

FTracer provides a mechanism to enable users to replace

or add their new trace analysis algorithm at runtime. The

analysis algorithms are stored to a dynamically loaded library.

The analysis thread first open this library by call dlopen

function, then update the analysis algorithm with dlsym

function. When users finish new analysis algorithms, they

can compile them into the dynamically loaded library(in our

implementation is libanalysis.so) and replace the old

version of this library with the new one. In the subsequent

analysis stage, the new algorithm is used to perform analysis.

FTracer currently provides three types of analysis routine for

users who do not want to write analysis function themselves,

respectively under three perspectives, which is from process,

node and file.

III. BENCHMARK STUDY

MADBench2 benchmark is based on MADspec code which

is a cosmology application. In this study, we perform MAD-

Bench2 with 16 compute nodes on TH-1A, and MADBench2

accesses an single shared file.

The runtime analysis to I/O traces provided by FTracer

can used to get bandwidth related information. As Figure 3

illustrate, the first write phase of MADBench2 takes about
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Fig. 3. The read/write bandwidth
of MADBench2 benchmark
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Fig. 4. The distribution of I/O
access size of MADBench2 bench-
mark

25s, and the maximum write bandwidth is about 200MB/s.

The reason of low bandwidth is that the written file is not

striped among multiple OSTs of Lustre, therefore the 200MB/s

is achieved by one OST. The distribution of I/O size of

MADBench2 is shown in Figure 4, all the read/write sizes

are larger than 2MB, actually, the I/O size can be configured

by users.

IV. CONCLUSION

We have designed and implemented a FUSE-based I/O

characterization tool called FTracer. FTracer captures the I/O

traces of applications and perform online traces analysis mean-

while. The functions used to analyze traces can be replaced

at runtime when application is still running. This mechanism

ensures that users can get what exactly they want about the

I/O characteristics.
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